Incontro Nazionale di Fisica Nucleare Padova, 24-26 marzo 2014

L'upgrade di ALICE: una visione ancora più dettagliata del

Andrea Dainese (INFN Padova, Italy) on behalf of the ALICE Collaboration

Introduction

- Status and future of the LHC heavy ion programme
- The ALICE detector
- ALICE upgrade goals and strategy
- Brief overview of detector upgrades
- Selected aspects of the QGP: present view and prospects with upgrade

Summary

 The Big Picture: ALICE and the Little Bang
 ALICE and the Little Bang
 Explore the deconfined phase of QCD matter
 High-energy nucleus-nucleus → large energy density (~15 GeV/fm³ at LHC) over a large volume (~ 5000 fm³ at LHC)

Heavy lons at the LHC: Run I

N2014, Padova, 24.03,

year	system	$\sqrt{m{s}_{_{m{NN}}}}$ (TeV)	L _{int}
2010	Pb-Pb	2.76	~ 10 μb⁻¹
2011	Pb-Pb	2.76	~ 150 μb⁻¹
2013	p-Pb	5.02	~ 30 nb ⁻¹

- 2011 Pb-Pb run: 5x10²⁶ cm⁻²s⁻¹! already above nominal luminosity
- First, very successful, p-Pb run (with all four large exp!)

Run 2 (LS1→LS2): Pb-Pb ~1/nb or more, at √s_{NN} ~ 5.1 TeV
 LS2: ALICE upgrade, LHC lumi upgrade for ions (collimators)
 Run 3 + Run 4: Pb-Pb >10/nb, at √s_{NN} ~ 5.5 TeV

Introduction

- Status and future of the LHC heavy ion programme
- The ALICE detector
- ALICE upgrade goals and strategy
- Brief overview of detector upgrades
- Selected aspects of the QGP: present view and prospects with upgrade

Summary

The ALICE detector

8

Introduction

- Status and future of the LHC heavy io
- The ALICE detector
- ALICE upgrade goals and strategy
- Brief overview of detector upgrades
- Selected aspects of the QGP: pres with upgrade

Summary

http://cdsweb.cern.ch/record/1475243

Upgrade of the

ALICE Experimen

- 1. What are the mechanisms of the quark-medium (QGP) interaction? Understand QCD interactions in a multiparticle macroscopic system
 - → Heavy flavour (charm and beauty) dynamics and hadronization at low p_{T}
- 2. How are the suppression and regeneration of quarkonia related to deconfinement and the QGP temperature?

 \rightarrow Charmonia down to zero p_{T}

- 3. What is the temperature evolution of the QGP medium?
 - → Virtual thermal photons via the di-electron mass distribution

More details in the following ...

ALICE Upgrade LOI, CERN-LHCC-2012-012

Heavy flavour: requirements

TOF (p/K/π id)

TPC (tracking, p/K/π id)

ITS (tracking & vertexing)

Κ

Currently, in Pb-Pb: $D^0 \rightarrow K\pi$ $D^+ \rightarrow K\pi\pi$ $D^* \rightarrow D^0\pi$ $D_s \rightarrow KK\pi$ Goals for upgrade: $B \rightarrow D^0+X$ $B \rightarrow J/\psi+X$ $B \rightarrow J/\psi+X$ $B \rightarrow 0^0\pi$ $B \rightarrow e/\mu +X$ $\Lambda_c \rightarrow pK\pi$ $\Lambda_b \rightarrow \Lambda_c\pi$

General features:

Decay at few 100 μm from interaction point

Large combinatorial background → low signal/background → no dedicated trigger

Requirements:
Vertexing resolution
Preserve particle identification
Large statistics (no dedicated trigger)

INFN2014, Padova, 24.03.14

Charmonium: requirements

Incl. $J/\psi \rightarrow \mu\mu$ Incl. $J/\psi \rightarrow ee$ **ψ'** → μμ Goals for upgrade: $\psi' \rightarrow ee$ Direct J/ψ $B \rightarrow J/\psi + X$

General features:

B decay few 100 μm from interaction point

Large combinatorial background in ee channel \rightarrow low signal/background → no dedicated trigger

Requirements: Vertexing resolution Preserve particle identification Large statistics (no dedicated trigger)

4, Padova,

Andrea Dainese

Low-mass di-leptons: requirements

ITS, TPC (tracking) TPC, TRD, TOF (id)

MUON (tracking,

μ

Currently, in Pb-Pb: not enough statistics

Goals for upgrade: $\gamma * \rightarrow ee$

. γ***** → μμ General features:

Electrons and muons with very low momentum

Large background from heavy flavour decays

Large combinatorial background → low signal/background → no dedicated trigger

Requirements:

- Tracking efficiency at low p_T
- Vertexing resolution
- **Preserve particle identification**
- Large statistics (no dedicated trigger)

INFN2014, Padova, 24.03.14

e

ALICE Upgrade: summary of requirements

• Tracking efficiency and resolution at low p_T

 \rightarrow increase tracking granularity, reduce material thickness

Large statistics (no dedicated trigger)

 \rightarrow increase readout rate, reduce data size (compression)

Preserve particle identification

 \rightarrow consolidate ALICE PID detectors (TPC, TOF, TRD, ...)

ALICE Upgrade: strategy

→ New Inner Tracking System (ITS)

INFN

Improved resolution, Smaller material budget, Faster readout

ALICE Upgrade: strategy

→ New Inner Tracking System (ITS)

INFN

Improved resolution, Smaller material budget, Faster readout

→ New Forward Muon Tracker (MFT)

Heavy flavour vertices also at forward rapidity

ALICE Upgrade: strategy

→ New Inner Tracking System (ITS)

I N F N

Improved resolution, Smaller material budget, Faster readout

→ New Forward Muon Tracker (MFT)

- Heavy flavour vertices also at forward rapidity
- → Upgraded read-out for TPC (GEM), TOF, TRD, PHOS, EMCAL, MUON, ZDC, Upgraded DAQ/HLT/Offline, new Fast Interaction Trigger detector
 - Target LHC Pb-Pb luminosity after LS2 (~6x10²⁷ cm⁻²s⁻¹= 10 x current)
 - Upgraded ALICE records Pb-Pb data at 50 kHz (currently <0.5 kHz)</p>
 - Integrate L_{int}=10 nb⁻¹ after LS2 (~10¹¹ minimum-bias Pb-Pb events)

Introduction

- Status and future of the LHC heavy ion programme
- The ALICE detector
- ALICE upgrade goals and strategy
- Brief overview of detector upgrades
- Selected aspects of the QGP: present view and prospects with upgrade

Summary

New Inner Tracking System (ITS)

INFN2014, Padova, 24.03.14

Space Frame

Cold Plate

Power Bus

New ITS tracking performance

⇒Pointing resolution x3 better in transverse plane (x6 along beam) ⇒Tracking efficiency x10 better at low p_T

| N F N Muon Forward Tracker (MFT) Hadron Absorber No MFT With MFT on Forward Tracker

 Silicon pixel tracker in front of the muon spectrometer

Enables separation of beauty decay vertices:

Introduction

- Status and future of the LHC heavy ion programme
- The ALICE detector
- ALICE upgrade goals and strategy
- Brief overview of detector upgrades
- Selected aspects of the QGP: present view and prospects with upgrade

Summary

- 1. What are the mechanisms of the quark-medium (QGP) interaction? Understand QCD interactions in a multiparticle macroscopic system
 - \rightarrow Heavy flavour dynamics and hadronization

What's special about heavy quarks

- ◆ Large mass (m_c~1.5 GeV, m_b~5 GeV) → produced in large virtuality (Q²) processes at the initial stage of the collision with short formation time $\Delta t > 1 / 2m_c \sim 0.1$ fm << $\tau_{QGP} \sim 5-10$ fm
- Characteristic flavour, conserved in strong interactions
 Production in the QGP is subdominant
 - Interactions with QGP don't change flavour identity
- ◆ Uniqueness of heavy quarks: cannot be "destroyed/created" in the medium → transported through the full system evolution
 → "Brownian motion markers of the medium" (*)

