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Ø Qt dependent Higgs and vector boson production  

(with/without  an associated  jet) 

Ø  Semi Inclusive DIS: TMD PDF/FF (Fragmentation Functions) 

Ø 3-D picture of the nucleon and spin origin 

Ø  TMD fragmentation in  lepton-lepton colliders 

Ø  For all these  we need to formulate a  consistent 
definition of matrix elements called TMD within 
factorization theorems 

Transverse Momentum Dependent …
Physics	
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TMDPDFs at Leading Twist	



Quark Polarization	
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Helicity	

 Transversity	



Boer-Mulders	



Sivers	



Worm-Gear	



Worm-Gear	

 Pretzelosity	



Momentum	



•  The only ones that survive in the collinear limit (when we integrate over qT) 

•  They are T-odd	



•  There are similar families for gluon-TMDPDFs and quark/gluon-TMDFFs 
• They give us information about the inner structure of the nucleons	


  

[Mulders, Tangerman’96]	


[Boer, Mulders ’98]	



[Higher twist 
structures in Mulders, 
Buffing, 
Mukherjee.’12]	



f?,DIS
1T = �f?,DY

1T
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Experimental interests…	



Compass Coll. 
Cern 
arXive:1305.7317 

Current and past  
Experiments: 
Hermes, Belle, LHC, 
Compass 
 
New experiments: 
Jlab, LHeC, EIC 
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v Transverse Momentum distributions are fundamental in the 
factorization of  DY at small qT and SIDIS and e+e- to 2j 

v We formulate the TMD definition independently of the IR/
collinear  regulators that we use 

v Universality of TMDs (the same  in DY and DIS)  

v Evolution of TMDs up to NNLL.. 

v The spin independence of the  evolution of all quark TMDs 

v Model independent evolution of the TMDs. 

v Extraction of TMDs 

 

Some…topics	
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Factorization in QCD	



•  Goal: explore the internal structure of initial and/or final states 
(beyond PDF/FF)	


•  Example: how is the nucleon spin originated by partons?	



•  Let’s consider the inclusive Drell-Yan process: 	



q? = q`? + q`
0

?
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Factorization in QCD	



Collins-Soper-Sterman 
’85, ’88	



Short-distance physics.	


Perturbative coefficient	



Long-distance physics.	


Non-perturbative PDFs	



•  Let’s consider the inclusive Drell-Yan process: 	
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Naive TMDPDF...	


•  One could naively think of defining the TMDPDF by extending the PDF 
(Collins, Soper): 	



•  If we calculate this matrix element we get:	


We also need transverse gauge links to maintain gauge invariance EIS’11	



•  It is ill-defined!! We cannot renormalize this quantity...	
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Naive TMDPDF…	



The problem resides in the light-cone 
 divergences 
 
Collinear part: 

1
εUV

×
1
t0

1
∫

In the PDF these divergences are canceled between real 
and virtual emissions, but this  does not happen now 

The rapidity divergence of the soft part is the double of the collinear part 
IN QCD THE HADRONIC TENSOR (M) HAS NO RAPIDITY DIVERGENCES!! 



19/09/13 Trento 2013 10 

The Definition	


 One can find many definitions of TMDPDF “in the market”:	


Ø   Collins, Soper ’82: just collinear (off-the-LC)	


Ø   Ji, Ma, Yuan ’05: collinear with subtraction of complete soft function (off-the-LC)	


Ø   Cherednikov, Stefanis ’08: collinear with subtraction of complete soft function (LC gauge)	


Ø   Mantry, Petriello ’10: fully unintegrated collinear matrix element	


Ø   Collins ’11: collinear with subtraction of square root of 3 soft functions (off-the-LC)	


Ø M.G. Echevarría. A. Idilbi, I. Scimemi ´11-´12: collinear with subtraction of square root of  

soft function (on-the-LC)	


Ø   Chiu, Jain, Neill, Rothstein ’12: collinear matrix element (rapidity renormalization group)	



The criteria of the  proper definition of the TMDPDF: 

•  A well-defined TMDPDF should:	


1.  Be compatible with a factorization theorem.	


2.  Have no mixed UV/nUV divergencies, i.e., be renormalizable	


3.  Have a matching coefficient onto PDFs independent of nUV regulators.	



* By “nUV” I mean non-ultraviolet, i.e., infrared (IR) and rapidity.	



