Reaching NNLOPS accuracy with POWHEG and MiNLO

Emanuele Re*
Rudolf Peierls Centre for Theoretical Physics, University of Oxford

LC13 Workshop

ECT*, Trento, 19 September 2013

^{*}based mainly on [1206.3572, 1212.4504, 1309.0017]

Outline: "explain the acronyms in the title"

POWHEG in a nutshell

MiNLO: Multiscale Improved NLO

[1206.3572]

• NLOPS merging of X @ NLO and X + 1j @ NLO

[1212.4504]

NNLOPS simulation of Higgs production

[1309.0017]

NLOPS: intro

- NLO is important: first order where rates are reliable, and possible to attach sensible theoretical uncertainties
- In some phase-space regions, NLO accuracy is not enough:

 → need to resum to all orders the dominant terms
- A parton shower is an algorithm to resum (some classes of) collinear/soft logs in a "fully-exclusive" way

NLOPS: intro

- NLO is important: first order where rates are reliable, and possible to attach sensible theoretical uncertainties
- A parton shower is an algorithm to resum (some classes of) collinear/soft logs in a "fully-exclusive" way

$$d\sigma_{\text{SMC}} = B(\Phi_n) \ d\Phi_n \ \left[\Delta(t_{\text{max}}, t_0) + \Delta(t_{\text{max}}, t) \ \underbrace{\frac{\alpha_s}{2\pi} \ \frac{1}{t} P(z) \ d\Phi_r}_{\text{coll.approximation}} \right]$$

$$\Delta(t_{\rm max},t) = \exp\left\{-\int_t^{t_{\rm max}} d\Phi_r' \; \frac{\alpha_s}{2\pi} \frac{1}{t'} P(z')\right\}$$

This is LOPS

NLOPS: POWHEG

Idea: Modify $d\sigma_{\rm SMC}$ in such a way that, expanding in $\alpha_{\rm S}$, one recovers the NLO cross section.

$$\begin{split} B(\Phi_n) & \Rightarrow & \bar{B}(\Phi_n) = B(\Phi_n) + \frac{\alpha_s}{2\pi} \Big[V(\Phi_n) + \int R(\Phi_{n+1}) \; d\Phi_r \Big] \\ \Delta(t_{\rm m},t) & \Rightarrow & \Delta(\Phi_n;k_{\rm T}) = \exp\left\{ -\frac{\alpha_s}{2\pi} \int \frac{R(\Phi_n,\Phi_r')}{B(\Phi_n)} \theta(k_{\rm T}' - k_{\rm T}) \; d\Phi_r' \right\} \end{split}$$

POWHEG "master formula" for the hardest emission:

$$d\sigma_{\text{POW}} = d\Phi_n \ \bar{B}(\Phi_n) \left\{ \Delta(\Phi_n; k_{\text{T}}^{\text{min}}) + \Delta(\Phi_n; k_{\text{T}}) \frac{\alpha_s}{2\pi} \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} \ d\Phi_r \right\}$$

+ $p_{\rm T}$ -vetoing subsequent emissions, to avoid double-counting.

NLOPS: POWHEG

Idea: Modify $d\sigma_{\rm SMC}$ in such a way that, expanding in $\alpha_{\rm S}$, one recovers the NLO cross section.

$$\begin{split} B(\Phi_n) & \Rightarrow & \bar{B}(\Phi_n) = B(\Phi_n) + \frac{\alpha_s}{2\pi} \Big[V(\Phi_n) + \int R(\Phi_{n+1}) \; d\Phi_r \Big] \\ \Delta(t_{\rm m},t) & \Rightarrow & \Delta(\Phi_n;k_{\rm T}) = \exp\left\{ -\frac{\alpha_s}{2\pi} \int \frac{R(\Phi_n,\Phi_r')}{B(\Phi_n)} \theta(k_{\rm T}' - k_{\rm T}) \; d\Phi_r' \right\} \end{split}$$

POWHEG "master formula" for the hardest emission:

$$d\sigma_{\text{POW}} = d\Phi_n \ \bar{B}(\Phi_n) \left\{ \Delta(\Phi_n; k_{\text{T}}^{\text{min}}) + \Delta(\Phi_n; k_{\text{T}}) \frac{\alpha_s}{2\pi} \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} \ d\Phi_r \right\}$$

+ $p_{\rm T}$ -vetoing subsequent emissions, to avoid double-counting.

