

Higgs couplings parameterizations (in and beyond the standard model)

Aldo Deandrea IPNL, University Lyon 1

deandrea@ipnl.in2p3.fr

LC13 ECT* September 18th 2013

9/18/13

page 1

Catching a SM Higgs?

道自義米作品《 月亮忘記了 》 Copyright © Jimmy S.P.A. Co., Ltd 重色调原 www.jimmyspa.com

page 2

Observables and parameterization

Use for data analysis and model survey

Conclusions

Light Higgs at LHC

- Higgs boson is light (m_H ~ 126 GeV) and consistent with SM expectations
 - Mainly production from gluon fusion in SM
 - Decay channel through two photons small but "clear" signature in the EM calorimeter.
 - Decay to W and Z bosons

Data vs models? Not so simple

Input : cross-sections

$$\hat{u}_i = \frac{\sigma_{pp \to h \to X_i}}{\sigma_{pp \to h \to X_i}^{\text{SM}}}$$

In Gaussian approximation :

$$\chi_i^2 = \left(rac{\mu_i \mid_{ ext{model}} - \hat{\mu}_i}{\sigma_i}
ight)^2$$

and if uncorrelated

$$\chi^2 = \sum_i \chi_i^2$$

quite a few caveats however (correlations, subchannels, statistics dominate?...)

Improved χ^2 method

 Instead of sub-channels, use χ² as a function of the production modes

 $(\hat{\mu}_{WW}, \sigma_{WW})$

 $(\hat{\mu}_{WW}^{0j},\sigma_{WW}^{0j}),(\hat{\mu}_{WW}^{1j},\sigma_{WW}^{1j})...+\epsilon_{0j}^{\mathrm{ggh}},\epsilon_{0j}$

$$\chi^2 = \left(egin{array}{c} \mu_{
m ggh,tth} \ \mu_{
m VBF,VH} \end{array}
ight)^T V^{-1} \left(egin{array}{c} \mu_{
m ggh,tth} \ \mu_{
m VBF,VH} \end{array}
ight)$$

Data re-use in BSM (arXiv:1307.5865)

- For models with the same tensor structure as SM
 - Likelihood rescaling possible (selections and acceptances independent of model parameters)
 - Replace global signal strengths by specific ones (production X and decay Y) also separating sub-channels (ex. in γγ untagged (ggF), 2-jets (VBF),lepton-tagged (VH)
 - Better: give full-likelyhoods (at present ggF+ttH and VBF+VH, in future separately?)
- For different tensor structure
 - H \rightarrow n with n>2 can probe the tensor structure (ex. H \rightarrow VV* \rightarrow 4f)
 - Change in selection efficiencies → fiducial cross-sections (simple fiducial model criteria can be implemented in MC for any model)
 - Analyses @different CM energies allow tests of anomalous couplings

Exploring BSM in Higgs physics

BSM parameterisations

- Specific model detailed fits
 - Possible but no general indications
 - Quite time consuming
- Effective parameterisations
 - Specialised for classes of models, use few parameters
 - Can avoid correlations
- Model independent
 - Effective Lagrangian approach (operator based, assuming no light new particles in the spectrum)
 - General but many more parameters
 - Extra "hidden" assumptions to reduce them (no FV, no CPV Higgs couplings, custodial symmetry, no large cancellations in EWPT)
- All of them are useful for different purposes

Simple parameters (exp. motivated)

Take parameters as independent prefactors of crosssections in the different channels

simple 2D contours with limited possibility to test my FTV (Favourite Theory Model)

A specific model example (theory motivated)

9/18/13

Effective Lagrangian for light Higgs doublet

 Effective chiral EW Lagrangian : at low scale one can use a derivative expansion to describe the eaten Goldstones of the breaking SU(2)xU(1) → U(1)em

$$\Sigma = e^{i\sigma_a \pi^a/v} \qquad \qquad v = 246 \,\mathrm{GeV}$$

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} h)^{2} - V(h) + \frac{v^{2}}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left[1 + 2a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + \dots \right]$$
$$- m_{i} \bar{\psi}_{Li} \Sigma \left(1 + c \frac{h}{v} + \dots \right) \psi_{Ri} + \text{h.c.}$$
$$V(h) = \frac{1}{2} m_{h}^{2} h^{2} + d_{3} \frac{1}{6} \left(\frac{3m_{h}^{2}}{v} \right) h^{3} + d_{4} \frac{1}{24} \left(\frac{3m_{h}^{2}}{v^{2}} \right) h^{4} + \dots$$

see hep-ph/0703164 and overview in 1303.3876

9/18/13

Effective Lagrangian for light Higgs doublet

 Taking a=b=c=d₃=d₄=1 and zero higher order terms one recovers the SM Higgs Lagrangian with

$$U = \left(1 + \frac{h}{v}\right)\Sigma$$

the scalar h is a "linear" multiplet (to be contrasted to the nonlinear sigma model realization)

