BCS: 50 Years

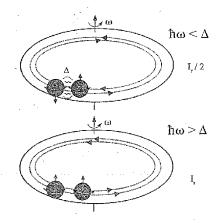
Edited by

Leon N Cooper Dmitri Feldman

Brown University, USA

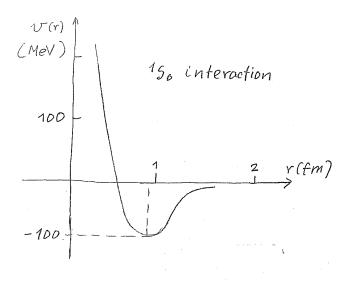
Fifty Years Nuclear BCS

Pairing in Finite Systems



Editors

Ricardo A Broglia (University of Copenhagen, Ocnmork)
Vladimir Zelevinsky (Michigan State University, USA)



quantality parameter

$$q = \left(\frac{\hbar^2}{Ma^2}\right) \frac{1}{|V_0|}$$

q << 1 crystalline structure (T=0)

q≈1 quantum fluid (T=0)

 $q \approx 0.4$ nuclei

Interplay potential energy and quantal (ZPM) fluctuations (single-particle)

$$H = T + v = T + U + V_p + (v - U - V_p)$$

mean field

Kramers deg. $v\bar{v}$

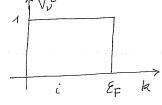
diagon.

$$\alpha_{\nu}^{+} = U_{\nu} \alpha_{\nu}^{+} - V_{\nu} \alpha_{\overline{\nu}}$$
;

ground state a, 10>=0

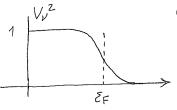
$$|\widetilde{0}\rangle = T \langle \alpha_{\nu} \alpha_{\overline{\nu}} | 0 \rangle \sim T (U_{\nu} + V_{\nu} \alpha_{\nu}^{\dagger} \alpha_{\overline{\nu}}^{\dagger}) | 0 \rangle$$

Ansatz 1: 10> sharp step-funct. Occ.



independent particle motion (fermions)

Ansatz 2: 10> sigmoidal distr. occ.



independent pair motion (bosons)

$$(X>1)$$

$$\alpha_{0} = \langle P^{+} \rangle = \frac{\Delta}{G} \approx 7 \qquad p^{+} = \sum_{\nu>0} a_{\nu}^{\dagger} a_{\overline{\nu}}^{\dagger}$$

$$(X = \frac{G2\Omega}{D} = GN(0))$$

$$\alpha_{dyn} = \frac{1}{G} \frac{\langle PP^{+} \rangle^{3} + \langle P^{+}P \rangle^{3/2}}{2}$$

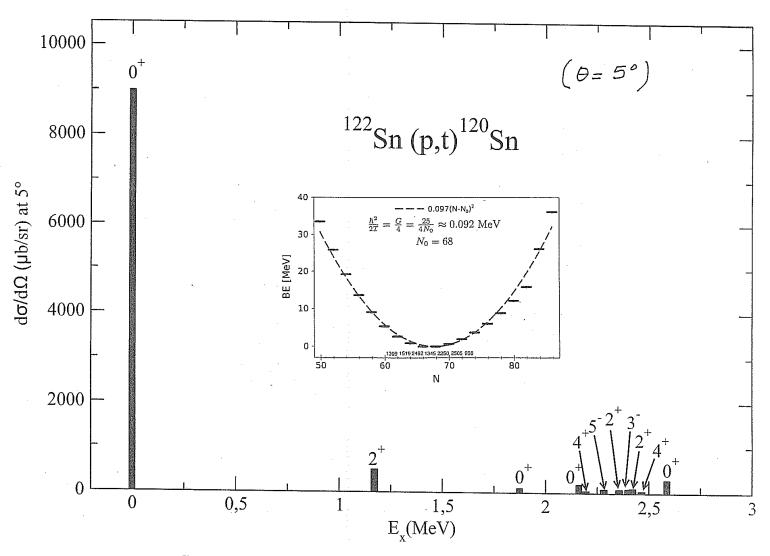
$$\frac{d_{dyn}}{dyn} = \frac{1}{G} \frac{\langle PP^{+} \rangle^{2} + \langle P^{+}P \rangle^{2}}{2}$$

$$\approx \frac{1}{2} \left(\frac{E_{corr}(A+2)}{G} + \frac{E_{corr}(A-2)}{G} \right)$$