Our definition fulfills all of them	
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DY Factorization at Small qT: 	



General Overview	



 Problem with different scales... Perfect for Effective Field Theories approach! 

The IR has to be regulated consistently in the theories above and below every 
matching scale in order to properly extract the matching (Wilson) coefficients. 

1
1 
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u We can distinguish two energy scaling regimes. 

u One defines a power counting of operators  in terms of 

u We need an effective field theory  for each energy scale  

Effective field theory of QCD:SCET	



Q qT ~ ΛQCD Q qT  ΛQCD

1 2~ ~ QCDT

T

q
Q q

λ λ
Λ

SCETΛQCD SCETqT QCD 



19/09/13 Trento 2013 13 

Factorization of Modes (1/2)	



 Each mode has its own Lagrangian  (if one cannot write an on-shell interaction 
mixing the modes) 

•  Rapidity divergence when k+ goes to 0	


•  We need rapidity cuts	



The factorization of the relevant modes is  ...	

 [Manohar-Stewart ’06]	



Soft and Collinear Modes can be mixed under boosts, 
(they have the same invariant mass.) 
 We need rapidity cuts 
 (modes can be distinguished only by their relative rapidities): 
 



Drell-Yan at small qT	
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dΣ = 4πα
3q2s

d 4q
(2π )4

1
4

d 4∫
σ1σ 2

∑ ye−iqy (−gµν )〈N1(P,σ1)N2 (P,σ 2 ) | J
µ†(y)J ν (0) | N1(P,σ1)N2 (P,σ 2 )〉

†

†2( , )QCD
SCETSCETqT

T
n n

T T
q q n nn n

q q
J J

W

e C Q e S Sµµ µ µ

χ ξ

χψγ ψ µ γ χ⎯⎯⎯→

=

= =∑ ∑

However this is not the end of  the story… 

Collinear, anti-collinear and soft act on different Hilbert 
spaces!! (SCET) 

: Hadronic TensorM



Drell-Yan at small qT	
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2 2 4 · 2 (0) (0)| ( , ) | (0 , , ) ( ,0 , ) (0 ,0 , )iq y
q n n

q
M C Q d ye e J y y J y y S yµ − + − + − + −

⊥ ⊥ ⊥= ∑∫

1

(0)
1 1

1(0 , , ) ( , ) | (0 , , )
2n n

nJ y y N P y y
σ

σ χ+ − + −
⊥ ⊥= 〈∑

1

1 1

(0)
2 2

(0)| ( , )
2

1( ,0 , ) ( , ) | (0)
2

n

n n

N P

nJ y y N P
σ

χ σ

σ χ+ −
⊥

〉

= 〈∑ 2 2

† † †

( ,0 , )| ( , )
2

(0 ,0 , ) 0 | Tr (0 ,0 , ) (0) | 0 ,[ ] [ ]
n

T T T T T
n n n n

y y N P

S y S S y S S W

χ σ

χ ξ

+ −
⊥

+ − + −
⊥ ⊥

〉

= 〈 〉 =T T

The collinear currents are PURE!! (zero bin subtracted) 



19/09/13 Trento 2013 16 

Taking the soft limit of collinear  graphs one can get 
the soft contribution 

Double Counting���
 (definition of pure collinear currents)	



= −2ig 2CFδ(1− x)δ
(2) (

kn⊥ )µ

2ε d dk
(2π )d∫ p+ + k+

[k+ − i0+][( p+ k)2 + i0−][k 2 + i0]

= −2ig 2CFδ
(2) (

kn⊥ )µ

2ε d dk
(2π )d∫ 1

[k+ − i0+][k− + i0−][k 2 + i0]

FOR PURE COLLINEAR f’s WE HAVE TO SUBTRACT THE OVERLAPPING WITH THE 
 SOFT PART : THIS CAN ALWAYS BE DONE BUT THE ANSWER IS 
 REGULATOR DEPENDENT 
The factorization theorem must be written in terms of  PURE COLLINEAR objects 

Manohar, Stewart 2006 
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Factorization of Modes (2/2)	


We need to impose rapidity cutoffs to separate the modes: 	



A.   A is collinear 
B.   B is soft 
C.   C is anti-collinear 
D.  Soft function is NOT symmetric w.r.t. 

the “separating line” k+=k- 

•   We proved that the soft function 
can be split in two “hemispheres” 
•  We identify positive & negative 

rapidity quanta with each TMDPDF!!  