- Total of 28 operators involving the Higgs field
- Relaxing SM constraints (but still custodial, CP+, flavor conserving)
 - 4 O(p2) coefficients: Cv, Ct, Cb, Ctau
 - 2 O(p4) coefficients (contributing to the same order as p2 to gg → h and h → gamma gamma) : Cγ, Cg
 - Note : Cγ, Cg not uncorrelated to tree level coefficients! (see 1210.8120 and later slides)

Effective Lagrangian for light Higgs doublet : dim 6

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i c_i \mathcal{O}_i$$

- For a choice of basis for Higgs physics see for example 1303.3876
 - 28 CP+ operators with h
 - 5 bosonic operators
 - 22 4-fermion op.
 - -2 fermion op. (oblique corr.)
 - = 53 independent

$$\begin{split} \Delta \mathcal{L}_{SILH} &= \frac{\bar{c}_H}{2v^2} \partial^{\mu} (H^{\dagger}H) \partial_{\mu} (H^{\dagger}H) + \frac{\bar{c}_T}{2v^2} \left(H^{\dagger}\overleftrightarrow{D^{\flat}}H \right) \left(H^{\dagger}\overleftrightarrow{D}_{\mu}H \right) - \frac{\bar{c}_6 \lambda}{v^2} \left(H^{\dagger}H \right)^3 \\ &+ \left(\frac{\bar{c}_u}{v^2} y_u H^{\dagger}H \, \bar{q}_L H^c u_R + \frac{\bar{c}_d}{v^2} y_d H^{\dagger}H \, \bar{q}_L H d_R + \frac{\bar{c}_d}{v^2} y_l H^{\dagger}H \, \bar{L}_L H l_R + h.c. \right) \\ &+ \frac{i\bar{c}_W g}{2m_W^2} \left(H^{\dagger}\sigma^i\overleftrightarrow{D^{\flat}}H \right) (D^{\nu}W_{\mu\nu})^i + \frac{i\bar{c}_B g'}{2m_W^2} \left(H^{\dagger}\overleftrightarrow{D^{\flat}}H \right) (\partial^{\nu}B_{\mu\nu}) \\ &+ \frac{i\bar{c}_H g}{m_W^2} \left(D^{\mu}H \right)^{\dagger}\sigma^i (D^{\nu}H) W^i_{\mu\nu} + \frac{i\bar{c}_H g}{m_W^2} (D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu} \\ &+ \frac{\bar{c}_7 g'^2}{m_W^2} H^{\dagger}H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{c}_9 g_S^2}{m_W^2} H^{\dagger}H G^a_{\mu\nu} G^{a\mu\nu} , \end{split}$$

$$\begin{split} \Delta \mathcal{L}_{F_1} &= \frac{i \mathcal{U}_{H_q}}{v^2} \left(\bar{q}_L \gamma^{\mu} q_L \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) + \frac{i \mathcal{C}_{H_q}}{v^2} \left(\bar{q}_L \gamma^{\mu} \sigma^i q_L \right) \left(H^{\dagger} \sigma^i \overleftrightarrow{D}_{\mu} H \right) \\ &+ \frac{i \tilde{c}_{H_u}}{v^2} \left(\bar{u}_R \gamma^{\mu} u_R \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) + \frac{i \tilde{c}_{H_d}}{v^2} \left(\bar{d}_R \gamma^{\mu} d_R \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \\ &+ \left(\frac{i \tilde{c}_{Hud}}{v^2} \left(\bar{u}_R \gamma^{\mu} d_R \right) \left(H^{c\dagger} \overleftrightarrow{D}_{\mu} H \right) + h.c. \right) \end{split} \tag{2.3}$$