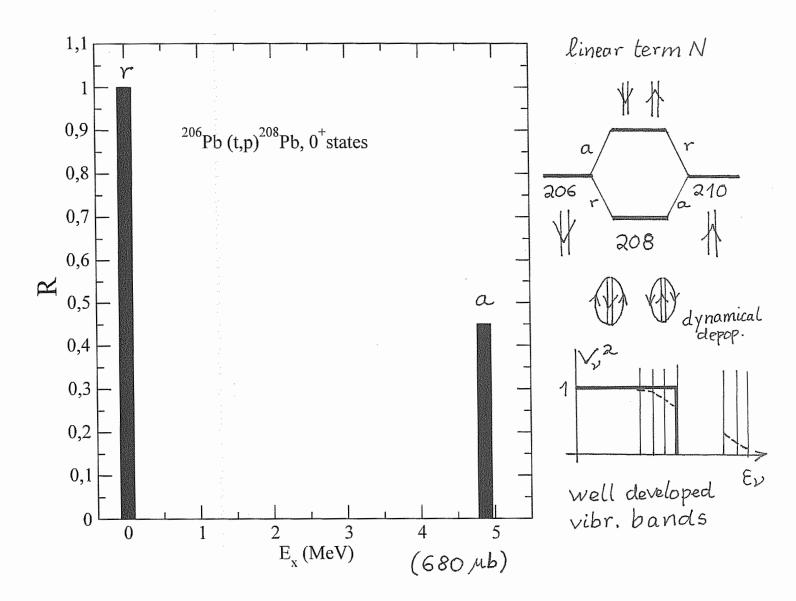
$$\approx 10$$

$$\frac{\alpha_{o}}{\alpha_{dyn}} \approx 0.7$$

$$\frac{\beta_2}{(\beta_2)_{dyn}} \approx 3 - 6$$



Potel et al.. Rep. Prog. Phys. 76 (2013) 106301



Spectroscopic amplitudes

pairing rotations (A+2 Sn(p,t) A Sn(gs))
$$U_{\nu}V_{\nu} \qquad (BC5)$$

$$X_r(i), Y_r(k)$$
 (RPA)

coherent states; essentially exact

systematic (silent revolution)

At2 Sn(p,t) ASn

(A+a) = 112, 114, 116, 118, 120, 122, 124

Guazzoni etal PRC 1999 (122), 2004 (116), 2006 (112), 2008 (120), 2011 (118, 124), 2012 (114)

Major breakthrough

1H(11Li, 9Li)3H

Tanihata et al PRL 2008

$$\frac{5}{5} = \frac{5 V_F}{E_{corr}} \approx 30 - 36 fm$$

Vnp ~ 0,4 fm

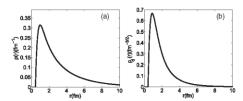


FIG. 6. (a) Radial function $\rho(r)$ (hard core 0.45 fm) entering the triton wave function. (b) Radial function $\rho_d(r)$ entering the deuteron wave function.

different channels $(a+A\to f+F\to b+B)$. Within this context, n and n' are possible not only owing to the fact that partners of a Cooper pair feel different mean fields $(\phi_{n'ljm}^f,\phi_{nljm}^F)$, but also because a general nuclear structure treatment of pairing will include Cooper-like correlations associated with multipole pairing (see, e.g., Ref. [10], Sec. 5.3, and references therein), correlations which, in the present case, have not a dynamical origin (one works with $H_p = -GP^\dagger P$), but only a trivial kinematical one.