- inclusive observables: @NLO
- first hard emission: full tree level ME
- (N)LL resummation of collinear/soft logs

This is NLOPS

Idea: Modify $d\sigma_{\rm SMC}$ in such a way that, expanding in $\alpha_{\rm S}$, one recovers the NLO cross section.

$$\begin{split} B(\Phi_n) & \Rightarrow & \bar{B}(\Phi_n) = B(\Phi_n) + \frac{\alpha_s}{2\pi} \Big[V(\Phi_n) + \int R(\Phi_{n+1}) \; d\Phi_r \Big] \\ \Delta(t_{\rm m},t) & \Rightarrow & \Delta(\Phi_n;k_{\rm T}) = \exp\left\{ -\frac{\alpha_s}{2\pi} \int \frac{R(\Phi_n,\Phi_r')}{B(\Phi_n)} \theta(k_{\rm T}' - k_{\rm T}) \; d\Phi_r' \right\} \end{split}$$

POWHEG "master formula" for the hardest emission:

$$d\sigma_{\text{POW}} = d\Phi_n \ \bar{B}(\Phi_n) \left\{ \Delta(\Phi_n; k_{\text{T}}^{\text{min}}) + \Delta(\Phi_n; k_{\text{T}}) \frac{\alpha_s}{2\pi} \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} \ d\Phi_r \right\}$$

+ p_{T} -vetoing subsequent emissions, to avoid double-counting.

- inclusive observables: @NLO
- first hard emission: full tree level ME
- (N)LL resummation of collinear/soft logs

This is NLOPS

- Notice: when doing X+ jet(s) @ NLO, $ar{B}(\Phi_n)$ is not finite!
 - \hookrightarrow need of a generation cut on Φ_n (or variants thereof)
 - \hookrightarrow Powheg for H+1 jet cannot be used for inclusive Higgs production

MiNLO: intro

MiNLO: Multiscale Improved NLO

- goal: method to a-priori choose scales in NLO computation
- relevant for processes with widely different scales (e.g. X+ jets close to Sudakov regions)

How?

- At LO, the CKKW procedure allows to take these effects into account: modify the LO weight $B(\Phi_n)$ in order to include (N)LL effects.
 - ⇒ "Use CKKW" on top of NLO computation that potentially involves many scales

Next-to-Leading Order accuracy needs to be preserved

MiNLO: Multiscale Improved NLO

- goal: method to a-priori choose scales in NLO computation
- relevant for processes with widely different scales (e.g. X+ jets close to Sudakov regions)

How?

- At LO, the CKKW procedure allows to take these effects into account: modify the LO weight $B(\Phi_n)$ in order to include (N)LL effects.
 - ⇒ "Use CKKW" on top of NLO computation that potentially involves many scales

Next-to-Leading Order accuracy needs to be preserved

Scale dependence shows up at NNLO ["scale compensation"]:

$$O(\mu') - O(\mu) = \mathcal{O}(\alpha_{\mathrm{S}}^{n+2})$$
 if $O \sim \alpha_{\mathrm{S}}^{n}$ at LO

2 Away from soft-collinear regions, exact NLO recovered:

$$O_{\rm MiNLO} = O_{\rm NLO} + \mathcal{O}(\alpha_{\rm S}^{n+2}) \hspace{1cm} [~i.e.~\alpha_{\rm S}^{n}~\&~\alpha_{\rm S}^{n+1}~~{\rm as~in~NLO}~]$$

ullet Find "most-likely" shower history (via k_T -algo): $Q>q_3>q_2>q_1\equiv Q_0$

