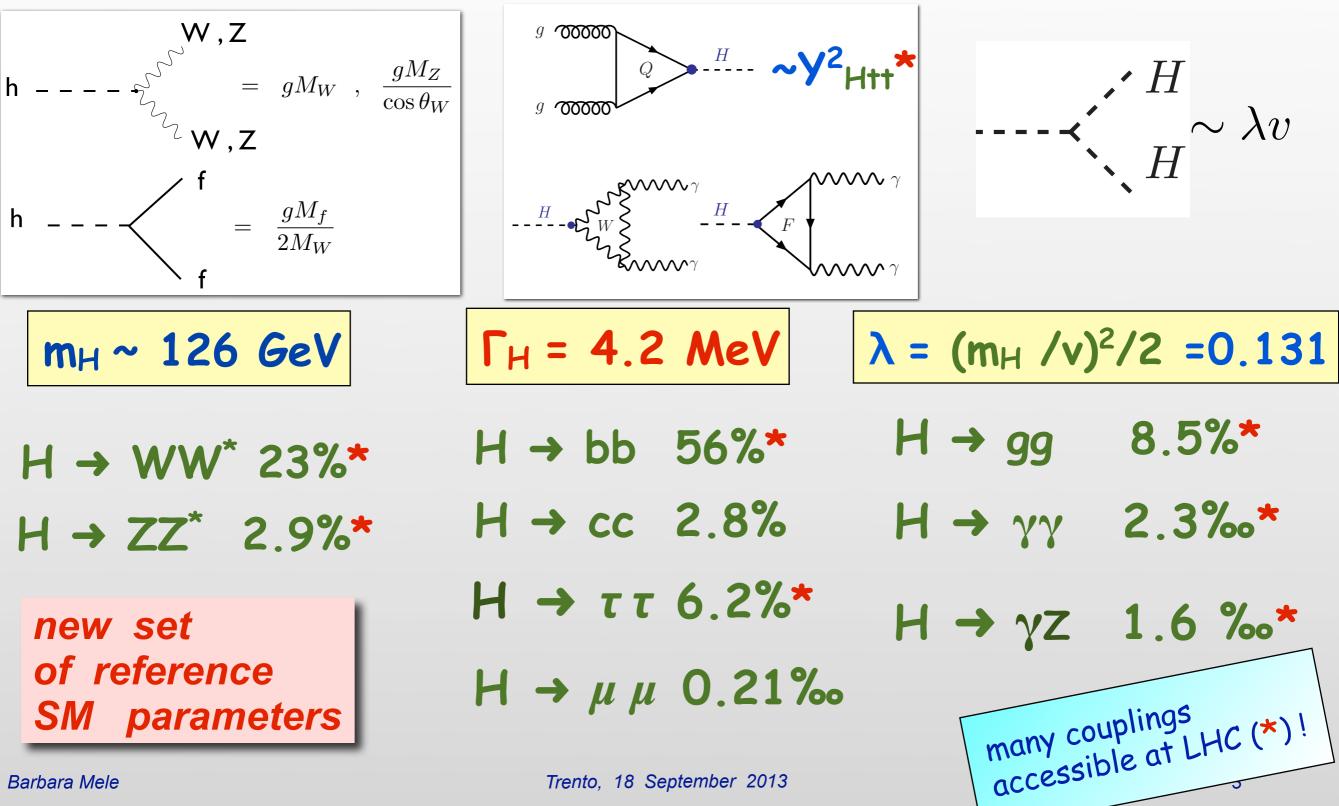

LC13 Workshop : Exploring QCD from the infrared regime to heavy flavour scales at B -factories, the LHC and a Linear Collider, 16-20 September 2013, ECT*, Villa Tambosi, Trento, Italy

Solving the sign ambiguity in the Higgs coupling measurements at the LHC


Barbara Mele INFN Istituto Nazionale di Fisica Nucleare Sezione di Roma

Outline

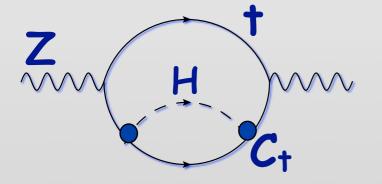
- 2012: "Higgs" discovery
 - → we now have to get acquainted with it !
- Solution of ghat and sign degeneracies
- Separation channels with direct sensitivity to the top-Higgs coupling gHtt
- Solution of the sensitivity to ghttps://www.solution.channels.with direct sensitivity to ghttps://www.solution.channels.with direct sensitivity to ghttps://www.solution.channels.with direct sensitivity.to ghttps://www.solution.channels.with direct.solution.channels.with sensitivity.to ghttps://www.solution.channels.with direct.solution.channels.with sensitivity.to ghttps://www.solution.channels.with.channels.wi
- Single-top plus Higgs production :
 - \bigcirc the t-channel pp \rightarrow tHq : sensitivity to g_{Htt} sign
 - \bigcirc pp \rightarrow t H q (H \rightarrow YY, WW, $\tau\tau$): S vs B vs (C_V, C_f)
 - \bigcirc exclusion potential in the (C_V, C_f) space at 8 TeV

is the LHC signal really a SM Higgs ?

Set test g_{HXX} (magnitude and structure) to vector bosons (EWSB), to fermions and self-couplings

<u>in-direct</u> g_{HXX} determination : what we knew before LHC data !

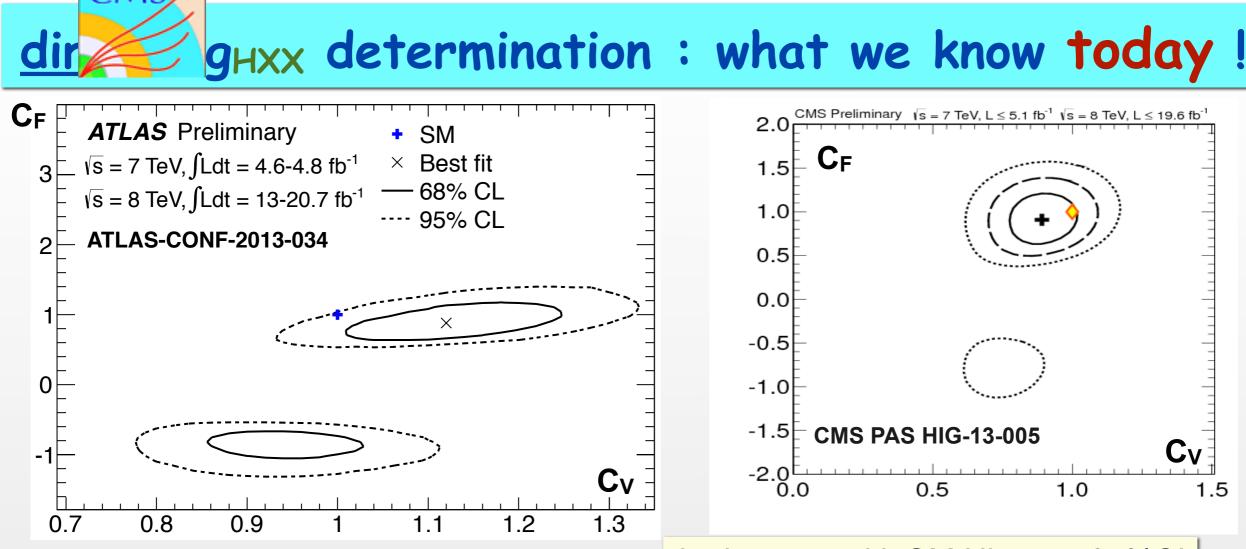
$$g_{HVV} = C_V g_{HVV}^{SM}$$


universal modifier of HWW and HZZ couplings

$$Y_f = C_f Y_f^{SM}$$
universal modifier of
Hff couplings

WPT's highly constrain (Cv, mH) through (indirect) loop effects :

$$\begin{array}{c}
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 1.01 \pm 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V = 0.06 \quad (95\% \ CL) \\
 \hline C_V =$$


 \bigcirc no constrain on $C_{\rm f}$ (enter only at two loops in EWPT's)

 $C_{\rm f} = ???$

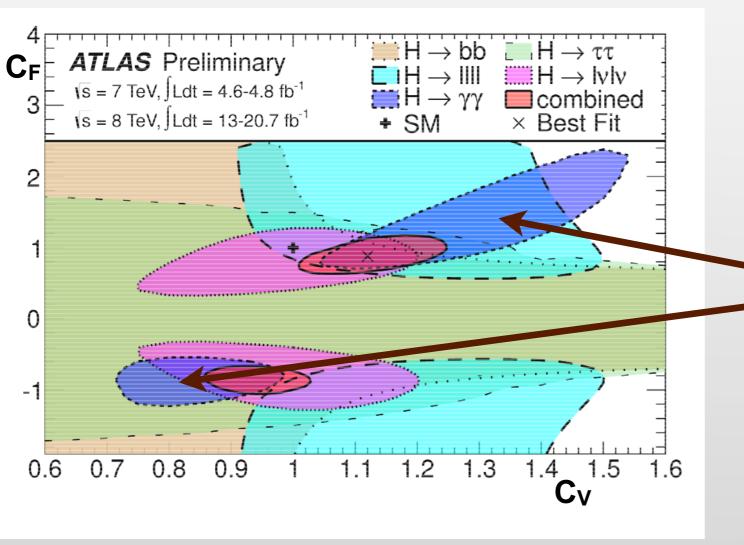
Let's

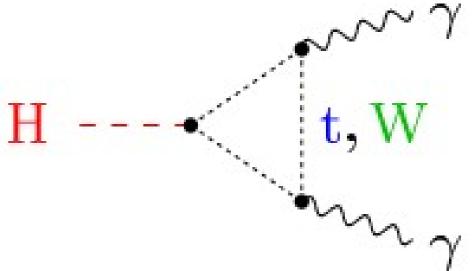
assume :

both agree with SM Higgs at 95%CL

Starting point of new exciting chapter of experimental measurements (regardless of possible further new-state discoveries at the LHGP)

note: one-loop decays $(H \rightarrow \gamma \gamma)$ and production $(gg \rightarrow H)$ are very sensitive to new <u>heavy</u> degrees of freedom that do not decouple !