III. REACTION MECHANISM

In what follows we present the elements which enter the calculation of the absolute two-particle transfer differential cross section in terms of the reaction

$$A + t \rightarrow B (\equiv A + 2) + p$$
, (32)

in which A+2 and A denote the mass number of even nuclei in their ground state. In other words, one concentrates on L=0 transfer. The wave function of nucleus A+2 is written as

$$\Psi_{A+2}(\xi_A, \mathbf{r}_{A1}, \sigma_1, \mathbf{r}_{A2}, \sigma_2)
= \psi_A(\xi_A) \sum_{l_i, j_i} \left[\phi_{l_i, j_i}^{A+2}(\mathbf{r}_{A1}, \sigma_1, \mathbf{r}_{A2}, \sigma_2) \right]_0^0,$$
(33)

the product of the wave function describing the ground state of the nucleus A, the corresponding relative (intrinsic) 3A-3 radial coordinates being denoted ξ_A , and of the wave function of two-correlated nucleons,

$$\begin{aligned} & \left[\phi_{i_{l},i_{l}}^{A+2}(\mathbf{r}_{A1},\sigma_{1},\mathbf{r}_{A2},\sigma_{2}) \right]_{0}^{0} \\ &= \sum_{nm} a_{nm} \left[\varphi_{n,l_{l},j_{l}}^{A+2}(\mathbf{r}_{A1},\sigma_{1}) \varphi_{m,l_{l},j_{l}}^{A+2}(\mathbf{r}_{A2},\sigma_{2}) \right]_{0}^{0}, \quad (34) \end{aligned}$$

the wave functions $\varphi_{n,k_1,j_1}^{A+2}(\mathbf{r},\sigma)$ describing the single-particle motion of a nucleon in a mean-field potential, e.g., a Saxon-Woods potential. The two-neutron wave function in the trition can be written as $\phi_t(r_{p1},\sigma_1,r_{p2},\sigma_2) = \rho(r_{p1})\rho(r_{p2})\rho(r_{12})[\chi(\sigma_1)\chi(\sigma_2)]_0^0$, r_{p1} and r_{p2} denoting the modulus of the relative coordinate of each of the two neutrons involved in the transfer process, measured with respect to the proton, while r_{12} denotes the modulus of the relative coordinate of the two neutrons in the triton. The deuteron wave function is written as $\phi_d(r_{p1},\sigma_1) = \rho_d(r_{p1})\chi(\sigma_1)$. The functions $\rho(r)$ and $\rho_d(r)$, as depicted in Fig. 6, are generated with the p- π Tang-Herndon interaction [37].

$$v(r) = -v_0 \exp(-k(r - r_c)), \quad r > r_c,$$
 (35)

$$v(r) = \infty \quad r < r_c,$$
 (36)

where $k=2.5~{\rm fm^{-1}}$ and $r_c=0.45~{\rm fm}$ denotes the radius of the hard core. The depth v_0 is adjusted so as to reproduce the binding energy of the triton and of the deuteron, respectively. This hard-core potential is also used in the above expressions as the n-p interaction potential responsible for neutron transfer.

The two-particle transfer differential cross section is written

$$\frac{d\sigma}{d\Omega} = \frac{\mu_i \mu_f}{(4\pi \hbar^2)^2} \frac{k_f}{k_f} |T^{(1)} + T_{\text{succ}}^{(2)} - T_{\text{NO}}^{(2)}|^2. \tag{6}$$

The amplitudes appearing in it describe the simultaneous,

$$T^{(1)} = 2 \sum_{l=1} \sum_{\alpha,\alpha} \int d\mathbf{r}_{tA} d\mathbf{r}_{pl} d\mathbf{r}_{A2} \left[\phi_{l_l,l_l}^{A+2}(\mathbf{r}_{A1}, \sigma_1, \mathbf{r}_{A2}, \sigma_2) \right]_0^{0+} \chi_{pB}^{(-)+}(\mathbf{r}_{pB}) v(r_{p1}) \phi_t(r_{p1}, \sigma_1, r_{p2}, \sigma_2) \chi_{tA}^{(+)}(\mathbf{r}_{tA}), \tag{38a}$$

