

La "Intensity Frontier": ricerca di evidenze (in)dirette di nuova Fisica oltre il Modello Standard Dark forces searches in fixed target experiments

> M.Battaglieri INFN-GE, Italy

* Physics case (top-down)
* Experimental evidence (bottom-up)
* Fixed target experiments (electron-beam)

How to look for new physics

LHC range: $m_x \sim ITeV$, $\alpha_x \sim \alpha_{SM}$

First results show no hints of new strongly-interacting states or new heavy EW bosons (other than Higgs)

What about if: $m_x \sim IGeV$, $\alpha_x < 10^{-6}$?

Important progress in neutrino physics, dark matter sensitivity, precise frontier measurements

Precise experiments at low/moderate energy!

Forces in nature

4 fundamental interactions known so far: strong, electromagnetic, weak and gravitational

Are there other interactions? how could we know about? what could be their properties?

Particles, interactions and symmetries

Known particles & new forcecarriers Particles: quarks, leptons

Force-carriers: gluons, γ, W, Z, graviton (?), Higgs, ...

Dark Matter

New particles & new forcecarriers

Spin-I: U bosons ('hidden' or 'dark' photons) Spin-0: Axions (or axion-like particles) Spin-0 (scalars): Higgs-like

New bosons are expected to mediate new interactions

Neutral doors (Portals) to include DM in the SM

*There are (many) possible ways to include the DM into the SM * Some of them can be tested directly (e.g. rare B-decays)

A simple way to go beyond the SM (not yet excluded!): $SU(3)_C \times SU(2)_L \times U(1)_Y \times extra U(1)$

Color Electroweak Hypercharge Hidden sector

*Hidden sector (HS) present in string theory and super-symmetries

 *HS not charged under SM gauge groups (and v.v.) no direct interaction between HS and SM HS-SM connection via messenger particles

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\chi}{2} X^{\rm Hidden}_{\mu\nu} F^{\mu\nu}_{\rm Visible} + \frac{m^2_{\gamma'}}{2} X_{\mu} X^{\mu}$$

 $\bigvee_{\Psi}^{\gamma} \bigvee_{\Psi}^{\Psi} \bigvee_{\Psi}^{\gamma'}$

 Ψ can be a huge mass scale particle (M~IEeV) coupling to both SM and HS

 γ'/A' couples to SM via electromagnetic current (kinetic mixing) $\rightarrow A_{\mu} \rightarrow A_{\mu} + \epsilon a_{\mu}$ $\chi = \epsilon \sim 10^{-6} - 10^{-2} (\alpha^{\text{DarkPhoton}} = \epsilon^2 \alpha_{\text{em}})$

<u>e @lab12</u>

Neutral doors (Portals) to include DM in the SM

*There are (many) possible ways to include the DM into the SM * Some of them can be tested directly (e.g. rare B-decays)

A simple way to go beyond the SM (not yet excluded!): $SU(3)_C \times SU(2)_L \times U(1)_Y \times extra U(1)$

Color Electroweak Hypercharge Hidden sector

*Hidden sector (HS) present in string theory and super-symmetries

 *HS not charged under SM gauge groups (and v.v.) no direct interaction between HS and SM HS-SM connection via messenger particles

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\chi}{2} X^{\text{Hidden}}_{\mu\nu} F^{\mu\nu}_{\text{Visible}} + \frac{m_{\gamma'}^2}{2} X_{\mu} X^{\mu} X^{\mu\nu}$$

 Ψ can be a huge mass scale particle (M~IEeV) coupling to both SM and HS

5

 γ'/A' couples to SM via electromagnetic current (kinetic mixing) $\rightarrow A_{\mu} \rightarrow A_{\mu} + \epsilon a_{\mu} \quad \chi = \epsilon \sim 10^{-6} - 10^{-2} (\alpha^{\text{DarkPhoton}} = \epsilon^2 \alpha_{\text{em}})$

 γ'/A' mass depends on the model $\rightarrow \mathbf{m}^2_{\gamma'} \sim \chi M^2_{EW} (M_Z \text{ or TeV}) \sim MeV - GeV scale$

e @Lab12

Consequences

Assumptions: M_{A'}>I MeV and no light dark fermions

• γ'/A' decay back to SM particles

• Prompt decay

- BF (A' \rightarrow hadrons/A' \rightarrow leptons) ~ M²(A')
- Above I.2 GeV hadronic decays dominate

γ'/A' decays in leptons
 → abundance of e⁺e⁻ in Universe
 γ'/A' couples to SM via electromagnetic current (kinetic mixing)
 → short range modification of EM interaction
 γ'/A' couples weakly to SM particles
 → long lived states

Astrophysical motivation: the 511γ keV line

* Unexplained concentration of 511 keV line from the galactic center

Diffuse emission of e+ e- annihilation (?)
Increasing fraction of e+/e- measured by PAMELA

* No surprise with antiprotons (sub GeV mass gauge boson?)