$$&+ \frac{i \tilde{c}_{HL}}{v^2} \left(\bar{L}_L \gamma^{\mu} L_L \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) + \frac{i \mathcal{C}_{H_L}}{v^2} \left(\bar{L}_L \gamma^{\mu} \sigma^i L_L \right) \left(H^{\dagger} \sigma^i \overleftrightarrow{D}_{\mu} H \right) \\ &+ \frac{i \tilde{c}_{HI}}{v^2} \left(\bar{L}_R \gamma^{\mu} l_R \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) + \frac{i \mathcal{C}_{HL}}{v^2} \left(\bar{L}_L \gamma^{\mu} \sigma^i L_L \right) \left(H^{\dagger} \sigma^i \overleftrightarrow{D}_{\mu} H \right) \\ &+ \frac{i \tilde{c}_{HI}}{v^2} \left(\bar{l}_R \gamma^{\mu} l_R \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) , \end{aligned}$$

$$\Delta \mathcal{L}_{F_2} = \frac{\bar{c}_{uB} g'}{m_W^2} y_u \bar{q}_L H^c \sigma^{\mu\nu} u_R B_{\mu\nu} + \frac{\bar{c}_{uW} g}{m_W^2} y_u \bar{q}_L \sigma^i H^c \sigma^{\mu\nu} u_R W_{\mu\nu}^i + \frac{\bar{c}_{uG} g_S}{m_W^2} y_u \bar{q}_L H^c \sigma^{\mu\nu} \lambda^a u_R G_{\mu\nu}^a \\ &+ \frac{\bar{c}_{dB} g'}{m_W^2} y_d \bar{q}_L H \sigma^{\mu\nu} d_R B_{\mu\nu} + \frac{\bar{c}_{uW} g}{m_W^2} y_d \bar{q}_L \sigma^i H \sigma^{\mu\nu} d_R W_{\mu\nu}^i + \frac{\bar{c}_{dG} g_S}{m_W^2} y_d \bar{q}_L H \sigma^{\mu\nu} \lambda^a d_R G_{\mu\nu}^a \\ &+ \frac{\bar{c}_{lB} g'}{m_W^2} y_l \bar{L}_L H \sigma^{\mu\nu} l_R B_{\mu\nu} + \frac{\bar{c}_{uW} g}{m_W^2} y_l \bar{L}_L \sigma^i H \sigma^{\mu\nu} l_R W_{\mu\nu}^i + h.c. \end{split}$$

(2.4)

Higgs Chiral Lagrangian power counting

- Many parameters, but easy naïve power counting:
 - Extra derivatives ~ p/m
 - Extra Higgs field ~ h/f
- Anomalous dimensions may change counting
- Note: operator dims different if h is not a doublet :
 ex: a h singlet starts with dim 5 operators not dim 6
- Other remarks
 - Easy to add radiative corrections in a systematic way
 - Useful, but impossible to fit too many parameters with present data (at most 7 parameter fits attempted now)
 - Implicitly assumes no extra light particles in the spectrum

BSM in loops

- Decay in two gammas —> Loop contributions.

 Small couplings depending on the properties of the virtual particles running into the loop.

$$\mathcal{L}_{\gamma\gamma} = -\left(\sqrt{2}G_F\right)^{\frac{1}{2}} \frac{\alpha}{2\pi} I_{\gamma\gamma} F_{\mu\nu} F^{\mu\nu} H$$
$$\mathcal{L}_{gg} = -\left(\sqrt{2}G_F\right)^{\frac{1}{2}} \frac{\alpha_s(m_H^2)}{4\pi} I_{gg} G^a_{\mu\nu} G^{\mu\nu}_a H$$

Influence of virtual particles in the decay widths

Effective Lagrangians

 Decay widths

$$\Gamma_{\gamma\gamma} \propto |I_{\gamma\gamma}|^{2} = \left| A_{W}(\tau_{W}) + \sum_{fermions} N_{c}Q_{f}^{2}A_{F}(\tau_{f}) + \sum_{NP} N_{c}Q_{NP}^{2}A_{NP}(\tau_{NP}) \right|^{2}$$

$$\Gamma_{gg} \propto |I_{gg}|^{2} = \left| \frac{3}{4} \sum_{fermions} A_{F}(\tau_{f}) + \sum_{NP} C_{c}(r_{NP})A_{NP}(\tau_{NP}) \right|^{2} \text{ where } \tau_{x} = \frac{m_{H}^{2}}{4m_{x}^{2}}$$

- SM: Main contribution from top and W.
- New physics: New charged or colored particles interacting with the Higgs
 Modification of effective vertices.
- A depends on the spin, the masses and the coupling of the virtual particles running into the loop.