successive

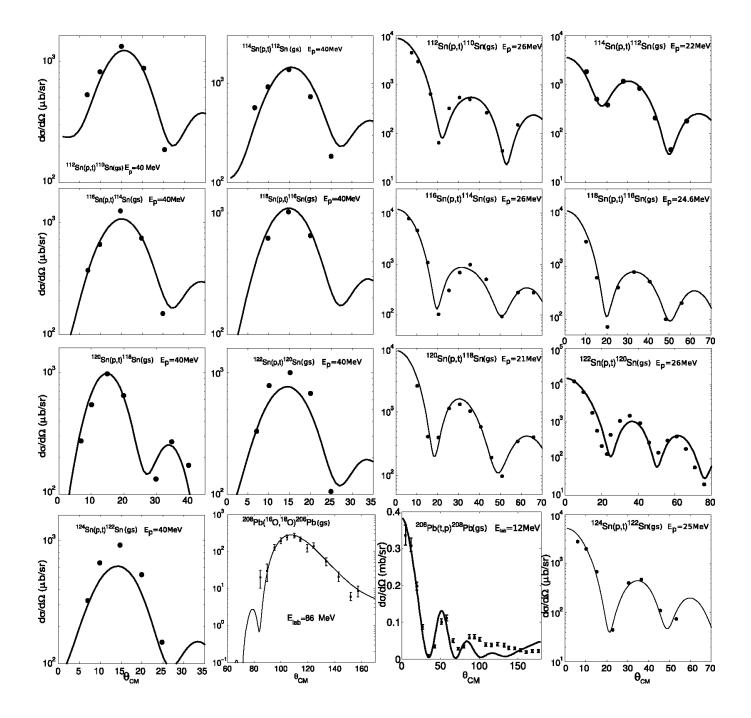
$$T_{\text{succ}}^{(2)} = 2 \sum_{l_i,j_i} \sum_{l_f,j_f,m_f} \sum_{\substack{\sigma_1 \sigma_2 \\ \sigma_i' \sigma_i'}} \int d\mathbf{r}_{dF} d\mathbf{r}_{p1} d\mathbf{r}_{A2} \big[\phi_{l_i,j_i}^{A+2} (\mathbf{r}_{A1},\sigma_1,\mathbf{r}_{A2},\sigma_2) \big]_0^{0*} \chi_{pE}^{(-)*} (\mathbf{r}_{pE}) v(r_{p1}) \phi_{d}(r_{p1},\sigma_1) \varphi_{l_f,j_f,m_f}^{A+1} (\mathbf{r}_{A2},\sigma_2) \big]_0^{0*} \chi_{pE}^{(-)*} (\mathbf{r}_{p2},\sigma_2) \psi_{d}(r_{p1},\sigma_2) \psi_{d}(r_{p1},\sigma_2)$$

$$\times \int d\mathbf{r}'_{dF}d\mathbf{r}'_{p1}d\mathbf{r}'_{A2}G(\mathbf{r}_{dF},\mathbf{r}'_{dF})\phi_{d}(r'_{p1},\sigma'_{1})^{*}\varphi_{l_{f},j_{f},m_{f}}^{A+1*}(\mathbf{r}'_{A2},\sigma'_{2})\frac{2\mu_{dF}}{\hbar^{2}}v(r'_{p2})\phi_{d}(r'_{p1},\sigma'_{1})\phi_{d}(r'_{p2},\sigma'_{2})\chi_{tA}^{(+)}(\mathbf{r}'_{tA}), \quad (38b)$$

and nonorthogonal.

$$T_{NO}^{(2)} = 2 \sum_{l_i,j_i} \sum_{l_f,j_f,m_f} \sum_{\sigma_i \sigma_2 \atop \sigma_i' \sigma_2'} \int d\mathbf{r}_{dF} d\mathbf{r}_{p1} d\mathbf{r}_{A2} \left[\phi_{l_i,j_i}^{A+2} (\mathbf{r}_{A1}, \sigma_1, \mathbf{r}_{A2}, \sigma_2) \right]_0^{0*} \chi_{pB}^{(-)*} (\mathbf{r}_{pB}) v(r_{p1}) \phi_d(r_{p1}, \sigma_1) \varphi_{l_f,j_f,m_f}^{A+1} (r_{A2}, \sigma_2)$$

$$\times \int d\mathbf{r}'_{p1} d\mathbf{r}'_{A2} d\mathbf{r}'_{dF} \phi_d(r'_{p1}, \sigma_1')^* \varphi_{l_f,j_f,m_f}^{A+1*} (\mathbf{r}'_{A2}, \sigma_2') \phi_d(r'_{p1}, \sigma_1') \phi_d(r'_{p2}, \sigma_2') \chi_{tA}^{(+)} (\mathbf{r}'_{tA}),$$
(38c)