Precision Tests opened up with excellent sensitivity
 to BSM effects (→ cf. EWPT's at LEP)


Solution accuracies on GHXX'S as large as possible is crucial !

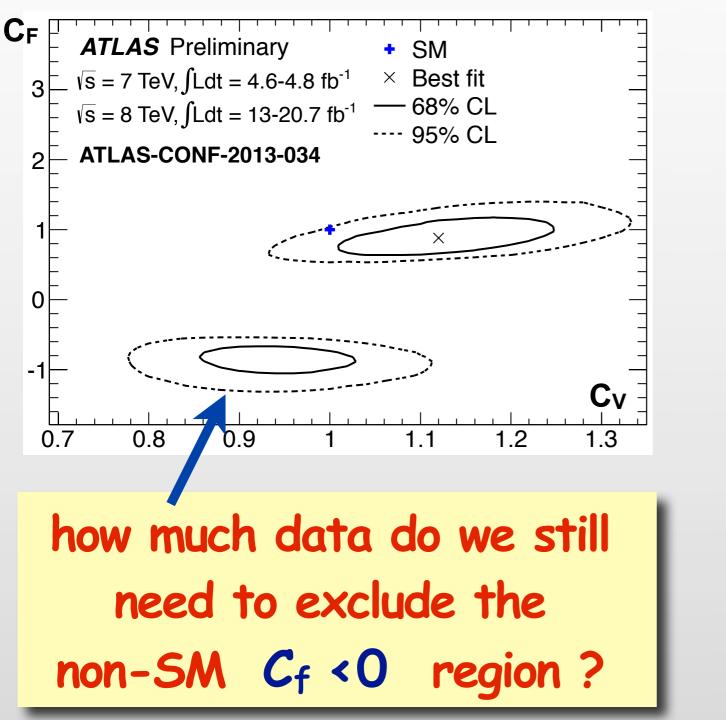
$H \rightarrow \gamma \gamma$ breaks $C_f \rightarrow -C_f$ degeneracy

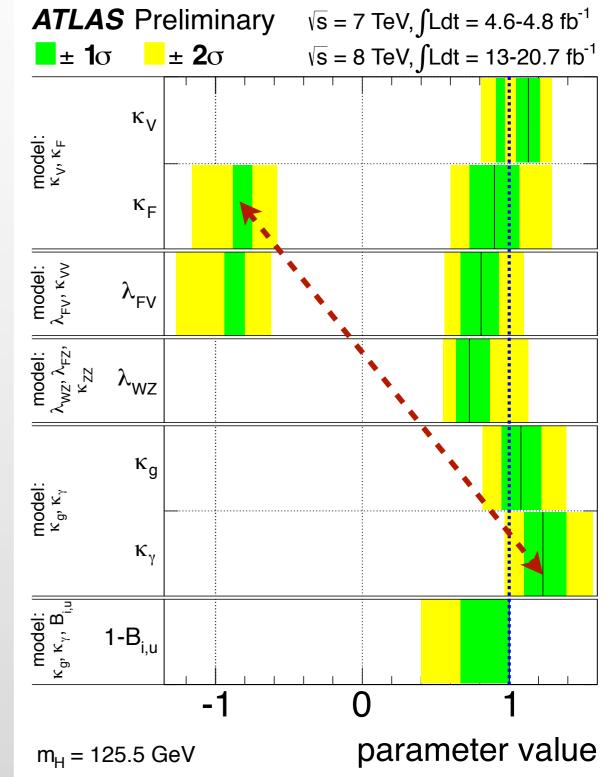
♀ W and top loops interferes destructively in the SM ♀ C_t~+1(SM) → C_t~-1 enhances BR_{YY}

ATLAS-CONF-2013-034

 σ(H→γγ) ~ (5C_V-C_t)²

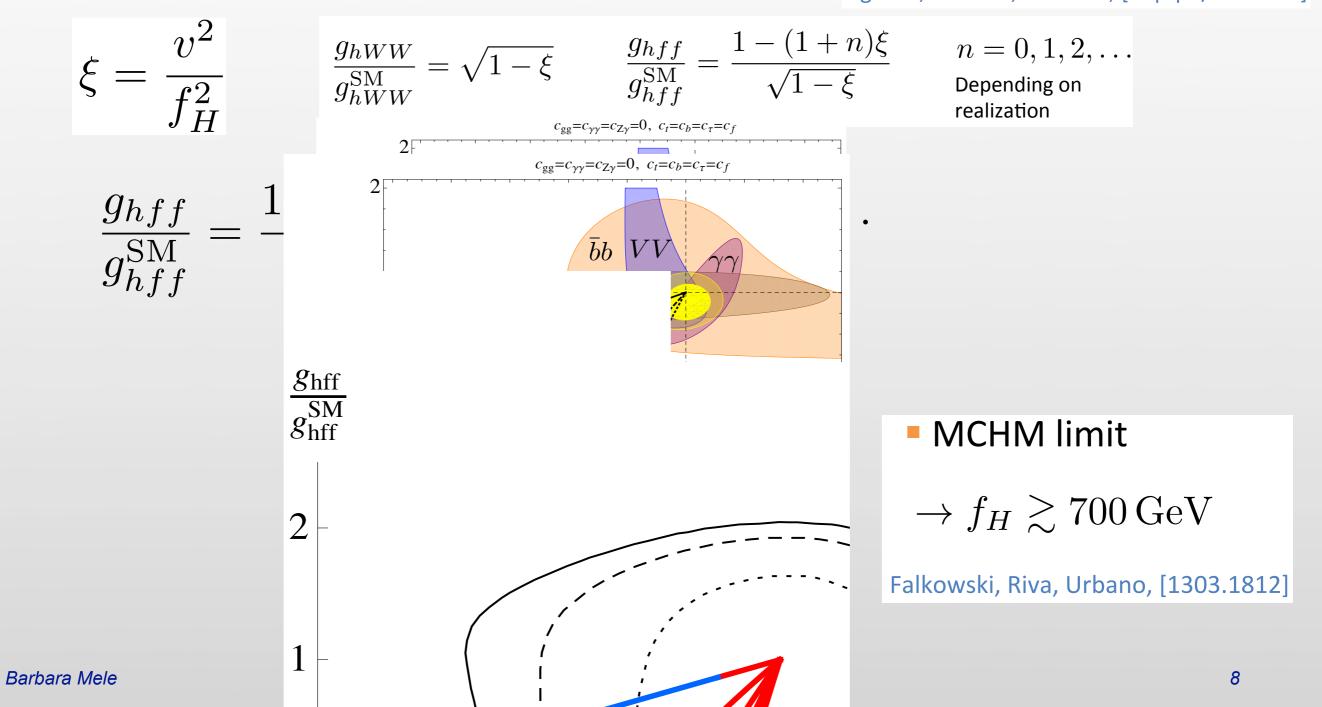
 gives asymmetric


 constraints for C_t → -C_t


 enhanced σ_{YY} rates

favor C_f < 0 ranges

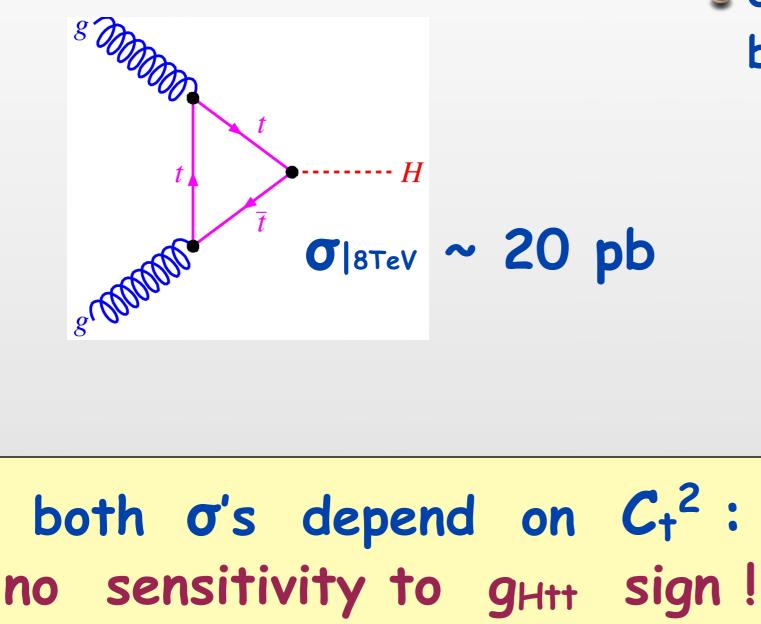
gнxx global fits


Θ enhanced $\sigma_{\gamma\gamma}$ rates favor $C_f < 0$ ranges

BSM theories can predict $C_f < 0$!