 $\bullet~$ Find "most-likely" shower history (via k_T -algo): $Q>q_3>q_2>q_1\equiv Q_0$

ullet Find "most-likely" shower history (via k_T -algo): $Q>q_3>q_2>q_1\equiv Q_0$

ullet Evaluate $\alpha_{
m S}$ at nodal scales

$$\alpha_{\rm S}^n(\mu_R)B(\mathbf{\Phi}_n) \Rightarrow \alpha_{\rm S}(q_1)\alpha_{\rm S}(q_2)...\alpha_{\rm S}(q_n)B(\mathbf{\Phi}_n)$$

* scale compensation requires $\bar{\mu}_R^2 = (q_1q_2...q_n)^{2/n}$ in V

ullet Find "most-likely" shower history (via k_T -algo): $Q>q_3>q_2>q_1\equiv Q_0$

• Evaluate $\alpha_{\rm S}$ at nodal scales

$$\alpha_{\rm S}^n(\mu_R)B(\mathbf{\Phi}_n) \Rightarrow \alpha_{\rm S}(q_1)\alpha_{\rm S}(q_2)...\alpha_{\rm S}(q_n)B(\mathbf{\Phi}_n)$$

- * scale compensation requires $\bar{\mu}_{R}^{2} = (q_{1}q_{2}...q_{n})^{2/n}$ in V
- Sudakov FFs in internal and external lines of Born "skeleton"

$$B(\mathbf{\Phi}_n) \Rightarrow B(\mathbf{\Phi}_n) \times \{\Delta(Q_0, Q)\Delta(Q_0, q_i)...\}$$

* Upon expansion, $\mathcal{O}(\alpha_{\mathrm{S}}^{n+1})$ (log) terms are introduced, and need to be removed

$$B(\Phi_n) \Rightarrow B(\Phi_n) \Big(1 - \Delta^{(1)}(Q_0, Q) - \Delta^{(1)}(Q_0, q_i) + \dots \Big)$$

ullet Find "most-likely" shower history (via k_T -algo): $Q>q_3>q_2>q_1\equiv Q_0$

• Evaluate $\alpha_{\rm S}$ at nodal scales

$$\alpha_{\rm S}^n(\mu_R)B(\mathbf{\Phi}_n) \Rightarrow \alpha_{\rm S}(q_1)\alpha_{\rm S}(q_2)...\alpha_{\rm S}(q_n)B(\mathbf{\Phi}_n)$$

- * scale compensation requires $\bar{\mu}_{R}^{2}=(q_{1}q_{2}...q_{n})^{2/n}$ in V
- Sudakov FFs in internal and external lines of Born "skeleton"

$$B(\mathbf{\Phi}_n) \Rightarrow B(\mathbf{\Phi}_n) \times \{\Delta(Q_0, Q)\Delta(Q_0, q_i)...\}$$

* Upon expansion, $\mathcal{O}(\alpha_{\mathrm{S}}^{n+1})$ (log) terms are introduced, and need to be removed

$$B(\Phi_n) \Rightarrow B(\Phi_n) \Big(1 - \Delta^{(1)}(Q_0, Q) - \Delta^{(1)}(Q_0, q_i) + \dots \Big)$$

X+ jets cross-section finite without generation cuts $\hookrightarrow \bar{B}$ with Minlo prescription: ideal starting point for NLOPS (POWHEG) for X+ jets

MiNLO: example

Example, in 1 line: H + 1 jet

• Pure NLO:

$$d\sigma = \bar{B} \ d\mathbf{\Phi}_n = \alpha_s^3(\mu_R) \Big[B + \alpha_s V(\mu_R) + \alpha_s \int d\Phi_{\rm rad} R \Big] \ d\mathbf{\Phi}_n$$