Amplitudes and Couplings to the Higgs

For SM, masses proportional to the Higgs VEV

$$y_{h\bar{f}f}^{SM} = \frac{m_f}{v_{SM}} \quad for \quad fermions$$
$$y_{hWW}^{SM} = 2\frac{m_W^2}{v_{SM}} \quad for \quad bosons$$

- Definition of A_w , A_F and A_S are well-known functions of τ
- For New Physics
 - Mass of NP not necessarily proportional to Higgs VEV
 - Small correction from EW breaking

$$y_{h\bar{f}f}^{NP} = \frac{\partial m_f(v)}{\partial v} \text{ and } y_{hWW}^{NP} = \frac{\partial m_W^2(v)}{\partial v}$$

Definition of A_{NP} :

$$A_{NP} = \frac{v_{SM}}{m_{NP}} \frac{\partial m_{NP}}{\partial v} A_{F,S,W}$$

- Spin and mass taken into account in A_{F,W,S}
- Coupling effects contained in the pre-factor

Model-independent parameterization

- Normalization of new contributions to the top's one.
 - Solutions to naturalness problem, NP closely related to top physics
- If SM-like Higgs sector and tree level structure assumed

Only 2 parameters in this case (see arXiv:0901.0927)

$$\Gamma_{\gamma\gamma} = \frac{G_F \alpha^2 m_H^3}{128 \sqrt{2} \pi^3} \left| A_W(\tau_W) + 3 \left(\frac{2}{3}\right)^2 A_F(\tau_{top}) [1 + \kappa_{\gamma\gamma}] + \dots \right|^2$$

$$\Gamma_{gg} = \frac{G_F \alpha_s^2 m_H^3}{36 \sqrt{2} \pi^3} \left| \frac{3}{4} A_F(\tau_{top}) [1 + \kappa_{gg}] + \dots \right|^2 \text{ where } \tau_x = \frac{m_H^2}{4m_x^2}$$

$$\kappa_{\gamma\gamma} = \sum_{NP} \frac{3}{4} N_c Q_{NP}^2 \frac{v}{m_{NP}} \frac{\partial m_{NP}}{\partial v} \frac{A_{F,S,W}(\tau_{NP})}{A_F(\tau_{top})}$$
$$\kappa_{gg} = \sum_{NP} \frac{4}{3} C_c(r_{NP}) \frac{v}{m_{NP}} \frac{\partial m_{NP}}{\partial v} \frac{A_{F,S,W}(\tau_{NP})}{A_F(\tau_{top})}$$

Approximations and Corrections

- Light Higgs, so: $m_{H}^{2} << m_{NP}^{2}$ or $\tau_{NP} << 1$
- So the A ratios only depend on the spin of NP

$$\frac{A_{NP}}{A_{top}} = \begin{cases} 1 & \text{for fermions} \\ -21/4 & \text{for vectors} \\ 1/4 & \text{for scalars} \end{cases}$$

 Most of time, at tree level, masses of top and W are not proportional to the Higgs VEV —> New kappas

$$\kappa_{\gamma\gamma}(top) = \kappa_{gg}(top) = \left(\frac{v_{SM}}{m_t}\frac{\partial m_t}{\partial v} - 1\right)$$

$$\kappa_{\gamma\gamma}(W) = \frac{3}{4} \left(\frac{v_{SM}}{m_W} \frac{\partial m_W}{\partial v} - 1 \right) \frac{A_W(\tau_W)}{A_F(\tau_{top})} \quad and \quad \kappa_{gg}(W) = 0$$

Modifications of LHC Observables

• Branching ratio for $H \rightarrow \gamma \gamma$ normalized to SM value:

$$\overline{BR} (H \to \gamma \gamma) = \frac{\Gamma_{\gamma\gamma}^{NP}}{\Gamma_{\gamma\gamma}^{SM}} \frac{\Gamma_{tot}^{SM}}{\Gamma_{gg}^{NP} + \Gamma_{\gamma\gamma}^{NP} + \Gamma_{others}^{SM}}$$
Influence of new physics
$$\overline{BR} (H \to \gamma \gamma) \simeq \left(1 + \frac{\kappa_{\gamma\gamma}}{\frac{9}{16} A_W(\tau_W) + 1} \right)^2 \frac{\Gamma_{tot}^{SM}}{(1 + \kappa_{gg})^2 \Gamma_{gg}^{SM} + (\Gamma_{tot}^{SM} - \Gamma_{gg}^{SM})}$$