 $\begin{aligned} & \Theta \text{ example : Minimal Composite Higgs Models} & SO(5) -> SO(4) \\ & \text{global symmetry in a strong} \\ & \xi = \frac{\text{sector broken at a scale}}{f_H^2} & \text{broken at a scale} & f_H > v \\ & \text{Agashe, Contino, Pomarol, [hep-ph/0412089]} \end{aligned}$

ξ

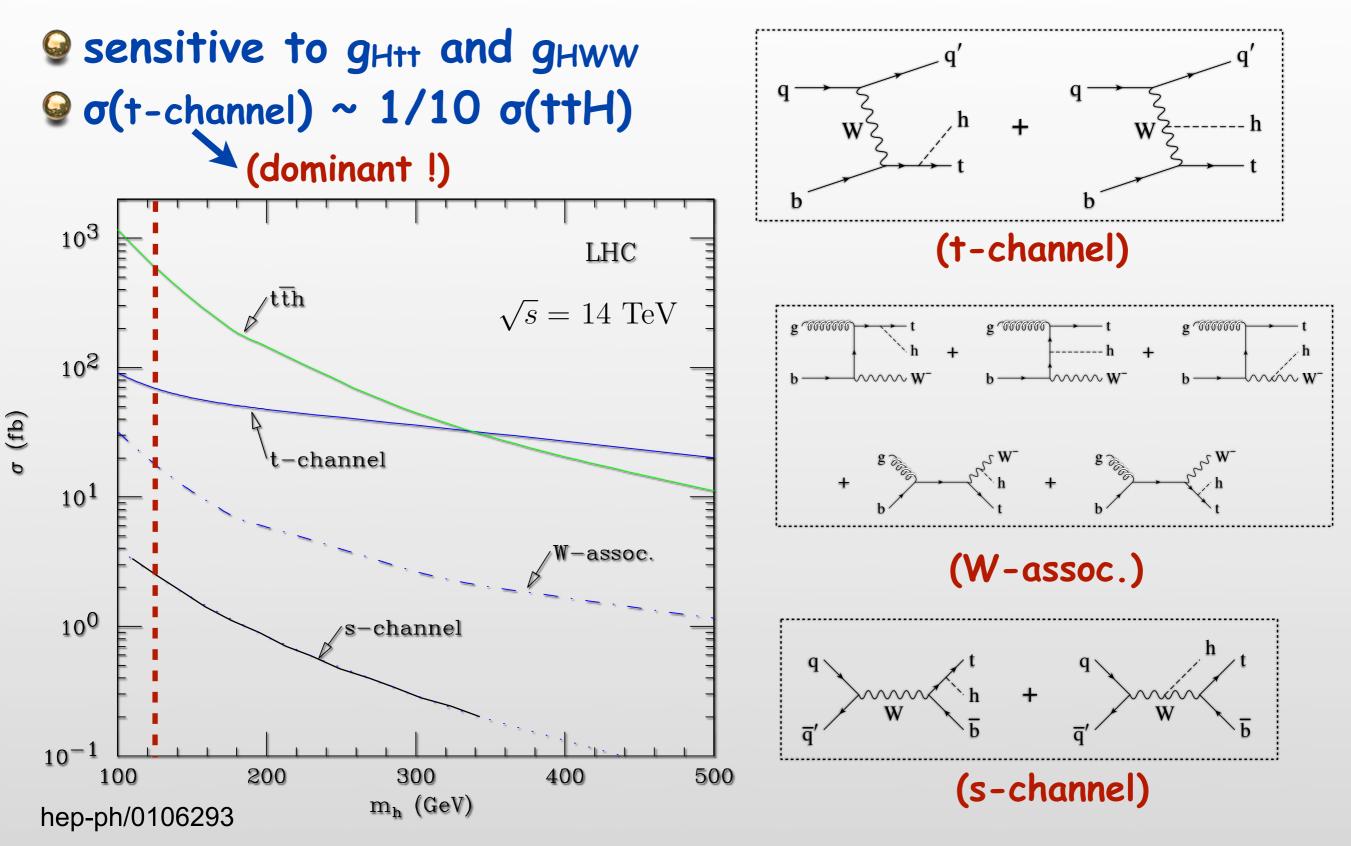

Looking for some way to experimentally discriminate the C_f sign

linear terms in C_f needed → look at interferences in squared amplitudes
 in decays: mainly in loop channels

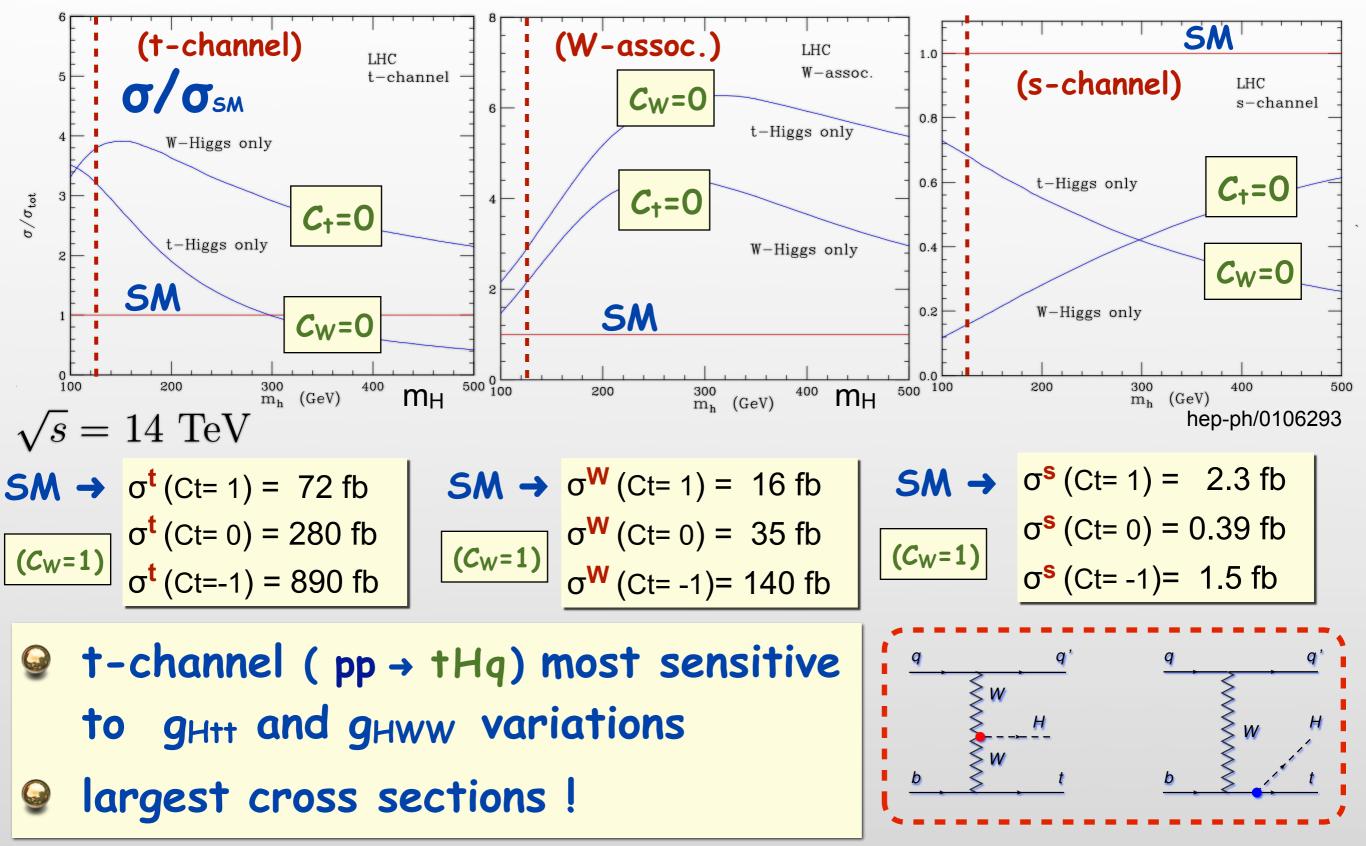

what about production mechanisms ???