MiNLO: example

Example, in 1 line: H + 1 jet

• Pure NLO:

$$d\sigma = \bar{B} \ d\Phi_n = \alpha_s^3(\mu_R) \Big[B + \alpha_s V(\mu_R) + \alpha_s \int d\Phi_{\rm rad} R \Big] \ d\Phi_n$$

MiNLO:

$$\bar{B} = \alpha_{\rm S}^2(M_H)\alpha_{\rm S}(q_T)\Delta_g^2(q_T, M_H) \Big[B\left(1 - 2\Delta_g^{(1)}(q_T, M_H)\right) + \alpha_{\rm S}V(\bar{\mu}_R) + \alpha_{\rm S}\int d\Phi_{\rm rad}R \Big]$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & \Delta(Q_0,Q) & \mathbf{q_T} & \Delta(Q_0,Q_0) \\ & & & \Delta(Q_0,Q) & \mathbf{Q} \\ & & & & \mathbf{g} \\ & & & & & & & \mathbf{g} \\ & & & & & & & \mathbf{g} \\ & & & & & & & \mathbf{g} \\ & & & & & & & & \mathbf{g} \\ & & & & & & & & \mathbf{g} \\ & & & & & & & & & \mathbf{g} \\ & & & & & & & & & & \mathbf{g} \\ & & & & & & & & & & & \mathbf{g} \\ & & & & & & & & & & & & \mathbf{g} \\ & & & & & & & & & & & & & & \mathbf{g} \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\$$

*
$$\bar{\mu}_R = (M_H^2 q_T)^{1/3}$$

*
$$\log \Delta_{\rm f}(q_T, Q) = -\int_{q_T^2}^{Q^2} \frac{dq^2}{q^2} \frac{\alpha_{\rm S}(q^2)}{2\pi} \left[A_f \log \frac{Q^2}{q^2} + B_f \right]$$

*
$$\Delta_{\mathbf{f}}^{(1)}(q_T, Q) = -\frac{\alpha_S}{2\pi} \left[\frac{1}{2} A_{1,\mathbf{f}} \log^2 \frac{Q^2}{g_T^2} + B_{1,\mathbf{f}} \log \frac{Q^2}{g_T^2} \right]$$

$$^{\star}\,\mu_F = Q_0 (=q_T)$$

Start from W+2 jets @ NLO, good agreement with data also when requiring $N_{\rm jet} \geq 1$!

Improved MiNLO (NLOPS merging)

- \bullet Accuracy of ${\tt BJ+MiNLO}$ for inclusive observables carefully investigated
- ullet BJ+MiNLO describes inclusive boson observables at relative order $lpha_{
 m S}$ wrt B+0j at LO
- ullet However, to reach genuine NLO, higher terms must be order $lpha_{
 m S}^2$, i.e.

$$O_{\text{VJ+MiNLO}} = O_{\text{V@NLO}} + \mathcal{O}(\alpha_{\text{S}}^2)$$

if O is inclusive. "Original MiNLO" contains ambiguous $\mathcal{O}(\alpha_{\rm S}^{3/2})$ terms

- ullet Possible to improve <code>BJ+Minlo</code> such that NLO B+0j is recovered, without spoiling NLO accuracy for B+1j.
 - proof based on careful comparisons of general resummation formula with MiNLO ingredients
 - ullet need to include B_2 in Sudakovs
 - ullet need to evaluate $lpha_{
 m S}^{
 m (NLO)}$ in <code>BJ+MiNLO</code> at scale q_T , and $\mu_F=q_T$

Effectively it is like if we merged NLO⁽⁰⁾ and NLO⁽¹⁾ samples, without merging different samples (no merging scale used).