* It is very difficult to explain PAMELA results with standard DM (WIMPS): needs a boost of 100-1000

Positron and antiproton abundance from PAMELA/AMS

Astrophysical motivation: the 511γ keV line

511 keV line map from GRAL/SPI data

Dark forces may explain it by DM annihilation in A' \rightarrow decay to e+e-

8

enhancement in e+ yield
 hard e+ spectrum
 no anti-p excess if M_{A'}<2 M_p

Positron and antiproton abundance from PAMELA/AMS

<u>e (8) lab12</u>

Modification of EM

g-2 of muon

* g-2 is expected to be 0
* Discrepancy >3σ
* Some (complicated) strong interaction dynamic?
* New physics?

Standard Model Prediction

Modification of EM

Contribution to g-2 from dark photon

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F(m_V/m_{\mu}) , \qquad (17)$$

where $F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2 + x^2z] dz$. For values of $\varepsilon \sim 1-2 \cdot 10^{-3}$ and $m_V \sim 10-100$ MeV, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon g-2 discrepancy. Searches for the dark

Modification of EM

g-2 of muon

muonic hydrogen Lamb shift

 $r_{\rm p} = 0.84184(67) \text{ fm}$ $u_r^{\rm th} = 8 \times 10^{-4}$

CODATA 2006: $r_{\rm p} = (0.8768 \pm 0.0069)$ fm, from H e-p scattering: $r_{\rm p} = (0.895 \pm 0.018)$ fm (2%)

* muon 200 times closer to p (w.r.t. hydrogen)* New forces for muon?

Dark Matter Search Direct measurements

M.Battaglieri - INFN GE

e 🗟 lab12

Dark forces and dark matter (heavy WIMP - light mediators)

Annihilation - Decay

Direct detection

* e+ excess seen by PAMELA, AMS

13

* Elastic scattering on nuclei mediated by A'
 * Comparison with experiments
 * DAMA/LIBRA claims

Dark forces and dark matter (Light WIMP - light mediators)

M.Battaglieri - INFN GE

14

e @lab12

Where to look for it?

Particle physics search of A'/ γ ' (hidden photon)

Fixed target: e N \rightarrow N $\gamma' \rightarrow$ N Lepton Lepton+ \rightarrow JLAB, MAINZ High Energy Hadron Colliders: pp → lepton jets → ATLAS, CMS, CDF&D0

proton
beam
$$\begin{array}{c} \begin{array}{c} \pi^{+} \rightarrow \mu^{+} \nu_{\mu} & \mu^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\mu} \\ \hline p + p(n) \longrightarrow V^{*} \longrightarrow \bar{\chi} \chi \\ \pi^{0}, \eta \longrightarrow V \gamma \longrightarrow \bar{\chi} \chi \gamma \end{array} \xrightarrow{(near)} \begin{array}{c} \chi + e \longrightarrow \chi^{+} e \\ \hline \psi + e \longrightarrow \chi^{+} e \longrightarrow \chi^{+} e \end{array} \\ \hline \chi^{+} e \longrightarrow \chi^{$$

Annihilation: $e+e- \rightarrow \gamma' \gamma \rightarrow \mu \mu \gamma$ \rightarrow BABAR, BELLE, KLOE, CLEO

Fixed target: $p \ N \rightarrow N \ \gamma' \rightarrow p$ Lepton Lepton+ \rightarrow FERMILAB, SERPUKHOV

> electron scattering cleaner than proton

Meson decays: $\pi^{0}, \eta, \eta', \omega, \rightarrow \gamma' \gamma (M)$ \rightarrow Lepton Lepton + $\gamma (M)$ \rightarrow KLOE, BES3, WASA-COSY

16

M.Battaglieri - INFN GE

Fixed target searches Fixed Target e+e- colliders $\sim 10^{23}$ 10¹¹ e-10¹¹ e⁻ 10¹¹ e⁺ Luminosity atoms ın target $\sigma \sim \frac{\alpha^3 Z^2 \epsilon^2}{m^2} \sim O(10 \ pb)$ $\sigma \sim \frac{\alpha^2 \epsilon^2}{E^2} \sim O(10 \ fb)$ **Cross-Section** $*I/M_{A'}$.vs. I/E_{beam} *Coherent scattering from Nucleus (~Z²) high backgrounds low backgrounds limited A' mass higher A' mass

<u>e @lab12</u>

Particle physics search of A'/ γ ' (hidden photon)

Fixed target: $e \ N \rightarrow N \gamma' \rightarrow N \ Lepton^- \ Lepton^+$ $\rightarrow JLAB, MAINZ$ Fixed target: $p \ N \rightarrow N \gamma' \rightarrow p \ Lepton^- \ Lepton^+$ $\rightarrow FERMILAB, SERPUKHOV$ Annihilation: $e^+e^- \rightarrow \gamma' \gamma \rightarrow \mu\mu \gamma$ $\rightarrow BABAR, BELLE, KLOE$ Meson decays: $\pi^0, \eta, \eta', \omega, \rightarrow \gamma' \gamma \rightarrow Lepton^- \ Lepton^+ \gamma$ $\rightarrow KLOE, BES3, WASA-COSY$