main sensitivity to Cf through ghtt

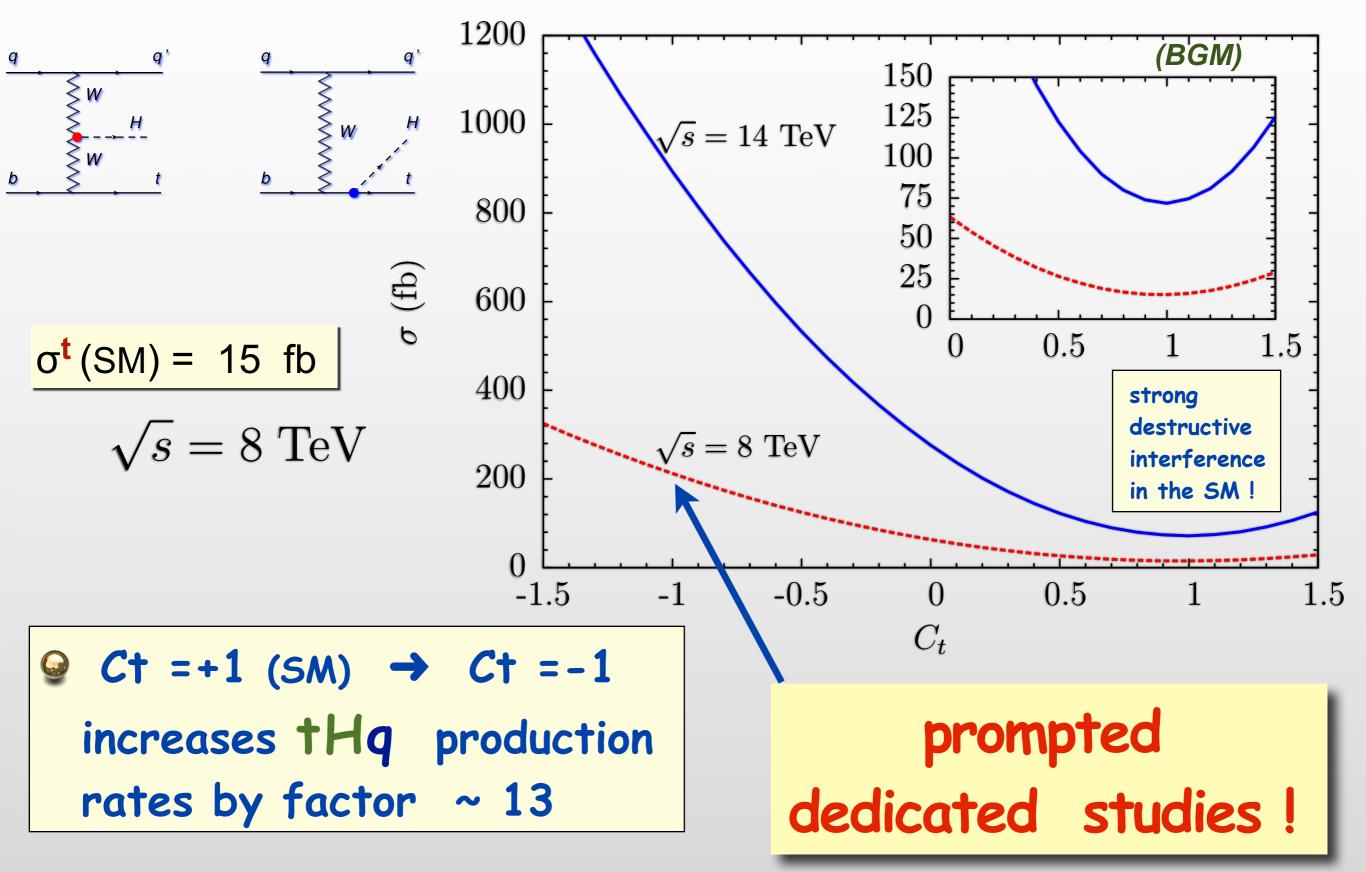
indirect (→ top quark not observed) and dominant


direct (top quark observed)
 but not yet quite at reach

σ|8TeV ~ 130 fb


Single top-quark + Higgs production $p p \rightarrow t H \times (x = q, W, b)$ e ask for an extra Higgs in single top productionf = W f = W

$\sigma(pp \rightarrow t H + x)$ in the SM: 3 channels



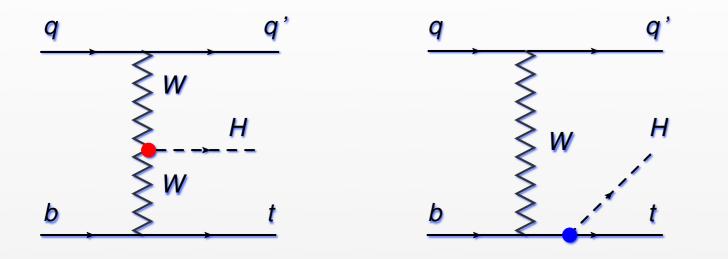
Barbara Mele

switching off either g_{Htt} $C_t=0$ or g_{HWW} $C_W=0$

 $\sigma(pp \rightarrow tHq)$ vs C_t

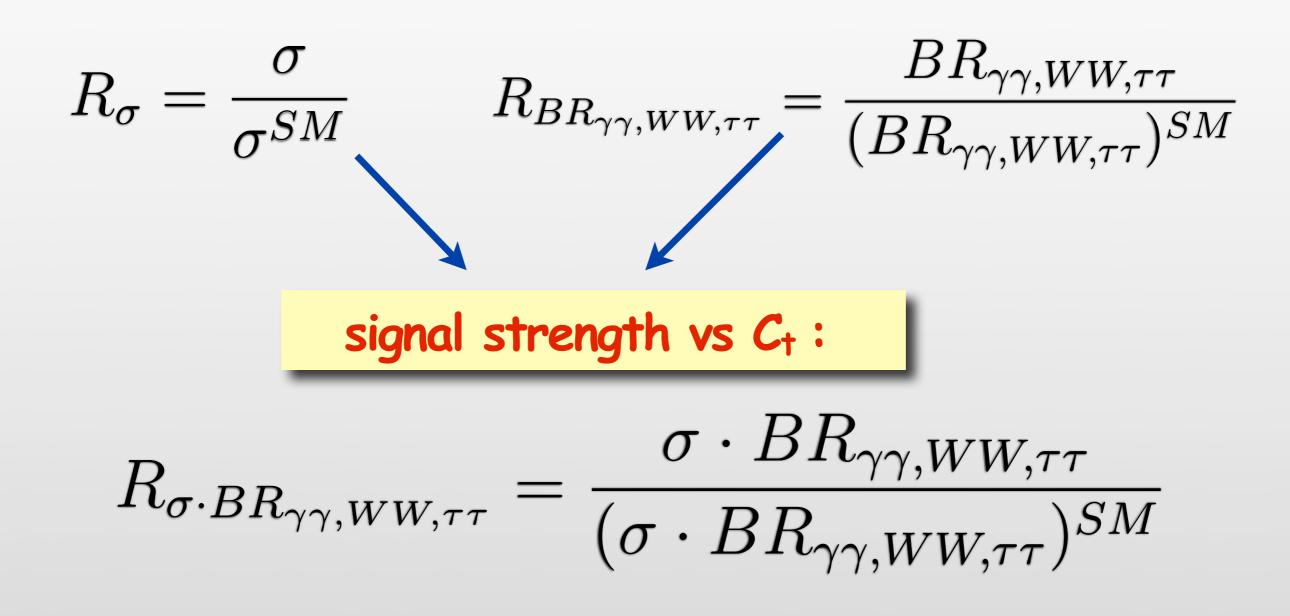
main references on Hq sensitivity to C_f sign

S. Biswas, E. Gabrielli, B.M. (BGM) (H → γγ + top (had))
 "Single top and Higgs associated production as a probe of the Htt coupling sign at the LHC", JHEP 01 (2013) 088 [arXiv:1211.0499]

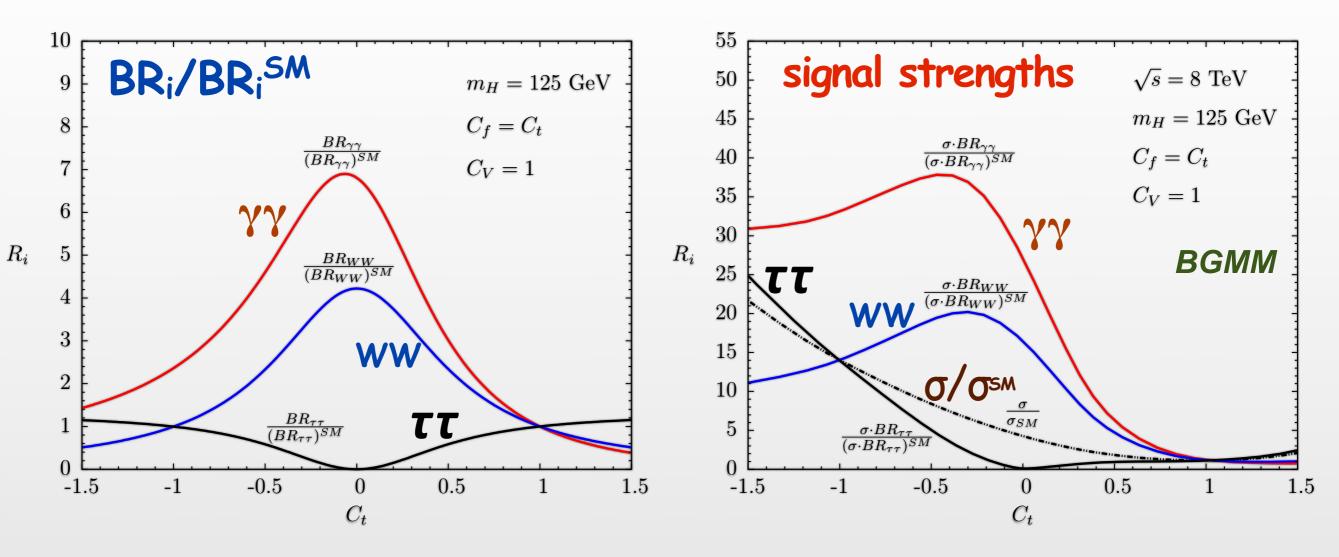

M.Farina, C.Grojean, F.Maltoni, E.Salvioni, A.Thamm, $(H \rightarrow bb+top (lep))$ "Lifting degeneracies in Higgs couplings using single top production in associationwith a Higgs boson",JHEP 05 (2013) 022 [arXiv:1211.3736]

S. Biswas, E. Gabrielli, F. Margaroli, B.M. (BGMM) $(H \rightarrow \gamma\gamma, WW, \tau\tau)$ "Direct constraints on the Htt coupling from the 8 TeV LHC data", JHEP 07 (2013) 073 [arXiv:1304.1822] main focus here on BGMM results : sensitivity to C_t sign of present 7 + 8 TeV data set !