Pure collinear! 
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²  We need a rapidity regulator. 

²  All properties of TMDPDF are regulator independent  

(Only the zero bin subtraction is regulator dependent). 

²  We  did our calculations  staying on-the-light-cone and using the Δ-
regulator (Chiu, Fuhrer, Hoang, Manohar,’09), and we have checked that our 
results are consistent with all other regulators. 

Rapidity Divergences	



THE TMD MUST BE FREE FROM RAPIDITY DIVERGENCES 
 A subtle problem related to this  cancellation.   
In  JHEP 1207 (2012) 002  we used the anstatz  
In arXiv:1211.1947  we have removed the ansatz!!! Subtle property of Soft funct. 

δ δ δ+ −= =

fn(0
+, y�,~0?) =

1

2

X

�

hP,�|
⇥
⇠̄nWn

⇤
(0+, y�,~0?)

n̄/

2

⇥
W †

n⇠n
⇤
(0) |P,�i

Wn(x) =
¯

P exp


ig

Z 0

�1
ds n̄ ·An(x+ sn̄)

�

i(p/+ k/)

(p+ k)2 + i�� �! 1

k� + i��
, �� =

��

p+

i(p̄/� k/)

(p̄� k)2 + i�+
�! 1

�k+ + i�+
, �+ =

�+

p̄�

Similar to the one 
introduced by

[Chiu-Fuhrer-Hoang-
Kelley-Manohar ’09]

• Of course the physics is independent of the regulator one implements!!

• This regulator consists just on keeping finite the “epsilons” of the propagators.

• Let me introduce a particular regulator before showing you the results:

�± ! 0
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No soft function in the factorization theorem!! 

Positive and negative rapidity quanta can be collected into two different 
TMDs because of the splitting of the soft function 

Definition of TMDPDF	





TMDPDF: One loop results	
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M = H (Q2 / µ 2 ) Fn (xn ,b
2;Q2 ,µ 2 ) Fn (xn ,b

2;Q2 ,µ 2 )

Fn = Jn
(0) (Δ− ) S(Δ− ,Δ− )

Fn = Jn
(0) (Δ+ ) S(Δ+ ,Δ+ )

Fn1 =
αsCF
2π { δ(1− x)[ 1

εUV
2
−
1
εUV
lnQ

2

µ 2
+
3
2εUV

−
1
2
LT
2 +
3
2
LT − LT ln

Q2

µ 2
−
π 2

12
+ (1− x)− LTPq/q ]

−Pq/q ln
Δ−

µ 2
−
1
4
δ(1− x)− (1− x)[1+ ln(1− x)] }

NO MIXED DIVERGENCES 

MATCHING COEFF. TO  PDF 

PDF 
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Ø The collinear and soft matrix element are the same in DY 
and SIDIS 

Universality of unpolarized TMDPDF	



Ø  The definition of  Wilson lines in  DY  and SIDIS is 
different 

0

0

( ) exp · ( )

( ) exp · ( )

n n

n s

DY

W x P ig dsn A x sn

S x P ig dsn A x sn

−∞

−∞

⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

∫

∫

SIDIS

W n (x) = P exp −ig d
−∞

0
∫ sn·An (x + sn )

$
%&

'
()

S n (x) = Pexp −ig d
−∞

0
∫ sn·As (x + sn )

$
%&

'
()
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ü Universality of the Soft  Function 

Universality of unpolarized TMDPDF	



, , (2) 2 , (2) 2
1 1 1 1( ) ; ( ) ;

2 2
r DIS r DY vDIS v DYs F s F

T T
C CS S k S S kα α

δ π δ π
π π

= + = −
r r

ü  Universality of the Collinear  Function 

j n1
r ,DIS

= j n1
r ,DY

−
αsCF
2π

δ (2) (

kT )π

2; j n1
vDIS

= j n1
v ,DY

+
αsCF
2π

δ (2) (

kT )π

2;

Both Naive Collinear  And Soft ME Are 
Universal! 