No positive signal (so far) but limits in parameter space coupling vs mass

Ist generation fixed target exp: beam dump

* e- beam incident on thick target
* A' is produce in a process similar to ordinary Bremsstrahlung
* A' carries most of the beam energy
* A' emitted forward at small angle
* A' decays before the detector

<u>e ()</u>lab12

Dark forces searches in fixed target experiments

Ist generation fixed target exp: beam dump

* e- beam incident on thick target
* A' is produce in a process similar to ordinary Bremsstrahlung
* A' carries most of the beam energy
* A' emitted forward at small angle
* A' decays before the detector

 $\gamma c\tau \approx 1 \, \mathrm{mm} \left(\gamma/10 \right) \left(10^{-8} \alpha/\alpha' \right) \\\times \left(100 \, \mathrm{MeV}/m_{A'} \right)$

Multiple experimental approaches, with different strategies for fighting backgrounds:

 $-I_d \gg$ cm: beam dump; low background

- $-I_d \sim cm$: vertex; limited by instrumental bg
- $-I_d \ll cm$: bump hunt; fight bg with high intensity, resolution

Current generation fixed target exp: thin target JLab and Mainz

JLab * DARK LIGHT (FEL) * APEX (Hall-A) * HPS (Hall-B)

- Unconventional use of the CEBAF
- PAC approval (max rating conditioned to technical feasibility)
- Positive run-tests
- Experiments begin: 2015-16

Mainz

- Magnetic spectrometers (AI)
- Pilot run in 2012
- Future plans

Jefferson Lab and the CEBAF

Arc

22

Arc B End Stations Hall-A, Hall-B, Hall-C

Dark forces searches in fixed target experiments

The CEBAF parameters

* Primary Beam: Electrons
* Beam Energy: 6 GeV (12 GeV soon)
+ Free Electron Laser (FEL)
* 100% Duty Factor (cw) Beam
* Polarization (beam and reaction products)

L > 10⁶ x SLAC at the time of the original DIS experiments! JLab12 luminosity will increase by 10 x

23

Dark forces searches in fixed target experiments

JLab experiments APEX (A-Prime EXperiment)

• Dark photon search in fixed target experiment in Hall-A at Jefferson Lab

- Looking for a small, narrow bump on top of a smooth histogram of QED processes
- Excellent mass resolution required (~ 0.85 1.1MeV)

<u>e () lab12</u>

APEX test run

Relevant Characteristics

- Beam current up to 150μA
- Target: Ta foil, 22 mg/cm2
- HRS Central momenta: 1.13 GeV
- Momentum acc: ± 4.5%
- Electron beam energy: 2.26 GeV
- Solid angle acceptance: ~2.8 msr

25

<u>e @lab12</u>

JLab experiments

APEX

APEX full run projected

sensitivity

- e+e- statistics 200x
- a'/a 2 orders of magnitude below current limits
- Beam energy from 1.1 GeV to 4.4 GeV
- Beam current: 60-100 μA
- Ready to run after resuming operations

Heavy photon signatures in HPS

I) Bump Hunting (BH)

Narrow e+e-resonance over a QED background \Rightarrow good mass resolution: $\sigma_{A'mass} \sim I MeV$

2) Secondary decay vertex (vertexing)

Detached vertex from few mm to tens cm sood spacial resolution: σ_{vertex}~Imm

26

BH + Vertexing = enhanced experimental reach

Bump Hunt

Decay lenght

$$I_{\gamma'} \sim \frac{E_{\gamma'}}{\alpha \chi^2 m_{\gamma'}^2} \sim 10 \text{cm} \frac{E_{\gamma'}}{1 \text{GeV}} \left(\frac{10^{-4}}{\chi}\right)^2 \left(\frac{10 \text{MeV}}{m_{\gamma'}}\right)^2 \sim \mathcal{O}(\text{mm} - \text{km})$$

<u>e () lab12</u>

Dark forces searches in fixed target experiments

M.Battaglieri - INFN GE

Requirements:

- forward angles coverage
- detector close to the target
- good spacial resolution: σ_{vertex}~Imm (vertexing)
 good mass resolution: σ_{A'mass}~I MeV (bump hunting)

Experimental set-up

- B field to bend e+/e- pairs
- Si TRCK for vertexing
- EM cal for triggering
- (Muon detector for A' $\rightarrow \mu^+\mu^-$)

27

The HPS set-up

- <u>ab12</u>

HPS projected results

28

M.Battaglieri - INFN GE

Conclusions

* It seems established that hadronic matter only accounts for the 4% of the total mass in the Universe

* Strong physics motivation for the possible existence of GeV-scale hidden/dark photons:

- top-down: extra U(I)s in string models
- bottom-up: anomalies associated with dark matter (PAMELA, FERMI) and $(g 2)\mu$

*Fixed target experiments well suited to search for dark forces
* JLab is one of the major player in the MeV-GeV mass range search
* Results will come shortly!