premise

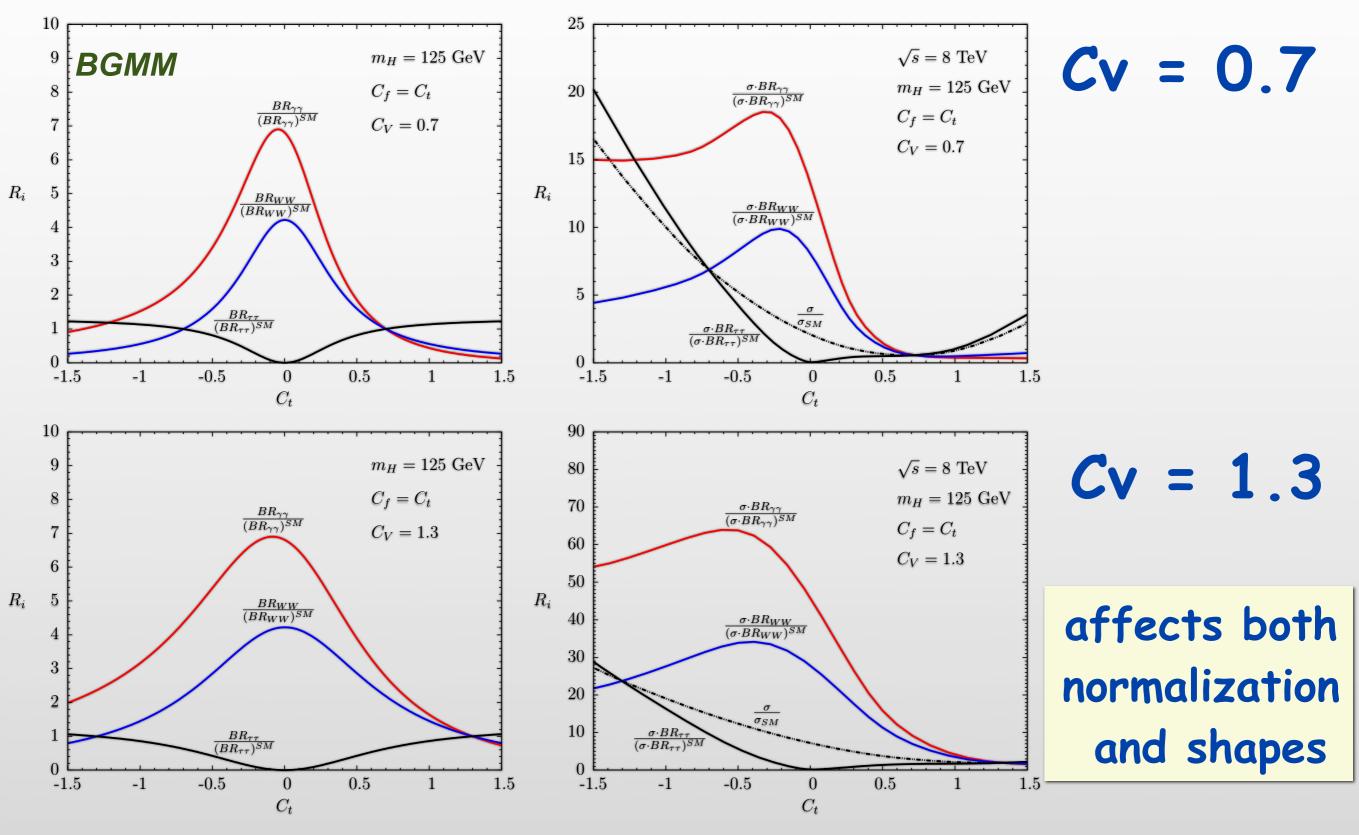

Solution were set of the set of t C_{t} dependence (at fixed $C_{v}=1$) Seasy to see that in (single-top + Higgs) production : $d\sigma = d\sigma(C_W, C_t) = |C_W|^2 d\sigma(1, C_t/C_W)$ \rightarrow straightforward to get C_V - from C_{\dagger} -dependence ! Θ what is physical is the relative sign of g_{Hff} and g_{HVV} Θ we will assume $C_V > 0$ following exp.s' fits 2 benchmark scenarios : \bigcirc universal C_f (= C_t) (described first, and more extensively) \bigcirc free C_{t} , and SM-like $C_{b}=C_{c}=C_{\tau}=1$

tHq signatures under scrutiny



 $H \rightarrow \gamma \gamma$, WW, $\tau \tau$

pheno mostly ruled by σ/σ^{SM} and BR_i/BR_iSM behavior versus C_t



BR_i/BR_i^{SM} and σ_i/σ_i^{SM} vs Ct

BR_{$\gamma\gamma$} and BR_{ww} mostly ruled by $1/\Gamma_{H} \sim 1/(\Gamma_{b} + \Gamma_{\tau}) \sim 1/C_{t}^{2}$ \rightarrow enhancement for $|Ct| \rightarrow 0$ in (asym.) BR_{$\gamma\gamma$} and BR_{ww} σ/σ^{SM} levels up corresponding signal strengths for Ct < 0 !

changing Cv in BR_i/BR_i^{SM} and σ_i/σ_i^{SM}

tHq signal ($H \rightarrow \gamma \gamma$, WW, ττ) vs bckgr Separton level study (MadGraph 5) BGMM Includes mostly irreducible bckgr's → fair approx. for multi-photon / multi-lepton final states Selist of included signal final states : 2 photons + jet (forward) + b-jet + jets 2 photons + lepton + jet (forward) + b-jet + jet 9

- General Science Scien
- 2 Same-Sign leptons + jet (forward) + b-jet + jets

@ always requires a forward light-jet and a b-jet tagging

Some of the second seco

$$\Theta$$
 studies (combined) $S/\sqrt{(S+B)}$ versus (C_V, C_t)

at $\left[\sqrt{S} = 8 \text{ TeV} \text{ for } 50 \text{ fb}^{-1}\right]$ (~ present ATLAS + CMS data set)

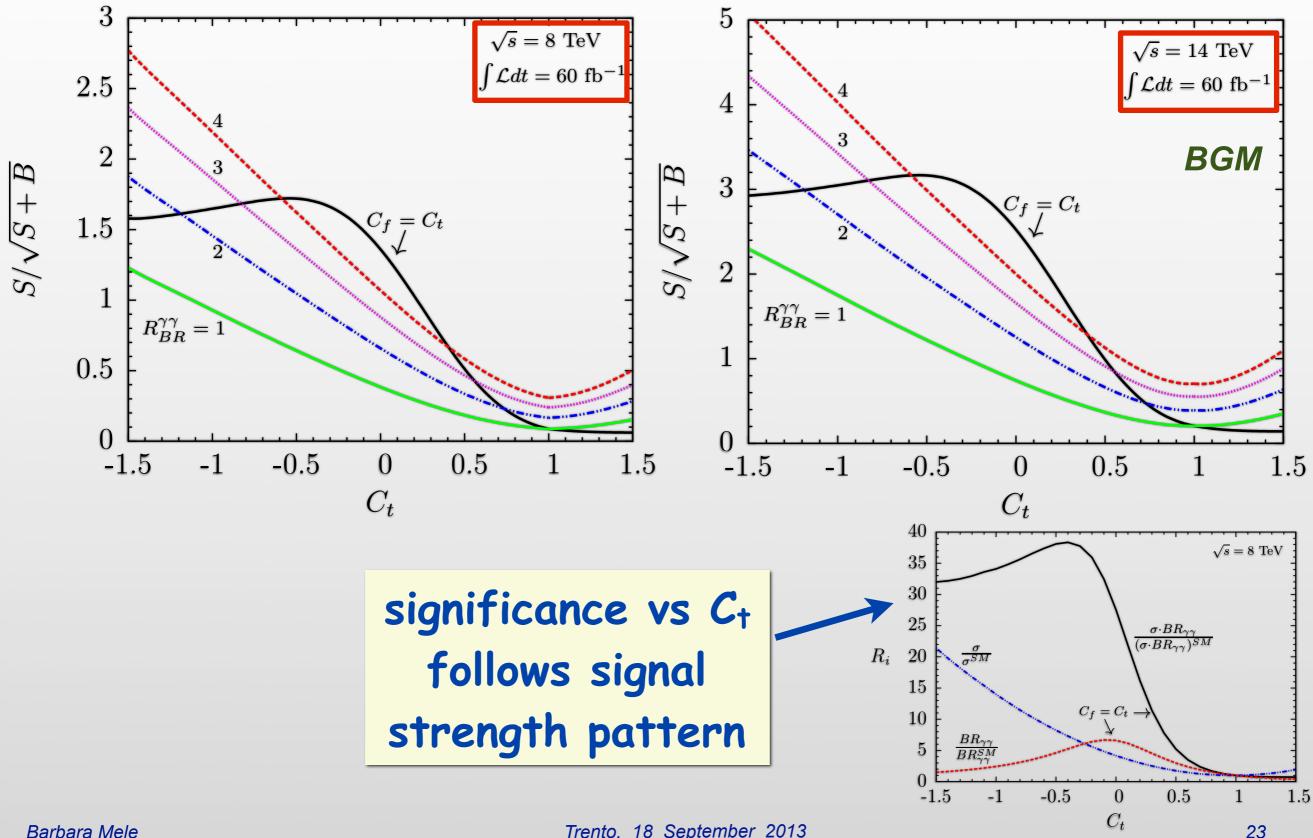
bckgr studies : $H \rightarrow \gamma\gamma$ + top (had)

(universal Cf scenario)

- $pp \rightarrow 2\gamma + t + j;$
- $pp \to H(\to \gamma \gamma) + t\bar{t};$

$$\Delta R_{i,j} = \sqrt{\Delta \eta_{i,j}^2 + \Delta \phi_{i,j}^2} > 0.4$$

for any photon/ lepton/ parton pair in all channels


• $pp \rightarrow 2\gamma + b + 3j$.