The TMDPDF is Universal  
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² The  hadronic tensor is RG scale independent 

Evolution of the TMDPDF	



M = H (Q2 / µ 2 )F n (x;

b
⊥
,Q,µ)F n (z;


b
⊥
,Q,µ)

d ln M
d lnµ

= 0 = γH +γn +γn = γH + 2γn = γH + 2γn

γH = A(αs )ln
Q2

µ 2
+ B(αs ); F n (x;


b
⊥
,Q,µ) = exp dµ "

µ "µI

µ

∫ γn
$

%
&

'

(
)F n (x;


b
⊥
,Q,µ I )

The   hard coefficient is the same  as for inclusive DY!  
WE KNOW THE AD of the 8 TMDPDF up to 3-LOOPS 

H (Q2 / µ 2 ) =|C(Q2 / µ 2 ) |2 Comes from the matching of 
currents: It is spin independent 
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When qT is in the perturbative region the TMDPDF can be 
factorized in a Wilson coefficient and a PDF like in OPE 

OPE of the TMDPDF onto the PDF	



F f (x;

b
⊥
,Q,µ) = d "x

"xx

1
∫ C f / j

x
"x
;b,Q,µ

$

%
&

'

(
) f j/P ( "x ;µ)

j=q,g
∑

The coefficient C works as any other Wilson coefficient 
IT  IS INDEPENDENT OF IR-SCALES 
 
BUT  THERE IS STILL A Q^2 DEPENDENCE 

Cn (x;b,Q,µ) = δ(1− x)+
αsCF
2π

−Pq/qLT + (1− x)−δ(1− x)
1
2
LT
2 −
3
2
LT + ln

Q2

µ 2
LT +

π 2

12

"

#
$

%

&
'

(

)
*
*

+

,
-
-

THESE TERMS HAVE TO BE RESUMMED!! 
2 2

2ln
4 ET
bL
e γ

µ
−

=
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Using Lorentz  invariance  and dimensional  analysis 

Q^2-Resummation	



lnF n = ln jn
 − 1

2
ln S

ln jn
 = Rn x;αs ,LT ,ln

Δ

Q2

#

$
%

&

'
(, ln S = Rφ αs ,LT ,ln

Δ2

Q2µ 2
#

$
%

&

'
(

 Since the TMDPDF (Wilson coefficients and PDFs) is free 
from rapidity divergences to all orders in 
perturbation theory: 

d

d ln�
ln F̃n = �Pq/q



19/09/13 Trento 2013 26 

•  From the fact that the TMDPDF is free from rapidity divergencies we can extract 
and exponentiate the Q2-dependence.	



Q2-Resummation	



•  But we can also extract it just applying the RGE to the hadronic tensor:	



•  The Q2-factor is extracted for each TMDPDF individually. 
•  We do not need Collins-Soper evolution equation to resum the logs of Q2. 
•  We know cusp AD at 3-loops, so we know D at order  α^2!! 

Independent 
of Q2!!	



( ) 2s cuspA α = Γ

F̃n(x, b;Q
2
, µ) =

✓
Q

2

µ

2

◆�D(b;µ)

F̃

6Q
n (x, b;µ)
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The  final form of the TMD in IPS is 

Q^2-Resummation	



lnF n = lnF n
sub
−D(αs ,LT ) ln

Q2

µ 2
+ LT

"

#
$

%

&
'

F n (x;

b
⊥
,Q,µ) = Q2b2e2γE

4

!

"
##

$

%
&&

−D(αs ,LT )

C n (x;

b
⊥
,µ)⊗ fn (x;µ)

cusp
( , ) ( )
ln
s T

s
dD L
d
α

α
µ

= Γ
D(αs ,LT ) = dn

n=1

∞

∑ (LT )
αs
4π

!

"
#

$

%
&

n

dn
! (L

⊥
) = 1
2
Γn−1 + m

m=1

n−1

∑ βn−1−mdm(L⊥ )

The cusp AD is known at 3-loops!! 
→ The function D is  known up to order α^2 
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Evolution Kernel	


•  If we want to connect two TMDPDFs at two different scales:	



•  The evolution is given in terms of the function D and the AD	



•  When we Fourier transform back, we need to resum large logs in the D...	



q  We propose   A NEW METHOD TO RESUM THESE LOGS	



2 2

2ln
4 ET
Q b
e

L γ−
=
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D-Resummation	


•  We are going to write D as a series and resum it directly:	



Recurrence 	


relation	





19/09/13 Trento 2013 30 

D-Resummation	



0

0

2 21 exp
( )

E

X
i s i

X a L

eX b
Q Q

γ

β

π
β α

⊥

−

=

= → =

New expansion! 