Other NLOPS-merging approaches: [Hoeche, Krauss, et al., 1207.5030] [Frederix, Frixione, 1209.6215] [Lonnblad, Prestel, 1211.7278 - Platzer, 1211.5467] [Alioli, Bauer, et al., 1211.7049]

MiNLO merging: results 1

- ullet "H+Pythia": standalone <code>POWHEG</code> (gg o H) + <code>PYTHIA</code> (PS level) [7pts band, $\mu=m_H$]
- "HJ+Pythia": HJ-MiNLO* + PYTHIA (PS level) [7pts band, μ from MiNLO]
- √ very good agreement (both value and band)

 $^{\square}$ Notice: band is $\sim 20-30\%$

MiNLO merging: results 2

- Good agreement
- \bullet At high p_T , bands as expected (LO vs NLO) (<code>POWHEG</code> $(gg \to H)$ with <code>hfact</code> $= m_H/1.2,$ YR2)

MiNLO merging: results 2

NNLO+PS

ullet HJ-MiNLO* differential cross section $(d\sigma/dy)_{
m HJ-MiNLO}$ is NLO accurate

$$W(y) = \frac{\left(\frac{d\sigma}{dy}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{dy}\right)_{\text{HJ-MiNLO}}} = \frac{c_2\alpha_{\text{S}}^2 + c_3\alpha_{\text{S}}^3 + c_4\alpha_{\text{S}}^4}{c_2\alpha_{\text{S}}^2 + c_3\alpha_{\text{S}}^3 + d_4\alpha_{\text{S}}^4} \simeq 1 + \frac{c_4 - d_4}{c_2}\alpha_{\text{S}}^2 + \mathcal{O}(\alpha_{\text{S}}^3)$$

- thus, reweighting each event with this factor, we get NNLO+PS
 - * obvious for y_H , by construction
 - * $\alpha_{
 m S}^4$ accuracy of <code>HJ-MiNLO*</code> in 1-jet region not spoiled, because $W(y)=1+\mathcal{O}(\alpha_{
 m S}^2)$
 - * if we had $NLO^{(0)} + \alpha_S^{3/2}$, 1-jet region spoiled because

$$[\mathsf{NLO}^{(1)}]_{\mathsf{NNLOPS}} = \mathsf{NLO}^{(1)} + \mathcal{O}(\alpha_{\mathtt{S}}^{4.5})$$

NNLO+PS

ullet HJ-MiNLO* differential cross section $(d\sigma/dy)_{
m HJ-MiNLO}$ is NLO accurate

$$W(y) = \frac{\left(\frac{d\sigma}{dy}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{dy}\right)_{\text{HJ-MiNLO}}} = \frac{c_2\alpha_{\text{S}}^2 + c_3\alpha_{\text{S}}^3 + c_4\alpha_{\text{S}}^4}{c_2\alpha_{\text{S}}^2 + c_3\alpha_{\text{S}}^3 + d_4\alpha_{\text{S}}^4} \simeq 1 + \frac{c_4 - d_4}{c_2}\alpha_{\text{S}}^2 + \mathcal{O}(\alpha_{\text{S}}^3)$$

- thus, reweighting each event with this factor, we get NNLO+PS
 - * obvious for y_H , by construction
 - * $lpha_{
 m S}^4$ accuracy of <code>HJ-Minlo*</code> in 1-jet region not spoiled, because $W(y)=1+\mathcal{O}(lpha_{
 m S}^2)$
 - * if we had $NLO^{(0)} + \alpha_S^{3/2}$, 1-jet region spoiled because

$$[\mathsf{NLO}^{(1)}]_{\mathsf{NNLOPS}} = \mathsf{NLO}^{(1)} + \mathcal{O}(\alpha_{\scriptscriptstyle \mathrm{S}}^{4.5})$$

* Variants for W are possible: with

$$\begin{split} W(y,p_T) &= h(p_T) \frac{\int d\sigma^{\text{NNLO}} \delta(y-y(\mathbf{\Phi})) - \int d\sigma_B^{\text{MiNLO}} \delta(y-y(\mathbf{\Phi}))}{\int d\sigma_A^{\text{MiNLO}} \delta(y-y(\mathbf{\Phi}))} + \left(1 - h(p_T)\right) \\ d\sigma_A &= d\sigma \; h(p_T), \qquad d\sigma_B = d\sigma \; (1 - h(p_T)), \qquad h = \frac{(\beta m_H)^2}{(\beta m_H)^2 + p_T^2} \end{split}$$

we get exactly $(d\sigma/dy)_{\rm NNLOPS}=(d\sigma/dy)_{\rm NNLO}$ (no $\alpha_{\rm S}^5$ terms)

 * h essentially controls where the NNLO/NLO K-factor is spread.