• $pp \rightarrow 2\gamma + \overline{t}t;$

			event n	umbers				
$\sqrt{s} = 8 \text{ TeV} (50 \text{ fb}^{-1})$	S	Background (B)						
Cut	$C_t = -1$	$C_t = 0$	$C_t = 1$	$2\gammatj$	$2\gammatar{t}$	$t\bar{t}H$	$2\gammab3j$	Total
$2\gamma + b + (\geq 3j)$	6.4	5.1	0.18	8.2	9.2	1.6	249	268
$ \eta_{j_F} > 2.5 \& p_{T_{j_F}} > 30 \text{ GeV}$	3.0	2.5	0.08	3.3	0.32	0.06	22	26
$ M_{bjj} - m_t < 20 { m ~GeV}$	3.0	2.4	0.08	2.8	0.20	0.02	4.5	7.5
$ M_{jj(top)} - M_W < 15 \text{ GeV}$	2.8	2.3	0.07	3.2	0.19	0.02	1.8	5.2
$ M_{\gamma\gamma} - m_H < 3 \text{ GeV}$	2.8	2.3	0.07	0.12	0.02	0.02	0.57	0.73
$S/\sqrt{S+B}$	1.5	1.3	0.08					BGMM

 $p_T^{\gamma_1} > 40 \text{ GeV}, \quad p_T^{\gamma_2} > 30 \text{ GeV}, \quad p_T^{j,b} > 25 \text{ GeV}, \quad |\eta_{\gamma,b}| < 2.5, \quad |\eta_j| < 4.5.$

bckgr studies : $H \rightarrow \gamma\gamma$ + top (had)

Barbara Mele

bckgr studies : $H \rightarrow \gamma\gamma$ + top (lept)

- $pp \rightarrow 2\gamma + t + j;$
- $pp \to H(\to \gamma \gamma) + t\bar{t};$
- $pp \to 2\gamma + \bar{t}t;$
- $pp \rightarrow 2\gamma + W + b + j$.

event numbers

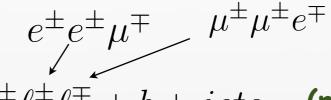
$\sqrt{s} = 8 \text{ TeV} (50 \text{ fb}^{-1})$	S	Background (B)						
Cut	$C_t = -1$	$C_t = 0$	$C_t = 1$	$2\gammatj$	$2\gammatar{t}$	$t\bar{t}H$	$2\gamma W bj$	Total
$2\gamma + \ell + b (\geq ,\mathbf{j})$	3.01	2.35	0.08	7.0	6.5	0.8	5.0	19.3
$ M_{\gamma\gamma} - m_H < 3 \text{ GeV}$	3.01	2.35	0.08	0.16	0.18	0.77	0.09	1.20
$ \eta_{j_F} > 1.5$	2.54	2.01	0.06	0.12	0.04	0.15	0.03	0.34
$S/\sqrt{S+B}$	1.5	1.4	0.09				В	GMM

 $p_T^{\gamma} > 20 \text{ GeV}, \qquad p_T^{\mu} > 20 \text{ GeV}, \qquad p_T^{e,j,b} > 25 \text{ GeV}, \qquad |\eta_{\gamma,l,b}| < 2.5, \qquad |\eta_j| < 4.5.$

bckgr studies : $H \rightarrow \ell \nu(\nu) \ell \nu(\nu)$ $t \rightarrow b \ell \nu$

• $pp \rightarrow t\bar{t} + W;$

$(H \rightarrow WW, \tau\tau$ 3 leptons)


• $pp \rightarrow t\bar{t} + H;$

• $pp \to t\bar{t} + Z;$

- $pp \rightarrow t + WW + j;$
- $pp \rightarrow t + WZ + j;$
- $pp \rightarrow b + WZ + j;$
- $pp \rightarrow b + WWZ$.

2 compl.ry

sets :

 $\ell_i^{\pm}\ell_i^{\pm}\ell_j^{\mp} + b + jets$ (no Z \rightarrow $\ell^+\ell^-$ bckgr)

 $\ell_i^{\pm}\ell_j^{\pm}\ell_j^{\mp} + b + jets$. (Z \rightarrow $\ell^+\ell^-$ bckgr)

$\sqrt{s} = 8 \text{ TeV} (50 \text{ fb}^{-1})$	S	ignal (S)		Background (B)					
Cut	$C_t = -1$	$C_t = 0$	$C_t = 1$	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	tWWj	Total	
$\ell_i^{\pm}\ell_i^{\pm}\ell_j^{\mp}bq$	0.96	0.81	0.06	3.69	0.14	1.07	0.04	4.94	
$ \eta_j^F > 1.5$	0.81	0.70	0.05	0.64	_	0.18	0.01	0.83	
$S/\sqrt{S+B}$	0.63	0.57	0.05						
	Signal (S)			Backgrounds (B)					
	$C_t = -1$	$C_t = 0$	$C_t = 1$	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	tWWj	Total	
$\ell_i^{\pm}\ell_j^{\pm}\ell_j^{\mp}bq$	3.11	2.58	0.18	12.2	43.5	3.3	0.2	59.2	
$ \eta_{j}^{F} > 1.5$	2.72	2.22	0.14	2.6	11.0	0.6	0.1	14.3	
$M_{\ell_i^+ \ell_i^-} \notin [86.2, 96.2] \text{ GeV}$	2.16	1.76	0.11	2.0	0.2	0.4	-	2.6	
$S/\sqrt{S+B}$	0.99	0.88	0.07		1				
$f_{\ell} = 3$ $p_T^{\ell} > 20 \text{ GeV},$ $p_T^{(j,b)} > 20 \text{ GeV}$ $ \eta_{\ell,b} < 100$							$ \eta_j $	< 4.5	

Barbara Mele

bckgr studies : $H \rightarrow \ell \nu qq', \ell \nu \nu + had(s)$ $t \rightarrow b\ell \nu$

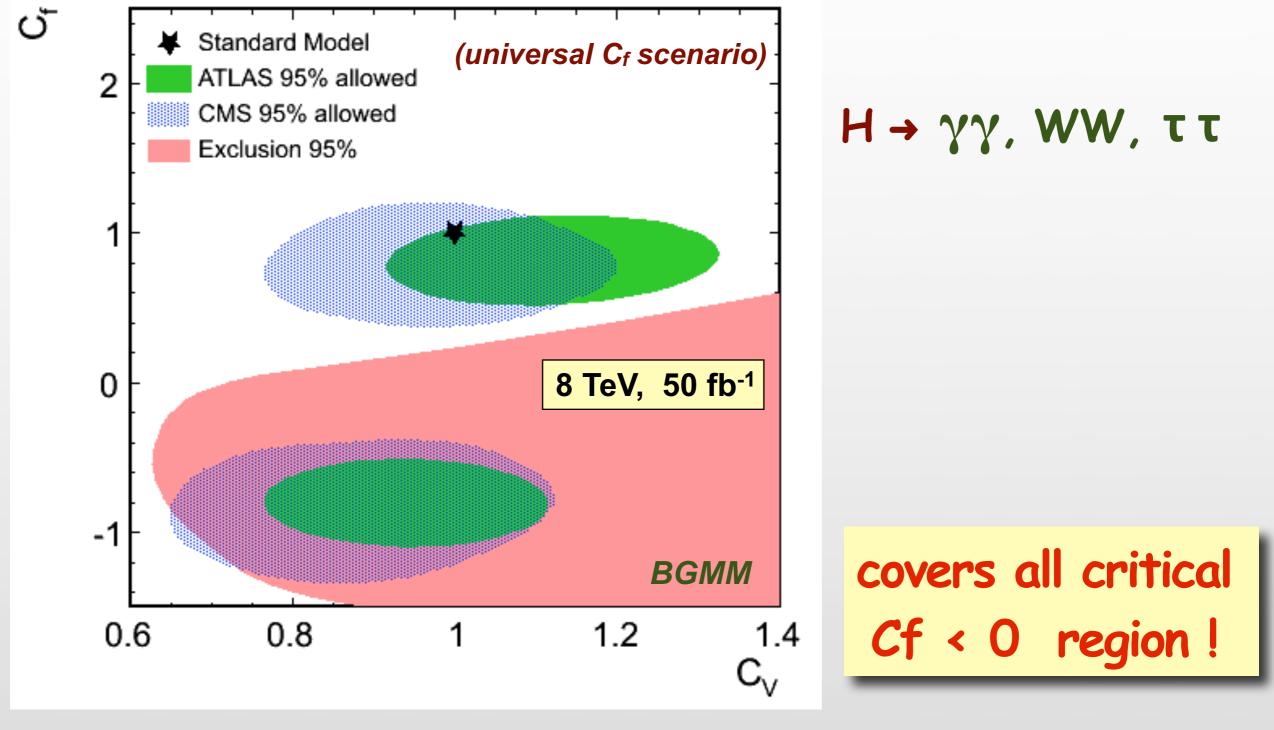
$(H \rightarrow WW, \tau\tau; 2SS leptons)$

• $pp \to t\bar{t} + Z;$

• $pp \rightarrow t\bar{t} + W;$

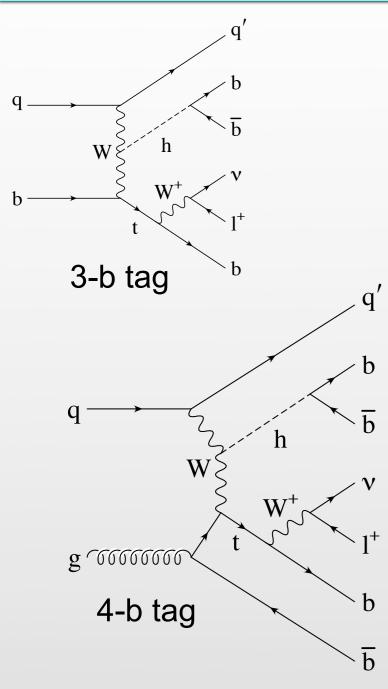
- $pp \to t\bar{t} + H;$
- $pp \rightarrow t + WW + j;$
- $pp \rightarrow t + W + jjj$.