• Inclusive cross section for $H \rightarrow \gamma \gamma$ normalized to SM value:

$$\overline{\sigma}(H \to \gamma \gamma) = \frac{\sigma_{gg}^{NP} + \sigma_{VBF}^{SM} + \sigma_{VH,tH}^{SM}}{\sigma_{gg}^{SM} + \sigma_{gg}^{SM} + \sigma_{VH,tH}^{SM}} \overline{BR}(H \to \gamma \gamma)$$

$$\overline{\sigma}(H \to \gamma \gamma) \simeq \frac{(1 + \kappa_{gg}^{2})\sigma_{gg}^{SM} + \sigma_{VBF}^{SM} + \sigma_{VH,tH}^{SM}}{\sigma_{gg}^{SM} + \sigma_{VBF}^{SM} + \sigma_{VH,tH}^{SM}} \overline{BR}(H \to \gamma \gamma)$$

Generalizations

- The previous parameterization implicitly assumes a SM-like Higgs sector and tree level structure
- Easy to take into account a more general situation

• Multiple Higgs
$$\phi_i = \frac{1}{\sqrt{2}} (v_i + c_i h + ...)$$

$$\frac{v}{m} \frac{\partial m_f(v)}{\partial v} \rightarrow \frac{v}{m} \sum_i \frac{\partial m}{\partial v_i} c_i$$

Mixing with scalars with no vev

$$\frac{v}{m} \frac{\partial m_f(v)}{\partial v} \rightarrow \frac{v}{m} \left(\sum_i \frac{\partial m}{\partial v_i} c_i + \sum_j g_j s_j \right)$$

6

Generalization with tree-level couplings

 Modification of the tree level couplings can be explicitly introduced (see arXiv:1210.8120)

$$\sigma_{Wh} = \kappa_W^2 \sigma_{Wh}^{SM} \,, \quad \sigma_{Zh} = \kappa_Z^2 \sigma_{Zh}^{SM} \,, \quad \sigma_{t\bar{t}h} = \kappa_t^2 \sigma_{t\bar{t}h}^{SM} \,.$$

And loop couplings are redefined as

$$\Gamma_{\gamma\gamma} = \frac{G_F \alpha^2 m_H^3}{128\sqrt{2}\pi^3} \left| \kappa_W A_W(\tau_W) + C_t^{\gamma} 3 \left(\frac{2}{3}\right)^2 A_t(\tau_t) \left[\kappa_t + \kappa_{\gamma\gamma}\right] + \dots \right|^2 ,$$

$$\Gamma_{gg} = \frac{G_F \alpha_s^2 m_H^3}{16\sqrt{2}\pi^3} \left| C_t^g \frac{1}{2} A_t(\tau_t) \left[\kappa_t + \kappa_{gg}\right] + \dots \right|^2 ,$$

 Correlations due to tree level couplings in the loops explicitly taken into account

Survey of models

- 4th generation of fermion (
- SUSY in the MSSM golden region (*)
- Little Higgs models
 - Simplest Little Higgs model (▲) (W' at 2 TeV)
 - Littlest Higgs model with (f= 500 GeV) and without T-parity (f=5 TeV) (*)
- 5D models for flat and warped space (W⁽¹⁾ at 2 TeV)
 - Universal Extra Dimension (★)
 - Minimal Composite Higgs (•)
 - Brane Higgs with flavor (▼ and ♠)
- Survey of known new physics scenarios
 Impact of new physics on Higgs searches

Plane ($\kappa_{\gamma\gamma}$ - κ_{gg}) and models

- iso-lines $pp \rightarrow h \rightarrow \gamma \gamma$ constant (A)
- iso-lines VBF to γγ constant (B)
- Straight lines 1/M dependence of the models

Fit method

Build chi-square for each channel :

$$\chi^{2}(\kappa) = \sum_{i} \frac{\left(\mu_{i}(\kappa) - \hat{\mu}_{i}\right)^{2}}{\sigma_{i}^{2}}$$
$$\mu_{i}(\kappa) = \frac{\left(\sum_{a} \mu_{a}(\kappa) \sigma_{a}^{\mathrm{SM}} \epsilon_{a}^{i}\right) \times \mathrm{Br}_{i}}{\left(\sum_{a} \sigma_{a}^{\mathrm{SM}} \epsilon_{a}^{i}\right) \times \mathrm{Br}_{i}^{\mathrm{SM}}}$$

where $\hat{\mu}_i$ is the best fit signal strength (ratio obs/expected_{SM})