In the IR region X~1 

Properties of DR: 
● The  resummation works 
for X<1 

5

1 2 3 4 5 6
b!GeV

!1"
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3
D

R

NNLL

NLL

LL

Qi " 2.4 GeV

1 2 3 4 5 6 7
b!GeV

!1"

!1

0

1

2

3
D

R

NNLL

NLL

LL

Qi " 5 GeV

(a) (b)

FIG. 1: Resummed D at Qi =
p
2.4 GeV with nf = 4 (a) and Qi = 5 GeV with nf = 5 (b).

where the label R stands for “resummed”. Once we have the series of the D term organized as above, each order in
a can be summed for |X| < 1, giving

DR(b;µi) = � �
0

2�
0

ln(1�X) +
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✓
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1�X

◆
2


2d

2
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2�
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�
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�
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+
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+ ... , (16)

As is clear from Eq. (16) this result for DR can be analytically continued through Borel-summation and its validity
can thus be extended to X ! �1, which corresponds to b ! 0 (see Eq. (9)). The maximum value of X where each
coe�cient of an in Eq. (16) is valid is X = 1, which corresponds to

bX(µi) =
2e��E

µi
exp


2⇡

�
0

↵s(µi)

�
. (17)

For completeness in Appendix B we provide as well the expression of DR at NNNLL, which can be used in the future
when a higher order of the cusp anomalous dimension and the d

3

(0) term are calculated.

B. Range of Validity of DR and the Landau Pole

Although each order in a in Eq. (16) is valid for 0 < b < bX , the convergence of the series is given in a smaller
range. The fact that each term diverges at bX makes the series itself more and more divergent as we approach this
point. In Fig. 1 we show the DR for two di↵erent scales, from which it is clear that the convergence between leading
logarithm (LL), next-to leading logarithm (NLL) and next-to-next-to leading logarithm (NNLL) is extremely good
for small values of b and gets spoiled as we approach bX . From the same Fig. 1 it is also evident how the range of
convergence changes as we vary the initial scale µi, since bX depends on this scale. It is interesting then to study the
behavior of the DR analytically when the impact parameter approaches bX , which is the kinematic region where the
analysis becomes more subtle.

The fact that the convergence of DR gets spoiled around bX is because the divergence of the resummed DR at
X = 1 (b = bX) is related to the Landau pole. Although the scale in the strong coupling is fixed, ↵s(µi), the e↵ects
of non-perturbative physics are “shifted” to the coe�cients of the perturbative expansion of the DR term, which
grow and ultimately lead to the breakdown of the perturbative series. Thus, in our approach the issue of the Landau
pole reemerges as the divergence at X = 1. In fact, using the usual expansion of ⇤

QCD

= Q exp [G(tQ)], where
tQ ⌘ �2⇡/(�

0

↵s(Q)) and

G(t) = t+
�
1

2�2

0

ln(�t)� �2

1

� �
0

�
2

4�4

0

1

t
� �3

1

� 2�
0

�
1

�
2

+ �2

0

�
3

8�6

0

1

2t2
+ . . . , (18)
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D-Resummation	
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FIG. 1: Resummed D at Qi =
p
2.4 GeV and Qi = 5 GeV

where the label R stands for “resummed”. Once we have the series of the D term organized as above, each order in
a can be summed for |X| < 1, giving
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+ ... , (16)

For the last term in this expression we have found an analytic form of the sum of the series by using the approximation

H
(1)

n�1

= ln(n)+�E + 1

2n � 1

12n2 +
1

120n4 � 1

256n6 + ... which is precise enough for our purposes. As is clear from Eq. (16)
this result for DR can be analytically continued through Borel-summation and its validity can thus be extended to
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B. Range of Validity of DR

Although each order in a in Eq. (16) is valid for 0 < b < bX , the convergence of the series is given in a smaller
range. In Fig. 1 we show the resummed D for two di↵erent scales, from which it is clear that the convergence between
leading logarithm (LL), next-to leading logarithm (NLL) and next-to-next-to leading logarithm (NNLL) is extremely
good for a broad range of values of b and gets spoiled only when b ⇠ bX . It is interesting then to study the behavior
of the DR when the impact parameter approaches bX , which is the kinematic region where the analysis becomes more
subtle.