$\sqrt{s} = 8 \text{TeV} \ (50 \text{fb}^{-1})$		Signal (S)			Backgrounds (B)				
\sub{Cut}	$C_t = -1$	$C_t = 0$	$C_{t} = 1$	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	tWWj	tW3j	Total
$\ell^{\pm}\ell^{\pm}bqqq$	7.8	6.3	0.53	45.1	3.7	8.4	0.5	0.3	57.9
$ \eta_j^F > 1.5 \text{ GeV}$	6.6	5.4	0.42	11.3	0.6	1.8	0.2	0.1	13.9
$S/\sqrt{S+B}$	1.5	1.3	0.11						


 $N_{\ell} = 2$ $p_T^{\ell} > 20 \text{ GeV},$ $p_T^{(j,b)} > 20 \text{ GeV}$ $|\eta_{\ell,b}| < 2.5,$ $|\eta_j| < 4.5$

combination

mbinati	on		Channe	ls		Total
Process	$\gamma\gamma bqqq'$	$\gamma\gamma b\ell q'$	$\ell_i^{\pm}\ell_i^{\pm}\ell_j^{\mp}bq'$	$\ell_i^{\pm}\ell_j^{\pm}\ell_j^{\mp}bq'$	$\ell^{\pm}\ell^{\pm}bqqq'$	
$C_{\mathrm{t}} = -1.5$						
S	2.6	2.4	0.91	2.4	3.6	11.9
B	0.78	0.69	0.86	2.7	14.3	19.3
$S/\sqrt{S+B}$	1.4	1.4	0.68	1.1	0.85	2.5
$C_t = -1$						
S	2.8	2.5	0.81	2.2	6.6	14.9
B	0.76	0.56	0.83	2.6	14.0	18.8
$S/\sqrt{S+B}$	1.5	1.4	0.63	1.0	1.5	2.8
$C_t = 0$						
S	2.3	2.0	0.70	1.8	5.4	12.2
В	0.71	0.19	0.65	2.2	12.2	15.9
$S/\sqrt{S+B}$	1.3	1.4	0.60	0.90	1.3	2.5
$C_{t}=0.3$						
S	1.0	0.80	0.33	0.84	2.5	5.5
В	0.72	0.25	0.70	2.3	12.7	16.7
$S/\sqrt{S+B}$	0.76	0.78	0.33	0.47	0.64	1.4


$\bigcirc S/\sqrt{S+B}$ close to 3 at $C_t \sim -1$; > 2.5 for $-1.5 < C_t < 0$ \bigcirc best single channels : 2 photons and SS leptons

exclusion potential in (C_V, C_t) plane

ATLAS-CONF-2013-034 CMS PAS HIG-12-045

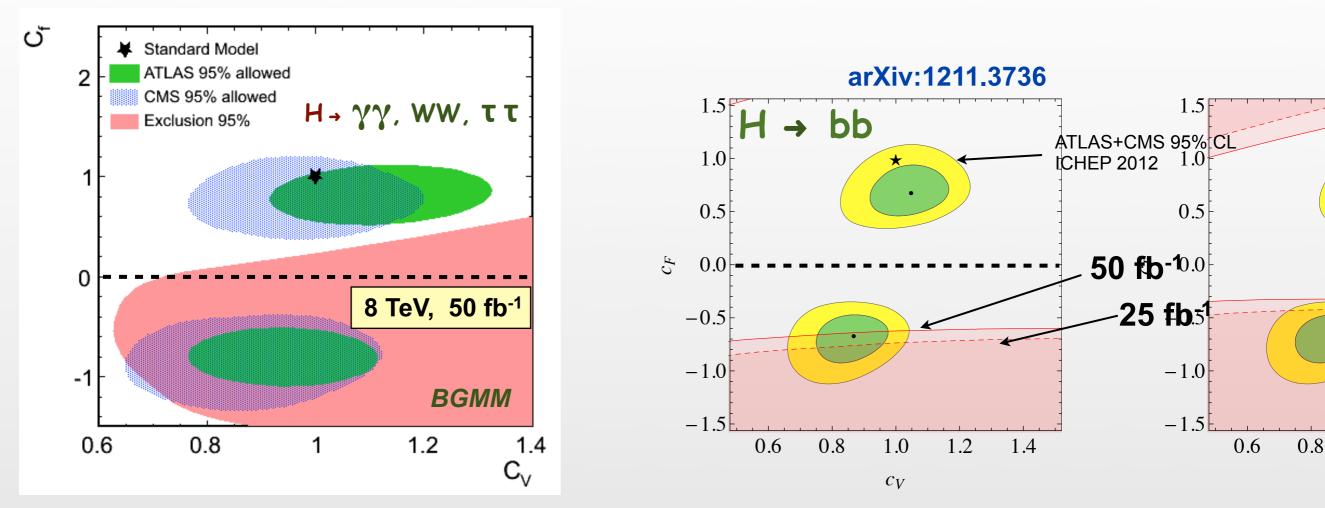
comparison with $H \rightarrow bb$ potential (8TeV)

(universal C_f scenario) arXiv:1211.3736 Signal

		0	0						
Cuts	$c_F = 1$	$c_F = -1$	Total	tZj	$tb\overline{b}j$	$t\overline{t}$	$t ar{t} j$		
Acceptance Cuts + ϵ	0.18	2.88	600.81	0.61	1.01	456.40	142.80		
$ m_{bb} - m_h < 15 \text{ GeV}$	0.15	2.55	245.95	0.02	0.11	184.2	61.65		
$m_{bbj} > 270 { m ~GeV}$	0.10	2.02	31.78	0.01	0.08	0.	30.68		
$ \eta^j >1.7$	0.08	1.70	17.98	0.01	0.06	0.	17.24		
Events at $25{\rm fb}^{-1}$	1.9	42.5	449.4						

Backgrounds

fb for the 3 *b*-tag case at 8 TeV.

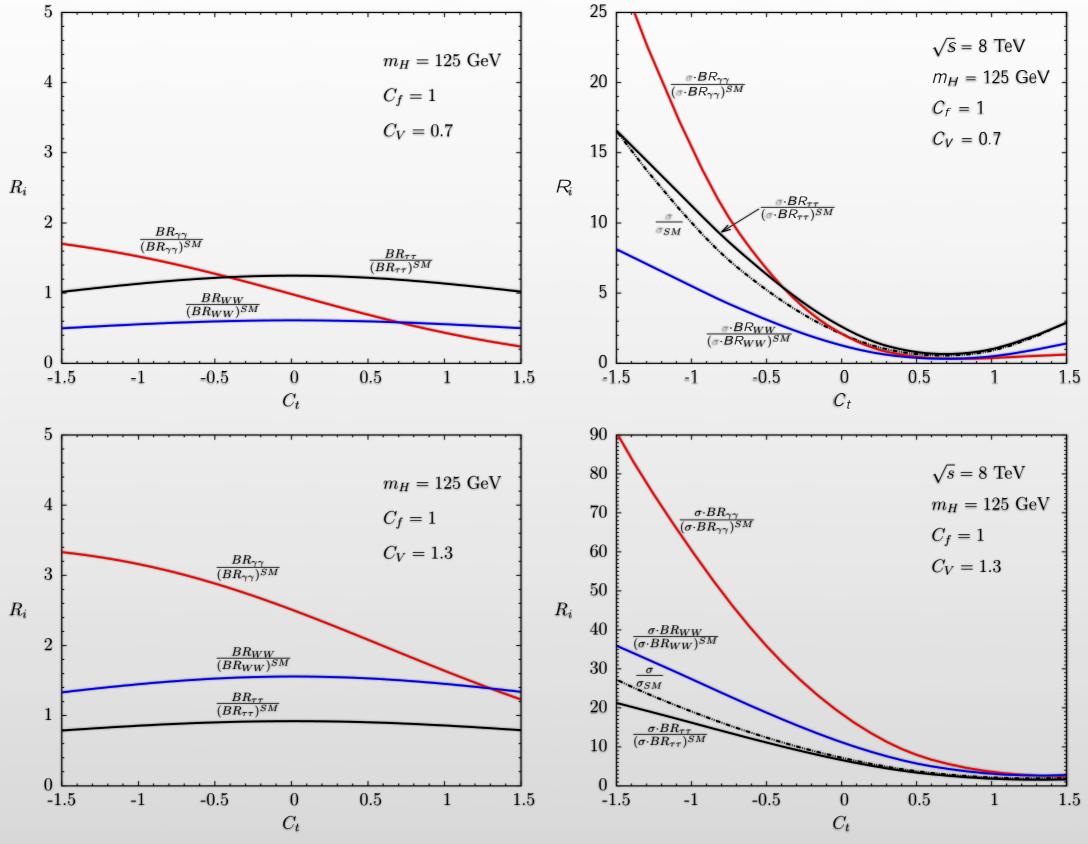

	Si	gnal		Backgrounds					
Cuts	$c_F = 1$	$c_F = -1$	Total	$tZar{b}j$	$tb\overline{b}\overline{b}j$	$t\bar{t}b\bar{b}$	$t ar{t} b ar{b} \ (mis)$	$t ar{t} j$	
Acceptance Cuts + ϵ	0.043	0.63	7.81	0.11	0.26	2.66	2.25	2.54	
$ m_{bb} - m_h < 15 \text{ GeV}$	0.039	0.58	4.06	0.03	0.08	0.94	1.29	1.71	
min $m_{bb} > 110 \text{ GeV}$	0.023	0.30	0.67	0.002	0.015	0.20	0.44	0.	
min $m_{bj} > 180 { m ~GeV}$	0.008	0.15	0.014	0.	0.007	0.002	0.004	0.	
Events at $25\mathrm{fb}^{-1}$	0.2	3.8	0.4						

fb for the 4 b tag case at 8 TeV

challenging !