NNLO+PS (fully incl.)

- ullet NNLO with $\mu=m_H/2$, HJ-Minlo "core scale" m_H [NNLO from HNNLO, Catani,Grazzini]
- events reweighted at the LH level, then showered with PYTHIA (PS level)
- \bullet (7 × 3) pts scale var. in NNLOPS, 7pts in NNLO

Notice: band is 10%

 $[\text{Until and including } \mathcal{O}(\alpha_{\mathrm{S}}^4), \text{PS effects don't affect } y_H \text{ (first 2 emissions controlled properly at } \mathcal{O}(\alpha_{\mathrm{S}}^4) \text{ by MiNLO+POWHEG)}]$

NNLO+PS (p_T^H)

$$\beta = \infty \text{ (W indep. of } p_T)$$

$$\beta = 1/2$$

$$\begin{cases} 10^0 \\ 0 \\ 10^{-1} \\ \frac{2}{4} \\ 10^{-2} \\ 0 \\ 0 \end{cases}$$

$$\begin{cases} 1.4 \\ 1.0 \\ 0.6 \\ 0 \end{cases}$$

$$\begin{cases} 1.4 \\ 1.0 \\ 0.6 \\ 0 \end{cases}$$

$$\begin{cases} 1.4 \\ 0.6 \\ 0.6 \end{cases}$$

$$\begin{cases} 1.4 \\ 0.6 \\ 0.$$

- ullet HqT: NNLL+NNLO, $\mu_R=\mu_F=m_H/2$ [7pts], $Q_{
 m res}\equiv m_H/2$
- $\beta=1/2~\&~\infty$: uncertainty bands of HqT (not shown) contain <code>NNLOPS</code> at low-/moderate p_T
- $\beta=1/2$: NNLOPS tail \to NLOPS tail [$W(y,p_T\gg m_H)\to 1$] larger band (affected just marginally by NNLO, so it's \sim genuine NLO band)
- $\beta=1/2$: HqT tail harder than <code>NNLOPS</code> tail ($\mu_{HqT} < "\mu_{MiNLO}"$)
- $\beta = 1/2$: very good agreement with HqT resummation

NNLO+PS $(p_T^{j_1})$

- ullet JetVHeto: NNLL resum, $\mu_R=\mu_F=m_H/2$ [7pts], $Q_{
 m res}\equiv m_H/2$, (a)-scheme only
- nice agreement, differences never more than 5-6 %

Separation of $H \to WW$ from $t\bar{t}$ bkg: x-sec binned in $N_{\rm jet}$ 0-jet bin \Leftrightarrow jet-veto accurate predictions needed !

Conclusions

- MiNLO:
 - assign scales and Sudakov FF in B + n jets NLO computations
 - well-behaved in Sudakov regions
 - NLO away from Sudakov regions
 - ideal as starting point for POWHEG
- Improved MiNLO:
 - B+1 jet improved MiNLO allows to merge NLO $^{(0)}$ and NLO $^{(1)}$ samples, without merging (no merging scale used)
 - merging for higher multiplicity requires further study, it'll take some time
- NNLOPS:
 - MiNLO allows to define a procedure to reach NNLOPS
 - Shown results for Higgs production

Conclusions

- MiNLO:
 - assign scales and Sudakov FF in B + n jets NLO computations
 - well-behaved in Sudakov regions
 - NLO away from Sudakov regions
 - ideal as starting point for POWHEG
- Improved MiNLO:
 - B+1 jet improved MiNLO allows to merge NLO⁽⁰⁾ and NLO⁽¹⁾ samples, without merging (no merging scale used)
 - merging for higher multiplicity requires further study, it'll take some time
- NNLOPS:
 - MiNLO allows to define a procedure to reach NNLOPS
 - Shown results for Higgs production

