

The XENON Dark Matter Project

Elena Aprile Columbia University US-Italy Physics Program at LNGS Princeton, October 15, 2013

•Goal: WIMP Dark Matter Search with a sensitivity of ~ 10⁻⁴⁸ cm²

•Strategy: phased program with detectors of increasing fiducial target mass (from 10kg to 100kg to 100kg) and decreasing overall background (XENON100 has achieved 5 x 10^{-3} evts/kg/keVee/day before discrimination)

• Detector: LXe (sensitive to both scalar and axial coupling) two-phase XeTPC with simultaneous charge and light detection via PMTs. 3D-event imaging with millimeter spatial resolution. Low energy threshold (~6 keVr)

Background Reduction and Signal Discrimination: a) LXe self-shielding;
 b) Volume fiducialization; c) multiple-scatter events rejection; d) NR/ER discrimination via charge/light ratio

• Status: XENON100 continues to take data (~90 live-days to-date); multiple analyses (solar axions, low-mass WIMPs, annual modulation..) being finalized with 225 live-days. Construction of XENON1T ongoing and on schedule. Science data taking expected in 2015

The Sensitivity of XENON1T

→ goal: σ < 2 x 10⁻⁴⁷ cm² for M_{WIMP} = 50 GeV after 2t*year

O.

Dark Matter Project

The XENON Collaboration

US led and NSF supported since start of project ~100 scientists from 15 institutions

The XENON Collaboration

Tuesday, October 15, 13

The phases of **XENON**

Past: 2005-2007 XENON10 15 kg active mass

Present: 2008-201? XENON100 62 kg active mass

Future: 2010-2017 XENON1T ~ 2.2 ton active mas $\sigma_{s_1} < 8.8 \times 10^{-44} \text{ cm}^2 (2007)$ $\sigma_{s_1} < 2.0 \times 10^{-45} \text{ cm}^2 (2012)$ $\sigma_{s_1} \sim 2 \times 10^{-47} \text{ cm}^2 (proj.)$

The phases of **XENON**

Past: 2005-2007 XENON10 15 kg active mass

Present: 2008-201? XENON100 62 kg active mass

Future: 2010-2017 XENON1T ~ 2.2 ton active mas $\sigma_{s1} < 8.8 \times 10^{-44} \text{ cm}^2 (2007)$ $\sigma_{s1} < 2.0 \times 10^{-45} \text{ cm}^2 (2012)$ $\sigma_{s1} \sim 2 \times 10^{-47} \text{ cm}^2 (proj.)$

e The phases of XENON NON

Dark Matter Project

Past: 2005-2007 XENON10 15 kg active mass

 $\sigma_{s_1} < 8.8 \times 10^{-44} \text{ cm}^2 (2007)$ $\sigma_{s_1} < 2.0 \times 10^{-45} \text{ cm}^2 (2012)$ $\sigma_{s_1} \sim 2 \times 10^{-47} \text{ cm}^2 (proj.)$

XENON100

62 kg active mass

Future: 2010-2017 XENON1T ~ 2.2 ton active mas

• The phases of XENON

NON

Dark Matter Project

Past: 2005-2007 XENON10 15 kg active mass

 $\sigma_{s_1} < 8.8 \times 10^{-44} \text{ cm}^2 (2007)$ $\sigma_{s_1} < 2.0 \times 10^{-45} \text{ cm}^2 (2012)$ $\sigma_{s_1} \sim 2 \times 10^{-47} \text{ cm}^2 (proj.)$

XENON100

62 kg active mass

Future: 2010-2017 XENON1T ~ 2.2 ton active mas

The phases of

Past: 2005-2007 XENON10 15 kg active mass

 $\sigma_{s_1} < 8.8 \times 10^{-44} \text{ cm}^2 (2007)$ $\sigma_{s_1} < 2.0 \times 10^{-45} \text{ cm}^2 (2012)$ $\sigma_{s_1} \sim 2 \times 10^{-47} \text{ cm}^2 (proj.)$

XENON100

62 kg active mass

Future: 2010-2017 XENON1T ~ 2.2 ton active mas

The XENON Detector : a 2-phase TPC

Discrimination of e⁻/γ and nuclear recoils: **(S2/S1)**_{n,WIMP} < **(S2/S1)**_{e,γ(}> 99% ER rejection 3D event position: drift time -> z (<0.3mm); PMT pattern -> x,y (<3mm) **precise fiducial inner volume** (avoid BG in outer volume) Discrimination of single/multiple scattering **screening materials/purification of Xe** -> further background reduction

The XENON100 Detector

gamma event localized

Top PMT array

- •161kg Xe, 62kg target•30cm drift length
- radio-purity →
 material screening
 ⁸⁵Kr →

distillation column ²²²Rn emanation → avoid/monitor

• passive shielding: water, lead, PE, copper

E N O N ark Matter Project

Example of a low-energy event in XENON100

Tor

2-phase TPCs fdr All-Jacobe Scale

XENON100 at LNGS:

161 kg LXe
(~50 kg fiducial)

242 I-inch PMTs taking new science data LUX at SURF:

350 kg LXe (100 kg fiducial)

122 2-inch PMTs physics run since spring 2013 first result by the end of this year PandaX at CJPL: Canfranc:

I 25 kg LXe (25 kg fiducial)

143 I-inch PMTs37 3-inch PMTsstarted in 2013

850 kg LAr (100 kg fiducial)

28 3-inch PMTs in commissioning to run 2014 Jarksige al L

50 kg LAr (dep in ³⁹Ar) (33 kg fiducial)