comparison with $H \rightarrow bb$ potential (8TeV)

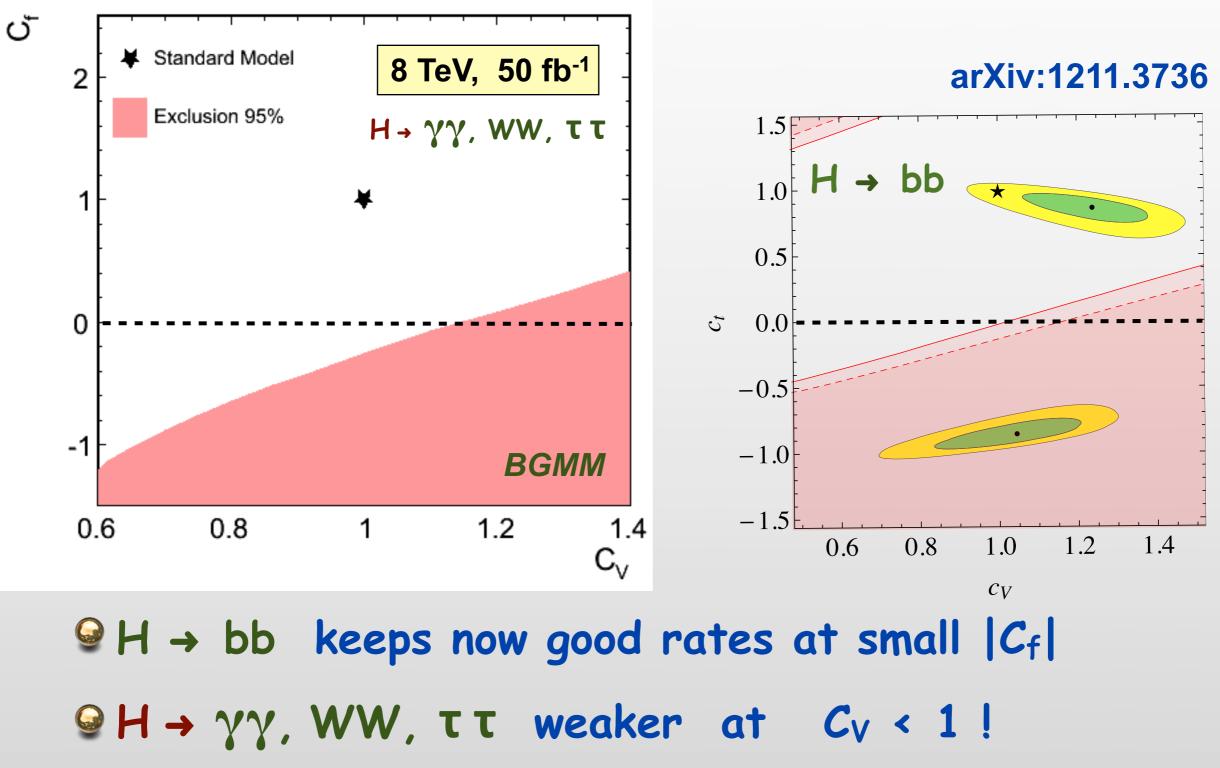
(universal Cf scenario)


Some complementarity, since H → bb drops at small |Cf| where γγ and WW are enhanced
 at this stage H → γγ, WW, ττ looks more promising !

BR_i/BR_i^{SM} and σ_i/σ_i^{SM} vs C_t ($C_{f\neq t}=1$)

Generation in the second secon

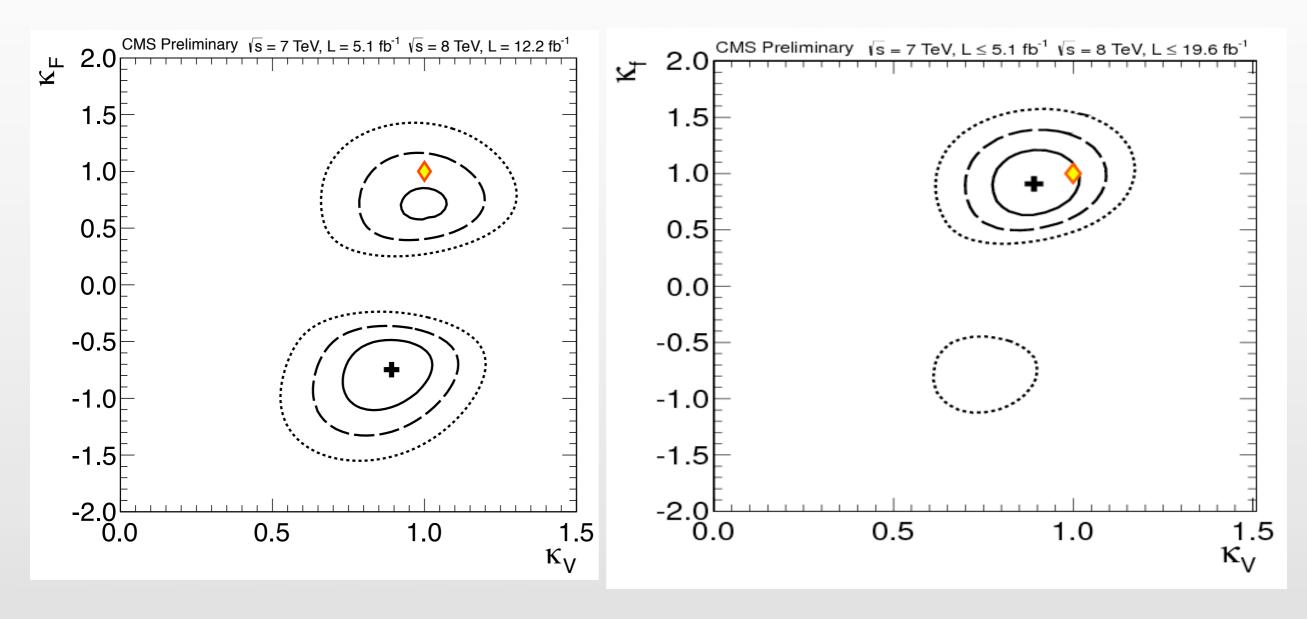
55BRi/BRiSM signal strengths $\sqrt{s} = 8 \text{ TeV}$ 50 $m_H = 125 \text{ GeV}$ 45 $m_H = 125 \text{ GeV}$ 4 $C_{f} = 1$ $\frac{\sigma \cdot BR_{\gamma\gamma}}{(\sigma \cdot BR_{\gamma\gamma})^{SM}}$ $C_{f} = 1$ 40 $C_{V} = 1$ 35 $C_{V} = 1$ 3 30 $\frac{BR_{\gamma\gamma}}{(BR_{\gamma\gamma})^{SM}}$ R_i R_i 25 $\mathbf{2}$ 20 $\frac{BR_{WW}}{(BR_{WW})^{SM}} \simeq \frac{BR_{\tau\tau}}{(BR_{\tau\tau})^{SM}}$ 151 10 $\frac{\sigma \cdot BR_{\tau\tau}}{(\sigma \cdot BR_{\tau\tau})^{SM}} \simeq \frac{\sigma \cdot BR_{WW}}{(\sigma \cdot BR_{WW})^{SM}}$ 5 0 0 -1.5 -1 -0.50 0.51 1.50 0.51.5-1.5-1 -0.51 C_t C_t


changing Cv in BR_i/BR_i^{SM} and σ_i/σ_i^{SM}

Barbara Mele

comparison with $H \rightarrow bb$ potential (8TeV)

free C_t with $C_{f \neq t} = 1$ scenario



Outlook

- Higgs coupling fits still subject to substantial fluctuations (see this-year CMS update ...)
- Θ not yet clear when the (BSM) $C_f < 0$ region will be excluded by "traditional" fits
- $\bigcirc p p \rightarrow t H q$ production seems to be an excellent probe of the negative C_f region
- Solution content of the second second
- Generation function of the p p → t H q potential at 8 TeV and beyond !

CMS g_{HXX} fit

(universal C_f scenario)

CMS PAS HIG-12-045

CMS PAS HIG-13-005 (18 April)