POWHEG BOX: news and technical improvements

Number of processes still increasing (~ 30)

Drell-Yan with QED/EW and QCD effects available

Automation:

- Interface to MadGraph 4 [Frederix]: automatically builds subprocesses list, $B, B_{ij}, B^{\mu\nu}, R$ and large-N Born color structures.
 - Used to build the code for Hj and Hjj [Campbell, Ellis, Frederix, Nason, Oleari], with virtuals from MCFM.
- ullet interface to GoSam [Luisoni, Nason, Oleari, Tramontano]: automatically write the code for 1-loop amplitudes, and interface it via BLHA Used to study VH and VHj

PDF and scale uncertainties:

- Generate MC samples for different scale choices, and, even more, for different PDFs, is very time consuming
- Primitive reweighting facility now superseded by new mechanism

[Hamilton,Nason,ER]

V2 ready and under testing; MiNLO will also be the default for X+jets processes.

Backup (1)

- Start from ME weight: $B(\Phi_n)$
- Find "most-likely" shower history (via k_T -algo): $Q > q_3 > q_2 > q_1 \equiv Q_0$

New weight:

$$\alpha_{\rm S}^{5}(Q)B(\mathbf{\Phi}_{3}) \rightarrow \alpha_{\rm S}^{2}(Q)B(\mathbf{\Phi}_{3}) \frac{\Delta_{g}(Q_{0},Q)}{\Delta_{g}(Q_{0},q_{2})} \frac{\Delta_{g}(Q_{0},Q)}{\Delta_{g}(Q_{0},q_{3})} \frac{\Delta_{g}(Q_{0},q_{3})}{\Delta_{g}(Q_{0},q_{1})} \\
\Delta_{g}(Q_{0},q_{2})\Delta_{g}(Q_{0},q_{2})\Delta_{g}(Q_{0},q_{3})\Delta_{g}(Q_{0},q_{1})\Delta_{g}(Q_{0},q_{1}) \\
\alpha_{\rm S}(q_{1})\alpha_{\rm S}(q_{2})\alpha_{\rm S}(q_{3})$$

where typically

$$\log \Delta_{\rm f}(q_T, Q) = -\int_{q_T^2}^{Q^2} \frac{dq^2}{q^2} \frac{\alpha_{\rm S}(q^2)}{2\pi} \left[A_{1,\rm f} \log \frac{Q^2}{q^2} + B_{1,\rm f} \right]$$

Fill phase space below Q₀ with vetoed shower

MiNLO: All $\alpha_{\rm S}$ in Born term are chosen with CKKW (local) scales $q_1,...,q_n$

$$\alpha_{\rm S}^n(\mu_R)B \Rightarrow \alpha_{\rm S}(q_1)\alpha_{\rm S}(q_2)...\alpha_{\rm S}(q_n)B$$

• Normal NLO structure ($\mu = \mu_R$):

$$\sigma(\mu) = \underbrace{\alpha_{\mathrm{S}}^{n}(\mu)B}_{\text{Born}} + \underbrace{\alpha_{\mathrm{S}}^{n+1}(\mu)\Big(C + nb_0\log(\mu^2/Q^2)B\Big)}_{\text{Virtual}} + \underbrace{\alpha_{\mathrm{S}}^{n+1}(\mu)R}_{\text{Real}}$$

ullet Explicit μ dependence of virtual term as required by RG invariance:

$$\begin{split} \alpha_{\mathrm{S}}^{n}(\mu')B &= \left[\alpha_{\mathrm{S}}(\mu) \frac{-nb_{0}\alpha_{\mathrm{S}}^{n+1}(\mu)\log(\mu'^{2}/\mu^{2})}{B + \mathcal{O}(\alpha_{\mathrm{S}}^{n+2})}\right]B + \mathcal{O}(\alpha_{\mathrm{S}}^{n+2}) \end{split}$$