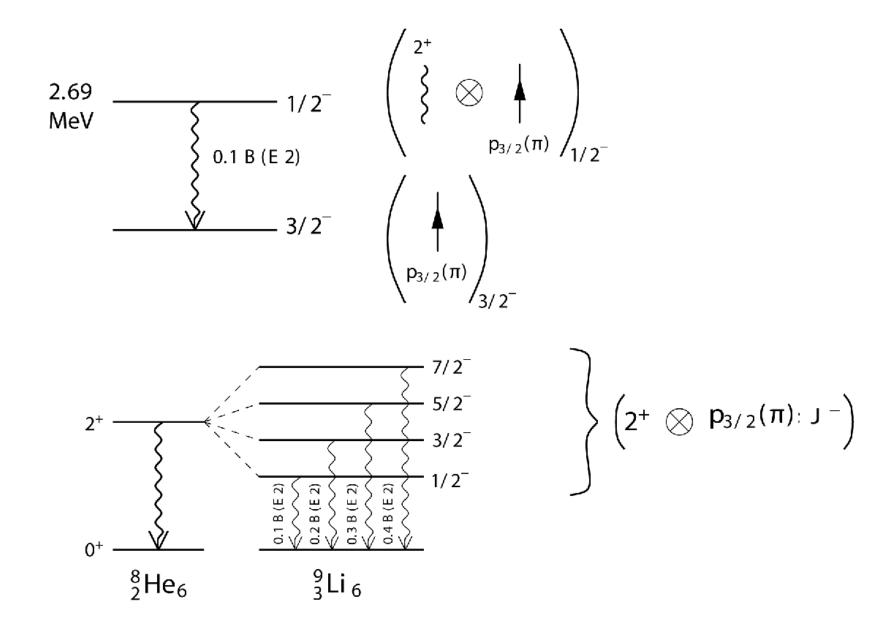


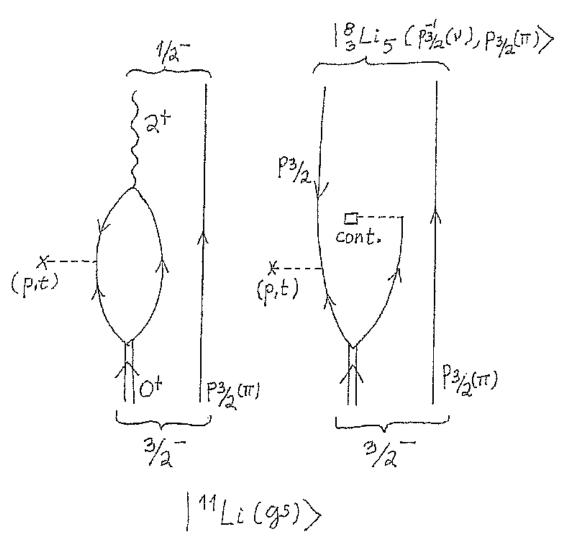
New Technical Achievement

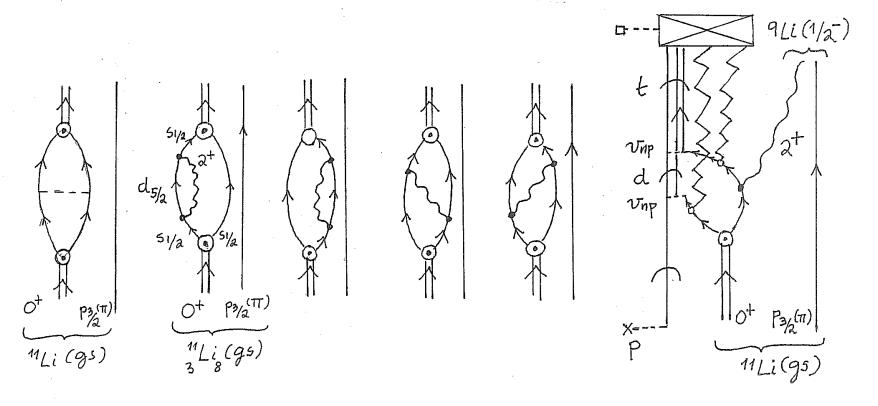
	$\sigma({ m gs}{ ightarrow}{ m f})$		
	f	Theory $a b f$	Experiment $^{f-m)}$
$^{7}\mathrm{Li}(t,p)^{9}\mathrm{Li}$	gs	14.3 ^{c)}	$14.7 \pm 4.4 ^{c,i)} [9.4^{\circ} < \theta < 108.7^{\circ}]$
¹ H(¹¹ Li, ⁹ Li) ³ H	gs	6.1 ^{c)}	5.7 ± 0.9 $^{c,b)}$ $[20^{\circ} < \theta < 154.5^{\circ}]$
	$1/2^{-}$	0.7 ^{c)}	1.0 ± 0.36 ^{c,b)} $[30^{\circ} < \theta < 100^{\circ}]$
$^{10}{ m Be}(t,p)^{12}{ m Be}$	gs	2.3 ^{c)}	$1.9 \pm 0.57 ^{c,j)} [4.4^{\circ} < \theta < 57.4^{\circ}]$
$^{48}{ m Ca}(t,p)^{50}{ m Ca}$	gs	$0.55^{\ c)}$	$0.56 \pm 0.17^{\ c,m)} \ \ [4.5^{\circ} < \theta < 174^{\circ}]$
$^{112}\mathrm{Sn}(p,t)^{110}\mathrm{Sn},E_{CM}=26~\mathrm{MeV}$	gs	1301 ^d)	$1309 \pm 200(\pm 14)^{d,g}$ $[6^{\circ} < \theta < 62.2^{\circ}]$
$^{114}\text{Sn}(p,t)^{112}\text{Sn}, E_{CM} = 22 \text{ MeV}$	gs	1508^{-d}	$1519 \pm 456(\pm 16.2)^{-d,g}$ $[7.64^{\circ} < \theta < 62.24^{\circ}]$
$^{116}\mathrm{Sn}(p,t)^{114}\mathrm{Sn},E_{CM}=26\mathrm{MeV}$	gs	$2078^{(d)}$	$2492 \pm 374(\pm 32)^{d,g} [4^{\circ} < \theta < 70^{\circ}]$
$^{118}\mathrm{Sn}(p,t)^{116}\mathrm{Sn}, E_{CM} = 24.4 \; \mathrm{MeV}$	gs	1304^{d}	$1345 \pm 202(\pm 24)^{d,g}$ $[7.63^{\circ} < \theta < 59.6^{\circ}]$