Fit per production mode

 $\chi^2(\mu_{
m VBF},\mu_{
m VH},\mu_{
m ggH},\mu_{
m ttH})$

• Fit on a chosen set of parameters

Exclusion of models

- Excluded at 95% CL :
- 4th generation
- 6D UED

The 2 parameter fit (yy data only) CMS

- 4th generation (•)
- SUSY in the MSSM golden region (^(*))
- Simplest Little Higgs model (▲)
- Littlest Higgs (*)
- 6UED (★)
- Minimal Composite Higgs (•)
- Brane Higgs with flavor, flat space (▼), warped space(♠)
- 5UED(⊗)

The 2 parameter fit (yy data only) ATLAS

- 4th generation (•)
- SUSY in the MSSM golden region (*)
- Simplest Little Higgs model (▲)
- Littlest Higgs (*)
- 6UED (\)
- Minimal Composite Higgs (•)
- Brane Higgs with flavor, flat space (▼), warped space(▲)
- 5UED (🚫)

2 parameter fit ($\gamma\gamma$ and ZZ data)

CMS and ATLAS data from inclusive $\gamma\gamma$ and ZZ to leptons channels

3 parameter fit ($\kappa_{\gamma\gamma}, \kappa_{gg}, \kappa_{v}$) slice $\kappa_{v}=1$

CMS

ATLAS

Both $\gamma\gamma$ and ZZ channels included κ_v =1 slice to show a 2d plot

Fermiophobic model

• Study the $k_{_W}k_{_Z}$ plane with no couplings to fermions $(\mu_{_{ggh}}{=}0,\,\mu_{_f}{=}0)$

Simple dilaton model impostor

- Study the $k_{\gamma\gamma} k_{gg} k_{d}$ space and take a slice for $k_{gg}=0$
- k_d =v/f is is a common scale factor for all massive states couplings, f scale breaking scale inv.

The $\kappa_{\gamma\gamma}$ - κ_{gg} for a Linear Collider

- SUSY in the MSSM golden region (*)
- Simplest Little Higgs model (▲)
- Littlest Higgs (*)
- Universal Extra Dimension (*)
- Minimal Composite Higgs (•)

A lighter Higgs? (SM + singlet or doublet)

- Data can be used also to test and constrain the presence of an extra lighter Higgs boson S (NMSSM, 2HDM, extra singlet scalar...)
- New k's can be introduced, but a combination of H, S has a non-zero vev, in the mass basis SM Higgs properties are shared by H,S via a rotation.
- More constraining: effective Lagrangian

singlet
$$\frac{1}{\Lambda}SF_{\mu\nu}F^{\mu\nu}$$
, $\frac{1}{\Lambda}SH\psi_L\psi_R$, $\frac{1}{\Lambda}\partial_\mu S\bar{\psi}\sigma^\mu\psi$
doublet $\frac{1}{\Lambda^2}|S|^2F_{\mu\nu}F^{\mu\nu}$, $\frac{1}{\Lambda^2}|S|^2(H/S)\psi_L\psi_R$, $\frac{1}{\Lambda^2}(S^{\dagger}D^{\mu}S+\text{h.c.})\bar{\psi}\sigma_\mu\psi$.

so that k's will scale as v/ Λ and (v/ Λ)^2

2HDM and NMSSM examples

2HDM (left), green passes flavour tests & EWPT, blue also LEP light Higgs constraints, red LHC constraints on the heavier 126 GeV H

NMSSM (right) same colour code

Results from LHC

- Inclusive cross section is typically reduced in BSM models. Enhancement leads to unexpected new physics. Present data still compatible with some enhancement.
- For LHC:
 - Pointing a quadrant in the κ's parameter space
 General behaviors of this new physics
 - Some models have signature visible at LHC.
- For ILC
 - Sizable effects for all kind of scenarios and below the direct production threshold of NP.
- $\kappa_{\gamma\gamma}$ - κ_{gg} parameters + tree level couplings:
 - Useful tool for the study of EW symmetry breaking.
 - Complementary to the direct detection of new particles

Conclusions

- Higgs physics does depend on new physics (if present)
- Parameterizations
 - Allows a survey of new physics with minimal assumptions
 - largely model independent
 - Generalization possible with few extra parameters
 - Can give hints about the kind of expected or unexpected new physics behavior
 - To reject some models of new physics beyond SM.
- How to do better? Data analysis provided with full likelihoods, fiducial cross-sections, standardized formfactors for tensor structures with separated likelihoods.