$$\mathsf{Virtual}(\mu') &= \mathsf{Virtual}(\mu) \frac{+\alpha_{\mathrm{S}}^{n+1}(\mu)nb_{0}\log(\mu'^{2}/\mu^{2})}{B + \mathcal{O}(\alpha_{\mathrm{S}}^{n+2})}B + \mathcal{O}(\alpha_{\mathrm{S}}^{n+2}) \end{split}$$

$$\Rightarrow \sigma(\mu') - \sigma(\mu) = \mathcal{O}(\alpha_{\mathrm{S}}^{n+2})$$

In MiNLO "scale compensation" kept if

$$\left(C + nb_0 \log(\mu_R^2/Q^2)B\right) \Rightarrow \left(C + nb_0 \log(\bar{\mu}_R^2/Q^2)B\right)$$

with
$$\bar{\mu}_R^2 = (q_1 q_2 ... q_n)^{2/n}$$

Backup (3)

Few technicalities for original MiNLO:

- $\mu_F = Q_0$ (as in CKKW)
- Cluster with CKKW also V and R kinematics
 - Actual implementation uses FKS mapping for first cluster of Φ_{n+1}
 - Ignore CKKW Sudakov for 1^{st} clustering of Φ_{n+1} (inclusive on extra radiation)
- Some freedom in choice of $\alpha_{\rm S}^{(n+1)}$ (entering V,R and $\Delta^{(1)}$) (not free for MiNLO merging)
- Used full NLL-improved Sudakovs (A_1, B_1, A_2)

Backup (4): Improved MiNLO & merging

Resummation formula

$$\frac{d\sigma}{dq_T^2 dy} = \sigma_0 \frac{d}{dq_T^2} \Big\{ [C_{ga} \otimes f_a](x_A, q_T) \times [C_{gb} \otimes f_b](x_B, q_T) \times \exp S(q_T, Q) \Big\} + R_f$$

- $\bullet \ \ \mathsf{NLO}^{(0)}$ if $C_{ij}^{(1)}$ included and R_f is $\mathsf{LO}^{(1)}$
- Take derivative, then compare with MiNLO:

$$\sim \sigma_0 \frac{1}{q_T^2} [\alpha_{\mathrm{S}}, \alpha_{\mathrm{S}}^2, \alpha_{\mathrm{S}}^3, \alpha_{\mathrm{S}}^4, \alpha_{\mathrm{S}} L, \alpha_{\mathrm{S}}^2 L, \alpha_{\mathrm{S}}^3 L, \alpha_{\mathrm{S}}^4 L] \exp S(q_T, Q) \qquad L = \log(Q^2/q_T^2)$$

can be shown that

$$\int^{Q^2} \frac{dq_T^2}{q_T^2} L^m \alpha_S^{n}(q_T) \exp S \sim (\alpha_S(Q^2))^{n - (m+1)/2}$$

- ullet if I drop B_2 in MiNLO Δ_g , I miss a term $(1/q_T^2)lpha_{
 m S}^2B_2\exp S$
- upon integration, violate NLO⁽⁰⁾ by a term $\mathcal{O}(\alpha_{\rm S}^{3/2})$
- ullet "wrong" scale in $\alpha_{\rm S}^{\rm (NLO)}$ in <code>MiNLO</code> produces again same error

Alternative proof also available in the paper.

Backup (5)

p_T^H spectrum:

- " $\mu_{\rm HJ-MiNLO} = m_H, m_H, p_T$ "
- At high p_T , $\mu_{\rm HJ-MiNLO} = p_T$
- ullet If eta=1/2, <code>NNLOPS</code> ightarrow <code>HJ-MiNLO</code> at high $p_{
 m T}$
- NNLO/NLO ~ 1.5 , because HNNLO with $\mu = m_H/2$, $\mu_{
 m HJ-MiNLO,core} = m_H$