What's special about heavy quarks

INFN

24

Parton energy loss

scaled pp reference

0-5%

70-80%

20

p_T (GeV/c)

Heavy Flavour energy loss

Heavy Quarks (charm and beauty): a tool to characterize the properties of the parton-medium interaction

Parton Energy Loss predicted to depend on: $m=0, C_R=3$ • Color charge C_R (larger for gluons) **g:** Mass m (larger for heavy quarks) $\Delta E(\varepsilon_{medium}; C_R, m)$ **u,d,s:** $m \sim 0$, $C_{R} = 4/3$ pred: $\Delta E_g > \Delta E_{c \approx q} > \Delta E_b$ c: $m \sim 1.5 \text{ GeV}, C_{R} = 4/3$ D/B **b:** $m \sim 5 \text{ GeV}$, $C_R = 4/3$ $R^{\pi}_{AA} < R^{D}_{AA} < R^{B}_{AA}$ Reminder: $R_{AA}(p_T) = \frac{1}{\langle N_{AA} \rangle} \frac{dN_{AA} / dp_T}{dN_{AA} / dp_T}$ 'QGP medium' See e.g.: Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493.

Andrea Dainese | ALICE

I N F N

uncertainties

centrality dependence

Limited to high p_{τ} (~10 GeV)

and large uncertainties in

First indication of mass dependence of energy loss:

 $R_{\Delta\Delta}^{B}$ (CMS) > $R_{\Delta\Delta}^{D}$ (ALICE)

ALICE Preliminary D mesons 8<p_<16 GeV/c, |y|<0.5

Correlated systematic uncertainties

Uncorrelated systematic uncertainties

CMS Preliminary Non-prompt J/w

CMS-PAS-HIN-12-014

¢

400

6.5<p_<30 GeV/c, |y|<1.2

Systematic uncertainties

150 200 250 300 350

< N_{nart} weighted with N_{nart}

HAD. AD.

1.2

0.8

0.4

0.2

AT.T-DER-52638

Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

D consistent with pions within

Need to improve precision and accuracy to conclude on D vs π

Heavy flavour R_{AA}: Upgrade

I N F N

Azimuthal anisotropy: collective flow

- System geometry asymmetric in noncentral collisions
- Expansion under azimuth-dep. pressure gradient results in azimuthdep. momentum distributions
- Measured by the elliptic flow parameter v₂(p_T)

 $\frac{dN}{Nd\phi} \sim 1 + 2v_2 \cos\left(2(\phi - \Psi_{RP})\right) + \text{ higher harmonics } (v_3, v_4, \ldots)$

- v₂ of "bulk" (low p_T) provides a measure of strength of collectivity (mean free path of outgoing partons)
 - > Higher harmonics understood in terms of initial state fluctuations

An atomic analogue: ultra-cold ⁶Li "explodes" in vacuum

Two-particle $\Delta \phi$ correlations and azimuthal anisotropy in Pb-Pb

28-30% central **C**(Δφ) 1.02 0.98 2 $\Delta \phi$ (rad) ALI-PERFlh-planę React plane

Example of azimuthal modulation:

v₂: amplitude of 2nd order (elliptic) modulation

Particle-species and p_T dependence follow expectations from hydrodynamical models, in which v_2 is built from collective expansion

I N F N

INFN Heavy Flavour elliptic flow (v_{γ}) To what extent do heavy quarks take part in the collective expansions? Out-of-pi Probe of the interaction mechanism ln-plane Reaction Sensitive to medium viscosity plane • Models predict large v_2 for charm and significant mass effect in charm vs. beauty 0.2 PbPb sqrts = 2.76 TeV min bias 0.18 **B**-mesons 0.16 D-mesons b-quarks 0.14 c-quarks 0.12 beauty v_2 0.1 0.08 Mass effect 0.06 0.04 0.02 0.0 12 2 4 10 14 0

 $p_t [GeV]$

Heavy flavour flow: status from Run I

Charm hadrons have v₂>0, comparable to light hadrons
 Heavy quark collective flow?