The fact that the convergence of DR gets spoiled around bX is because the divergence of the resummed DR at
X = 1 (b = bX) is related to the Landau pole. Although we fix the scale in the strong coupling, ↵s(Qi), the
e↵ects of non-perturbative physics are “shifted” to the coe�cients of the perturbative expansion of the DR term,
which grow and ultimately lead to the breakdown of the perturbative series. Thus, in our approach the issue of the
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The resummed D  is convergent almost up to the Landau pole (bL~7). 
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FIG. 1: Resummed D at Qi =
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B. Range of Validity of DR

Although each order in a in Eq. (16) is valid for 0 < b < bX , the convergence of the series is given in a smaller
range. In Fig. 1 we show the resummed D for two di↵erent scales, from which it is clear that the convergence between
leading logarithm (LL), next-to leading logarithm (NLL) and next-to-next-to leading logarithm (NNLL) is extremely
good for a broad range of values of b and gets spoiled only when b ⇠ bX . It is interesting then to study the behavior
of the DR when the impact parameter approaches bX , which is the kinematic region where the analysis becomes more
subtle.

The fact that the convergence of DR gets spoiled around bX is because the divergence of the resummed DR at
X = 1 (b = bX) is related to the Landau pole. Although we fix the scale in the strong coupling, ↵s(Qi), the
e↵ects of non-perturbative physics are “shifted” to the coe�cients of the perturbative expansion of the DR term,
which grow and ultimately lead to the breakdown of the perturbative series. Thus, in our approach the issue of the
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 We cannot define the evolution beyond the range of convergence of the 
resummed series,  nor beyond  the  Landau pole. 
 
As a  result we cut the evolution kernel where the resummation  fails.  
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For the last term in this expression we have found an analytic form of the sum of the series by using the approximation

H
(1)

n�1

= ln(n)+�E + 1

2n � 1

12n2 +
1

120n4 � 1

256n6 + ... which is precise enough for our purposes. As is clear from Eq. (16)
this result for DR can be analytically continued through Borel-summation and its validity can thus be extended to
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B. Range of Validity of DR

Although each order in a in Eq. (16) is valid for 0 < b < bX , the convergence of the series is given in a smaller
range. In Fig. 1 we show the resummed D for two di↵erent scales, from which it is clear that the convergence between
leading logarithm (LL), next-to leading logarithm (NLL) and next-to-next-to leading logarithm (NNLL) is extremely
good for a broad range of values of b and gets spoiled only when b ⇠ bX . It is interesting then to study the behavior
of the DR when the impact parameter approaches bX , which is the kinematic region where the analysis becomes more
subtle.

The fact that the convergence of DR gets spoiled around bX is because the divergence of the resummed DR at
X = 1 (b = bX) is related to the Landau pole. Although we fix the scale in the strong coupling, ↵s(Qi), the
e↵ects of non-perturbative physics are “shifted” to the coe�cients of the perturbative expansion of the DR term,
which grow and ultimately lead to the breakdown of the perturbative series. Thus, in our approach the issue of the
Landau pole reemerges as the divergence at X = 1. Using the usual expansion of ⇤
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 The input TMDs  turn out to be small in the tail, so no effect from the cut. 
 The highers is Qi the narrower is the TMD in IPS 
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FIG. 2: a) Input unpolarized up-quark TMDPDF for Qi = {1,
p
2.4} GeV [29, 30]. b) Input Sivers function following

Bochum [31] and Torino [32] fits.

and for nf = 5, ↵s(MZ) = 0.117, which has been used in our figures one finds ⇤
QCD

⇡ 157 MeV and correspondingly

b
⇤QCD = 2e��E

⇤QCD
⇡ 7.15 GeV�1. On the other side, bX does depend on the scale Qi and it is related to b

⇤QCD ,

bX = A(Qi) b⇤QCD , A(Qi) = exp(�tQi +G(tQi)) . (19)

from which it is clear that bX is closely related to b
⇤QCD , up to the Qi proportionality factor A(Qi) (numerically,

one finds 1  A(Qi)  2 for 1 GeV Qi  1 TeV). We conclude that the divergence of DR at X = 1 is a
manifestation of the Landau pole, as claimed before. Summarizing, the highest cuto↵ of the kernel that we can have
is at b

⇤QCD ⇠ 7.15 GeV�1, and we write
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with bc  b
⇤QCD .