38 3-inch PMTs in commissioning since May 2013 to run in fall 2013

e Results from XENON100: spin-independent

Aprile et al. (XENON100) Phys. Rev. Lett. 109 (2012)

Best upper limit on WIMP-nucleon cross section: $2x10^{-45}$ cm² at M_W = 55 GeV

ark Matter Projec

Results from XENON100: spin-dependent

Aprile et al. (XENON100) Phys. Rev. Lett. 111 (2013)

¹²⁹Xe (spin-1/2) and ¹³¹Xe (spin-3/2), two isotopes with J \neq 0 and 26.2% and 21.8% abundance

 $\frac{d\sigma_{\rm SD}(q)}{dq^2} = \frac{8G_F^2}{(2J+1)v^2} S_A(q) \qquad \qquad S_A(0) = \frac{(2J+1)(J+1)}{\pi J} [a_p \langle S_p \rangle + a_n \langle S_n \rangle]^2$

Best sensitivity for neutron coupling : $3x10^{-40}$ cm² at M_W = 45 GeV

Matter Project

XENON100 New Exposure (2013)

- Lowered Kr/Xe contamination to ppt level to demonstrate capability for XENON1T
- Performed new AmBe calibration and confirmed excellent agreement with MC study
- Detector parameters are stable and performance excellent
- Primary goal is to take another full year of data and possibly more years to study annual modulation. R&D work at Columbia & Zurich continue to measure the ER energy scale

Results on ER Energy Scale

- Light yield decreases at 0-field below 50 keV
- Field quenching ~ 75% at low energies
- o Derived XENON100 energy threshold: 2.3 keV
 - → sensitive to DAMA signal! Results coming soon

Columbia results: Aprile et al., Phys. Rev. D 86, 112004 (2012) Zurich results including field quenching: Baudis et al., Phys. Rev. D 87, 115015 (2013)

XENON1T

- CARUS XENON1T WARP CICKARUS
 - 1m drift TPC with ~3.5 ton LXe
 - Water shield as Cherenkov Muon Veto
 - ER background $< 5 \times 10^{-5}$ DRU
 - Kr/Xe < 0.5 ppt & Rn/Xe < 1 μ Bq/kg
 - Project approved and funded
 - 50% of project costs covered by NSF
 - Design of major systems completed
 - Construction in Hall B ongoing

XENON1T at LNGS: from design..

Dark Matter Project

..to construction

Water Tank : 10 m High; 9.6 m diameter

Tuesday, October 15, 13

XENON1T Background Suppression

Requirement: < 1 event in the full exposure

•External γ's:

- suppression via self-shielding ($\rho_{\text{LXe}} \sim$ 3g/cm³)
- material screening and selection
- •Internal BGs (222Rn and 85Kr)
- cryogenic distillation column (Kr)
 < 1 ppt Kr/Xe achieved in XENON100
- online Rn removal by Rn tower

Neutrons

- muon veto and material selection
- low U and Th contaminations
- \rightarrow low α and (α ,n) production

Example: Development of low radioactivity PMTs with Hamamatsu <1mBq/PMT in U and Th

Background rejection power:

> 99.5% neutrons with a μ

tagged in the veto -> muon-induced n-back:

0.01/ year -> negligible

Kr Reduction and Measurement

- Goal is to reduce Kr/Xe to < 0.5 ppt
- after last distillation XENON100: (0.97 ± 0.19) ppt \Rightarrow less than 0.04 mDRU from ⁸⁵Kr
- 5m distillation column with 3kg/hr @ 10⁴ separation (3m version built and under testing)
- two analysis tools developed by Collaboration to measure Kr/Xe at ppt level

RGMS (arXiv:1308.4806)

ATTA (arXiv:1305.6510) Rev. Sci. Instrum. 84 (2013)

Tuesday, October 15, 13

The Columbia Atom Trap

- Transition between 5³D₃ and 5³P₂
- ⁴⁰Ar to avoid contamination by Kr
 - $\lambda_{^{40}\mathrm{Ar}} =$ 811.7542 nm, $\lambda_{^{84}\mathrm{Kr}} =$ 811.5132 nm
 - Achieved by a single diode laser

Ar discharge

Xe discharge

Tuesday, October 15, 13

The XENON1T Detector

CRYOSTAT

- Outer vessel: ~3 m high,
 1.6 m diamter
- Inner LXe vessel: 1.1 m diameter & 3 m tall
 (XENON1T); 1.35 m diameter (XENONnT)
- Heat load <50 W
- Cooling: "at a distance" with 2 redundant 200 W PTRs plus LN tower

TPC

PMTs

- 300 Hamamatsu R11410-21
- XENON1T version: high QE (average 36% @ 178nm) and low radioactivity (< 1mBq/PMT in U/Th)
- all PMTs screened and tested at room temperature (DC rate, HV scan, after-pulsing, transit time,)
- repeated cool-down at <2K/min</p>

XENON1T Demonstrator

- A facility built at Columbia Nevis Lab to demonstrate:
- high speed (~100 SLPM) Xe circulation and purification on short time scale
- long electron lifetime for 1m drift in a 2-phase TPC (a vertical slice of XENON1T)
- high voltage (~100 kV) with custom-made low radioactivity feedthroughs
- performance of R11410 PMTs in LXe and with field

Xe: Storage & Recovery

- Vacuum-insulated, LNcooled, high-pressure (70 bar) SS sphere
 store > 6 tons of Xo in
- store > 6 tons of Xe in gas or liquid phase under high purity conditions
- fast (hours) recovery of Xe from detector in case of emergency

Thank You INFN and LNGS!

.

Tuesday, October 15, 13