120 Sn $(p,t)^{118}$ Sn, $E_{CM} = 21 \text{ MeV}$	gs	2190^{-d}	$2250 \pm 338(\pm 14)^{d,g)} [7.6^{\circ} < \theta < 69.7^{\circ}]$
$^{122}\text{Sn}(p,t)^{120}\text{Sn}, E_{CM} = 26 \text{ MeV}$	gs	2466^{-d}	$2505 \pm 376(\pm 18)^{d,g}$ $[6^{\circ} < \theta < 62.2^{\circ}]$
$^{124}\mathrm{Sn}(p,t)^{122}\mathrm{Sn},E_{CM}=25\mathrm{MeV}$	gs	838 ^{d)}	$958 \pm 144(\pm 15)^{d,g} [4^{\circ} < \theta < 57^{\circ}]$
¹¹² Sn(p,t) ¹¹⁰ Sn, $E_p = 40 \text{ MeV}$	gs	3349 ^{e)}	$3715 \pm 1114^{-e,h}$
$^{114}\mathrm{Sn}(p,t)^{112}\mathrm{Sn}, E_p = 40 \; \mathrm{MeV}$	gs	3790 ^{e)}	$3776 \pm 1132^{\ e,h)}$
$^{116}\mathrm{Sn}(p,t)^{114}\mathrm{Sn}, E_p = 40 \; \mathrm{MeV}$	gs	3085 ^{e)}	$3135 \pm 940 ^{e,h)}$
$^{118}\mathrm{Sn}(p,t)^{116}\mathrm{Sn},E_p = 40\;\mathrm{MeV}$	gs	2563 ^{e)}	$2294 \pm 668 ^{e,h)}$
$^{120}\mathrm{Sn}(p,t)^{118}\mathrm{Sn}, E_p = 40 \; \mathrm{MeV}$	gs	3224 e)	$3024 \pm 907^{~e,h}$
$^{122}\mathrm{Sn}(p,t)^{120}\mathrm{Sn},E_p = 40\mathrm{MeV}$	gs	2339 ^{e)}	$2907 \pm 872^{\ e,h)}$
$^{124}\text{Sn}(p,t)^{122}\text{Sn}, E_p = 40 \text{ MeV}$	gs	1954 ^{e)}	$2558 \pm 767^{\ e,h)}$
206 Pb $(t,p)^{208}$ Pb	gs	0.52 ^{c)}	$0.68 \pm 0.21^{\ c,k)} [4.5^{\circ} < \theta < 176.5^{\circ}]$
²⁰⁸ Pb(¹⁶ O, ¹⁸ O) ²⁰⁶ Pb	gs	0.80 ^{c)}	$0.76 \pm 0.18 ^{c,f)} [84.6^{\circ} < \theta < 157.3^{\circ}]$