Using Eq. (16) we get the asymptotic expression of DR when X <⇠ 1, up to NNLL,
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where we have checked that the last term in Eq. (16) with the Harmonic Number function does not give any divergent
contribution. Although we do not have a general proof, it might be the case that the ln(1 � X) persists at higher
orders and can be factored out as in Eq. (21) to all orders in perturbation theory. However whether this is the case or
not, it does not a↵ect the results up to the accuracy we are considering, as Fig. 3 shows. It is easy to check that the
convergence of the perturbative series is lost when a/(1�X) ' 0.2, as all terms of the expansion in Eq. (21) are of the
same order. The cuto↵ derived using this condition (that we call bc2 in the following) is of the same order as b

⇤QCD .
For Qi � 3.6 GeV one has bc2 � b

⇤QCD and consequently bc2 is no more a valid cuto↵. In other words, the larger the
Qi the broader the interval in b where the convergence of DR is acceptable. This can be seen clearly in Fig. 1, where
we show DR(b;Qi =

p
2.4 GeV) and DR(b;Qi = 5 GeV). For Qi =

p
2.4 GeV we find bc2 ⇠ 6 GeV�1 < b

⇤QCD . For
Qi � 5 GeV we do not appreciate problems of convergence up to b

⇤QCD , and we can set bc = b
⇤QCD .

C. Applicability of the Evolution Kernel

As explained in the previous section, we can obtain perturbatively the evolution kernel only in a finite range of the
impact parameter. For larger values of b we need a treatment for the non-perturbative region. Being our aim to reduce
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FIG. 3: Evolution kernel from Qi =
p
2.4 GeV up to Qf = {

p
3 ,

p
9 ,

p
25, 91.19} GeV.

as much as possible the need to introduce models for the evolution kernel itself, leaving them to the input low-energy
TMDs, we need to find under which conditions the e↵ects of the large b region are suppressed when evolving the
TMDs.

First, let us consider the width of the input low-energy TMDs. In Fig. 2 we show some common input functions
considered in the literature: the bulk of their distributions is located in the region 0  b  b

⇤QCD . Ii is also a
fact that the higher the scale Qi is, the narrower these distributions are. Hence, since the TMDs are evolved by
multiplying them in impact parameter space by the kernel R̃ (see Eq. (6)), we do not need to know the evolution
kernel in the region where they are vanishingly small. In other words, if we fix the scale of the input TMDs to be
large enough so that their width lies where the kernel is obtained perturbatively, then e↵ectively non-perturbative
e↵ects are suppressed, and the evolution can be performed in a model-independent way.

The suppression of non-perturbative e↵ects is also obtained in a di↵erent way. In fact, the evolution kernel in
Eq. (7) is actually the exponential of �DR, which guarantees that when b ! b�X (X ! 1�), one has R̃ ! 0 for
Qf > Qi, due to the sign of the exponent. For the leading order term in Eq. (16) we have

lim
b!b�X

DR
0

= lim
b!b�X


� �

0

2�
0

ln(1�X)

�
! +1 , (22)

and this limit is not spoiled by higher order corrections, as it is obvious from Eq. (21). Thus, the larger the Qf is
compared to Qi, the faster the kernel goes to zero, as it is clear from Fig. 3. The suppression of the kernel occurs
finally much before bc or b

⇤QCD , where the convergence of DR is spoiled.
The fact that we have at our disposal several perturbative orders is essential to test the convergence of the evolution

kernel and of the evolved TMDs, and gives us confidence about the method that we propose.
Summarizing, all the previous discussion on the convergence of the evolution kernel outlines a fitting procedure for