Still quite qualitative, sizeable uncertainties for charm and no measurement for beauty

ALICE, CERN-LHCC-2013-024

Input values from BAMPS model: C. Greiner et al. arXiv:1205.4945

I N F N

33

What is the QGP hadronization mechanism

- When QGP cools down (freeze out), hadrons could be formed by recombination of quarks present in the system
- If this hadronization mechanism dominates over in-vacuum fragmentation in some momentum range, it should have visible effects on hadron p_T spectra → easier to form baryons

- a) 6 GeV/c pion from 1x 10 GeV/c quark fragmentation
- b) 6 GeV/c pion from 2x 3 GeV/c quark recombination
- c) 6 GeV/c proton from 3x 2 GeV/c quark recombination

• Compare Baryon and Meson p_T spectra: p/π

> Also measured for Λ/K

Heavy flavour hadronization mechanism?

- Baryon/meson enhancement (and strange-enh.) → most direct indication of light-quark hadronization in a partonic system
 - Measure this in the HF sector!
 - Charm baryon (Λ_{c} = ucd) / Charm meson (D^o = ucd)
 - Beauty baryon (Λ_{b} = ubd) / Beauty meson (B⁺ = ub)

Ko et al. PRC79

ALICE Upgrade: HF "hadrochemistry" ALICE Upgrade: HF "hadrochemistry"

 ∧_c→pKπ (cτ=60 μm!) can be measured with good precision in ALICE with new ITS and L_{int}=10/nb

> <10% precision also for $D_s \rightarrow KK\pi$ (not shown)

ALICE Upgrade: physics questions & observables

1. What are the mechanisms of the quark-medium (QGP) interaction? Understand QCD interactions in a multiparticle macroscopic system

 \rightarrow Heavy flavour dynamics and hadronization

- 2. How are the suppression and regeneration of quarkonia related to deconfinement and the QGP temperature?
 → Charmonia down to zero n.
 - \rightarrow Charmonia down to zero p_{T}

Low- p_T charmonium

Low-p_T J/ψ at the LHC is less suppressed than at RHIC Despite the x2-3 higher density

 ψ regeneration from uncorrelated c and c̄ in a deconfined medium?

Braun-Muzinger and Stachel, PLB490(2000) 196 Thews et al, PRC63 (2001) 054905

ALICE Upgrade: low- p_T charmonium

- This regeneration mechanisms provides an additional handle to study the thermalization of charm quarks in the QGP
- For example, regenerated J/ ψ should inherit charm quark flow

ALICE Upgrade: physics questions & observables

1. What are the mechanisms of the quark-medium (QGP) interaction? Understand QCD interactions in a multiparticle macroscopic system

 \rightarrow Heavy flavour dynamics and hadronization

- 2. How are the suppression and regeneration of quarkonia related to deconfinement and the QGP temperature? \rightarrow Charmonia down to zero p_{T}
- **3.** What is the temperature evolution of the QGP medium?

→ Virtual thermal photons via the di-electron mass distribution

What is the QGP temperature?

- Measure thermal radiation (black body photons)
- ◆ First measurement at LHC from soft exponential component of photon p_T spectrum: *T* ≈ 300 MeV An effective temperature,

Temperature evolution: low-mass di-electrons

 Measurement of low-mass di-electrons allows to map the temperature during the system evolution

Di-leptons from real and virtual photons $\gamma \rightarrow e^+e^-$

Temperature evolution: low-mass di-electrons

 Measurement of low-mass di-electrons allows to map the temperature during the system evolution

ALICE Upgrade: low-mass di-electrons

- ALICE: new inner tracker + dedicated run at 0.2 T (~3/nb)
 - → electron acceptance down to $p_{\rm T}$ = 50 MeV/*c*