Table 4:

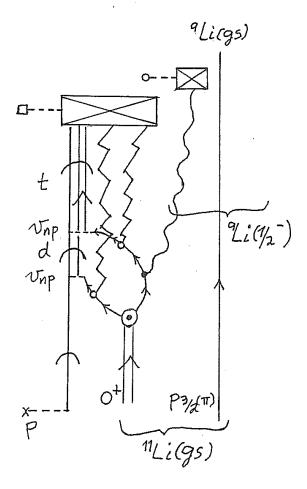
- It is of notice that the number in parenthesis (last column) corresponds to the statistical errors.
- ^{a)} G. Potel et al., Phys. Rev. Lett. **107**, (2011) 092501.
- ^{b)} G. Potel et al., Phys. Rev. Lett. **105**, (2010) 172502.
- c) mb
- $^{d)} \mu b$
- e) $\mu b/sr$ ($\sum_{i=1}^{N} (d\sigma/d\Omega)$; differential cross section summed over the few, N=3-7 experimental points).
- f) B. Bayman and J. Chen, Phys. Rev. C 26 (1982) 1509 and refs. therein.
- ^{g)} P. Guazzoni, L. Zetta, et al., Phys. Rev. C **60**, 054603 (1999).
- P. Guazzoni, L. Zetta, et al., Phys. Rev. C $\mathbf{69},\,024619$ (2004).
- P. Guazzoni, L. Zetta, et al., Phys. Rev. C 74, 054605 (2006).
- P. Guazzoni, L. Zetta, et al., Phys. Rev. C 83, 044614 (2011).
- P. Guazzoni, L. Zetta, et al., Phys. Rev. C 78, 064608 (2008).
- P. Guazzoni, L. Zetta, et al., Phys. Rev. C 85, 054609 (2012).
- h) G. Bassani et al. Phys. Rev. **139**, (1965)B830.
- i) P.G. Young and R.H. Stokes, Phys. Rev. C 4, (1971) 1597.
- j) H.T. Fortune, G.B. Liu and D.E. Alburger, Phys. Rev. C 50, (1994) 1355.
- ^{k)} J.H. Bjerregaard et al., Nucl. Phys. **89**, (1966) 337.
- ¹⁾ J.H. Bjerregaard et al., Nucl. Phys. A 113, (1968) 484.
- m) J. H. Bjerregaard et al., Nucl. Phys. A 103, (1967) 33.