TMDs. We start with a parametrization or model for the input TMD at the low-scale Qi, which should be chosen
to be large enough so that its distribution in impact parameter space is narrow enough. We then evolve up to the
scale Qf at which data are available using the model-independent evolution kernel that we propose. Having Qf > Qi

provides a further suppression of undesired non-perturbative e↵ects at large b. Eventual non-perturbative e↵ects

The evolution kernel  so defined is completely parameter 
free and model independent 
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Results	



The value of bmax~1.5 is a 
 by-product in our resummation 

We compare with CSS and 
 bmax=0.5, Collins ideal 
 bmax=1.5, fitted from  
 Phenomenology 
 (Konychev, Nadolsky’06) 
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ü We have a formulation of factorization on-the-light-cone 
(no parameters on any matching coefficient!) 

ü We can relate the AD of the  hard matching coefficient to 
the AD of the TMDPD’s             WE KNOW THE EVOLUTION 
OF ALL TMDPDF UP TO NNLL 

ü We can build an evolutor for TMDPDF  treating consistently 
the problem of the Landau pole in a model independent 
way (we predict bmax=1.5 in the usual CSS evolution) 

ü  Unpolarized TMDs and Sivers under study  now  

ü Effects  of TMDs on vector boson production and Higgs 
production are under investigation (including φ*  
distribution at LHC) 

CONCLUSIONS	
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BACKUP SLIDES 
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• The pure collinear is the same as before.
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• The pure collinear is the same as before.

• The soft function is split in two pieces:
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Resumming! (Unpolarized case)	
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Order γ Γcusp C D 

LL - α tree - 

NLL α α^2 tree α 

NNLL α^2 α^3 α α^2 

NNNLL α^3 α^4 α^2 α^3 

Aybat, Collins , Qiu,  
Rogers; Aybat, Rogers; 
  Anselmino, Boglione,Melis 

EIS 

Known pieces: C for 
unpolarized TMDs  from 
Catani et al. ‘ 12 And 
Gehrmann et al. ‘12 

Polarized case: Some new results from Bacchetta, Prokudin ’12, 
 and work in progress by EIS 
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Results: EISS vs CSS	
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FIG. 4: Evolution kernel from Qi =
p
2.4 GeV up to Qf = {

p
3 ,

p
9 , 5, 91.19} GeV using our and CSS approaches, both at

NNLL.

should be accounted for either by including suppressed operators in the factorization of the cross-section, either by
adjusting the model for the input TMD at low-energy. A complete study of this is left for future work.

A last comment worth mentioning concerns the convergence of the evolution kernel in the small b region. As
discussed above, the convergence of the resummed D is only spoiled in the region around the Landau pole, i.e., for b
close to b

⇤QCD . In the small b region, DR is completely resummable (see Fig. 1) and this agrees with other studies on
the perturbative series in this region in the literature [28]. As a result, both CSS and our kernel perfectly agree for
small values of b, as can be seen in Fig. 4.

IV. RESULTS AND CONCLUSIONS

In this section we provide our results for the evolution kernel and evolved TMDs and compare them with the CSS
approach, which for completeness is outlined in Appendix A. The resulting di↵erences of the application of the two
approaches to the evolution of two di↵erent TMDPDFs (unpolarized and Sivers function) are shown in Fig. 5. In
order to perform the resummation of large logarithms consistently up to NiLL order (or Ni�1LO in RG-improved
perturbation theory) one needs the input shown in Tables I–II. In our approach one takes the resummed series in
Eq. (16) up to the corresponding order i. In [4, 5, 8] the cusp anomalous dimension �

cusp

was not implemented at
2-loop order, as it should be to get a complete NLL result. In Figs. 4 and 5 we have implemented �F , �cusp

and D

consistently within the CSS approach to achieve the NiLL accuracy.
The unpolarized quark-TMDPDF at low energy is modeled as a Gaussian,

F̃up/P (x, b;Qi) = fup/P (x;Qi) exp[��b2T ] , (23)

with � = 0.38/4GeV2 for Qi =
p
2.4 GeV [30] and fup/P the up-quark integrated PDF, which has been taken from

the MSTW data set [33]. The Sivers function at low energy is modeled following what are called the “Bochum” [31]

CSS: The evolution is modeled with a bmax and a  gaussian. 
In this way it is defined also BEYOND the Landau pole 