Precision of ~10% on the inverse slope $\rightarrow T$

ALICE, CERN-LHCC-2012-012

Major ALICE upgrade in 2018

Unique programme extending to the late 2020s

Focus on rare probes and their interaction with the

EXTRA SLIDES

INFN2014, Padova, 24.03.14

Andrea Dainese | ALICE

47

Resembles the v₂ modulation –attributed to flow in Pb-Pb

Pb-Pb

ALI-DER-52227

 Mass ordering, interpreted in terms of collective radial and elliptic flow

p-Pb, high-multiplicity

ALICE, arXiv:1307.3237

- Clear indication for mass ordering in p-Pb
- Resembles Pb-Pb and supports "flow" picture

HL-LHC Programme

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
 - > Differential studies of jets, b-jets, di-jets, γ/Z -jet at very high p_T (focus of ATLAS and CMS)
 - Flavour-dependent in-medium fragmentation functions (focus of ALICE)
- Heavy flavour: characterization of mass dependence of energy loss, HQ inmedium thermalization and hadronization, as a probe of the medium transport properties
 - > Low- p_T production and elliptic flow of several HF hadron species (focus of ALICE)
 - B and b-jets (focus of ATLAS and CMS)
- Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - > Low- p_T charmonia and elliptic flow (focus of ALICE)
 - Multi-differential studies of Y states (focus of ATLAS and CMS)
- Low-mass di-leptons: thermal radiation γ (\rightarrow e⁺e⁻) to map temperature during system evolution; modification of ρ meson spectral function as a probe of the chiral symmetry restoration
 - > (Very) low- p_T and low-mass di-electrons and di-muons (ALICE)

pp reference at 5.5 TeV required

- > ALICE (for HF and charmonia needs): ~10/pb (see CERN-LHCC-2012-012)
- ATLAS / CMS: match Pb-Pb yields for high-p_T process, ~300/pb
- p-Pb run at high luminosity (exploit upgraded detectors)
 Requested by ALICE, ATLAS, CMS and LHCb
- p-Ar and Ar-Ar: a possibility to be considered for schedule after LS2, with priority that will be defined based on the outcome of the future data analysis (high statistics Pb-Pb and p-Pb from Run 2)

Experiment upgrades most relevant to HI

- ALICE (LS2)
 - New inner tracker: precision and efficiency at low p_T
 - > New pixel muon tracker: precise tracking and vertexing for μ
 - New TPC readout chambers, upgraded readout for other detectors and new DAQ-HLT: x100 faster readout

ATLAS

- Additional pixel layer (LS1), then new tracker (LS3): tracking and b-tag
- Fast tracking trigger (LS2): high-multiplicity tracking
- Calorimeter and muon upgrades (LS2): electron, γ, muon triggers

CMS

- New pixel tracker (LS2), then new tracker (LS3): tracking and b-tag
- Extension of forward muon system (LS2): muon acceptance
- Upgrade of trigger and DAQ (LS2): HI-specific development to reach necessary L1 rejection at 95%, from 50 kHz to <3 kHz (HLT)</p>

LHCb (LS2)

Upgrade includes new vertexing and tracking detectors (not focused on HI)

INFN2014, Padova, 24.03.14

 C_R = Casimir coupling factor: 4/3 for q, 3 for g

 \rightarrow Colour charge dependence of radiative energy loss

$$\Delta E_g > \Delta E_{c \approx q}$$

Baier, Dokshitzer, Mueller, Peigné, Schiff, NPB 483 (1997) 291. Zakharov, JTEPL 63 (1996) 952. Salgado, Wiedemann, PRD 68(2003) 014008.

INFN2014, Padova, 24.03.14

• In vacuum, gluon radiation suppressed at $\theta < m_Q/E_Q$ • "dead cone" effect $Q - \frac{M^{OP}}{m_Q} = \frac{1}{[\theta^2 + (m_Q/E_Q)^2]^2}$

Dead cone implies lower energy loss (Dokshitzer-Kharzeev, 2001):

 energy distribution \u03c6 dI/d\u03c6 of radiated gluons suppressed by angledependent factor

New TPC GEM readout chambers

- Current readout chambers (MWPC): readout limited to 3.5 kHz
 - New readout chambers (GEM): readout up to 50 kHz
 - preserve momentum resolution for TPC + ITS tracks
 - preserve particle identification via dE/dx