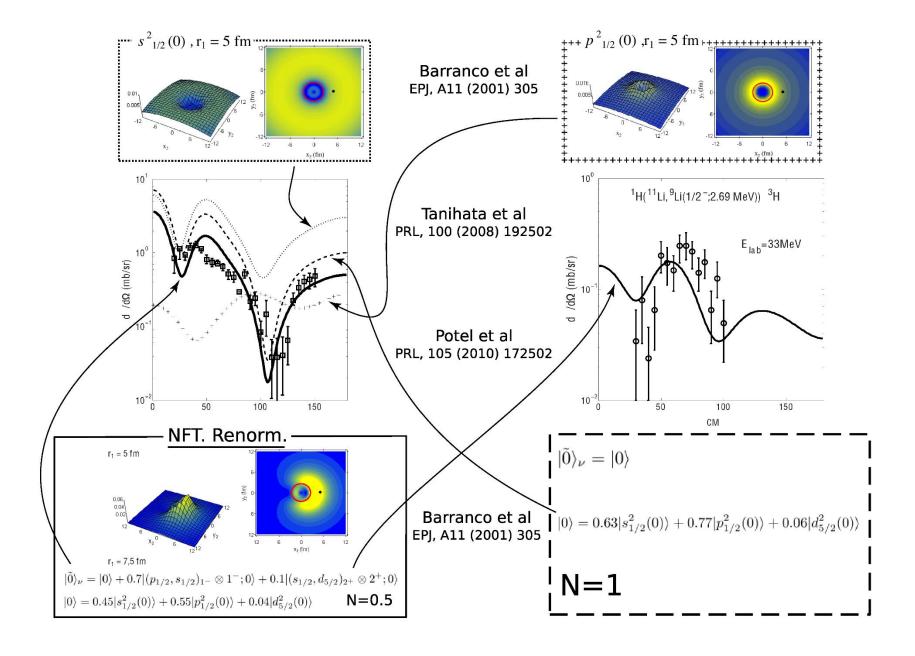




variety of pv-coupling vertices (NFT) @ pair 'surface recoil



variety of pv-coupling vertices (NFT) o pair o surface o recoil



$$R = \sqrt{\frac{3}{R_o^3}} \Theta(r-R_o); R_o = 1.2 A^{1/3} fm \text{ (systematics)}$$

$$\int_0^{R_o} r^2 dr R^2 = \frac{3}{R_o^3} \int_0^{R_o} \frac{dr^3}{3} = 1$$

$$R_{lalo} = \sqrt{\frac{3}{R_o^3}} \Theta(r-R)$$

$$Two-nucleon overlap (D = \langle Q_{halo} | Q_{syst} \rangle)^2$$

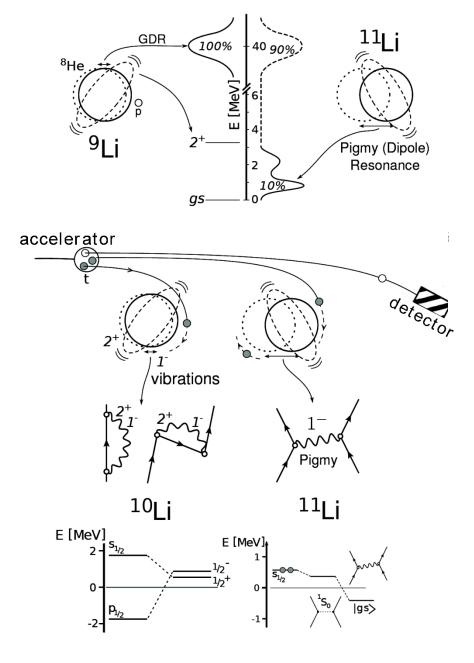
$$= \left(\int_0^{R_o} r^2 dr R_{halo} R_{syst}\right)^2 = \left(\frac{3}{R_o^3} \sqrt{\frac{3}{R_o^3}} \int_0^{R_o} \frac{dr^3}{3}\right)^2 = \left(\frac{R_o}{R}\right)^3$$

R: halo radius

The pigmy resonance can hardly be viewed but in symbiosis with the gli pair addition mode (virtual)

The pigmy resonance is built on a ground state with little overlap with the gs on which the GDR is built. Thus, it is a new mode of excitation

extreme inhomogeneous damping of ex
(radial degree of freedom
instead of quadrupole def.)



Bootstrap pairing correlations

New physics



$$V(r_{12}) = -4\pi V_0 S(r_1^2 - r_2^2 1)$$

$$M_{J} = \langle (j)_{o}^{2} | V | (j)_{o}^{2} \rangle = -\frac{2j+1}{2} V_{o} I (j)$$

$$II(j) = \int_{0}^{R_0} R_j^4 r^2 dr \qquad \left(R_0 = 1/2 A^{\frac{1}{3}} fm \right)$$
(Systematics)

$$R_1 \approx \sqrt{\frac{3}{R_0^3}} \Theta(rR_0); I \approx \frac{3}{R_0^3}$$

Ratio

$$r = \frac{(M_{\text{d}})_{\text{halo}}}{(M_{\text{d}})_{\text{syst}}} = \left(\frac{R_{\text{o}}}{R}\right)^{2}$$

R: halo radius

(halo anti-pairing effect)

dual origin of pairing in nuclei

Vbare (3N-corrs.) + Vind

11 Li Vind Very important direct and circumstantial evidence

nuclei along stability Valley

50% 50%

open problem

G. Potel (Livermore)

A. Idini (Darmstadt)

F. Barranco (Sevilla)

E. Vigezzi (Milan)

