### Solar Neutrinos with Borexino at LNGS Current Results/Future Opportunities

### Frank Calaprice Princeton University

### **Borexino Collaboration**



A 20<sup>+</sup>year successful collaboration between U.S. and Italian + European Groups

# Borexino Historical Highlights

- 1989-92: Prototype CTF Detector started
- 1995-96: Low background in CTF achieved
- 1996-98: Borexino Funded INFN, NSF, German
- 1998-2002: Borexino construction
- August 16 2002: Accidental release of ~50 liter of liquid scintillator shuts down Borexino and LNGS
- 2002-2005: Legal & political actions: Princeton Lawyers
- 2005 Borexino Restarts Fluid Operations
- August 16, 2007 First Borexino Results on Web.

### Solar Nuclear Fusion Cycles

#### The pp cycle

#### The CNO cycle



### Solar Neutrino Spectra

**Neutrino Energy Spectrum** 

Neutrino-Electron Elastic Scattering Energy Spectrum



### **Overview of the Borexino Detector**

(Mostly Active Shielding)

- Shielding Against Ext. Backgnd.
  - Water: 2.25m
  - Buffer zones: 2.5 m
  - Outer scintillator zone: 1.25 m
- Main backgrounds: in Liq. Scint.
  - ${}^{14}C/{}^{12}C$ 
    - $10^{-18}$  g/g. cf.  $10^{-11}$  g/g in air CO<sub>2</sub>
  - U, Th impurities
  - 222Rn daught (<sup>210</sup>Pb, <sup>210</sup>Bi, <sup>210</sup>Po)
  - <sup>85</sup>Kr
- Light yield (2200 PMT's)
  - Detected:  $500 p_e/MeV$  (~4%)
- Pulse shape discrimination.
  - Alpha-beta separation



### Fabrication of Nylon Vessel Princeton Low Radon Cleanroom

John Bahcall



# Vessel Installation / Inflation

- Despite laboratory upgrades and the ban on fluid use, work on Borexino progressed.
- 2004 was a watershed year: the scintillator containment vessels, built over one year at Princeton, were installed and inflated to spherical shape.





# The Borexino Experiment: Purification Plants

### • Main Purification Skids

- distillation of PC to remove nonvolatile contaminants
- water extraction of charged ions
- nitrogen stripping to remove undesirable gases (radioactive noble gases, oxygen)
- Skids for distillation of "master solution," refitted from CTF.



#### Borexino Energy Spectra PRL 107 141302 (2011)

Data are based on 740.7 live days between May 16, 2007 and May 8, 2010.

Prominent backgrounds are: <sup>210</sup>Po <sup>210</sup>Bi <sup>85</sup>Kr & <sup>14</sup>C (not shown)

CNO obscured mainly by <sup>210</sup>Bi due to similar shape.

The <sup>210</sup>Po alpha rate was very high but saved by alpha/beta pulse shape discrimination.

The pep was measured by applying cuts to reduce the <sup>11</sup>C background.



### **Borexino Neutrino Measurements**

### Solar Neutrino rates (cpd/t)

- <sup>7</sup>Be:  $0.460 \pm 0.023$ Phys. Rev. Lett. 107 141302 (2011)
- <sup>8</sup>B:  $0.0022 \pm 0.0004$
- $0.031 \pm 0.005$ pep:

- Phys. Rev. D 82, 033006 (2010)
- Phys. Rev,. Lett. 108, 051302 (2012)

### Geo-neutrinos

Total 14.3 ± 4.4 events Phys. Letts. B722, 295 (2013)

### **Electron Neutrino Survival Probabilities**

#### Pee = 1.0 no neutrino oscillations

The MSW predicted transition from vacuum to matter-enhanced oscillations generally agrees with measurements of pp, <sup>7</sup>Be, pep, and <sup>8</sup>B neutrinos.

The centroid of SNO's <sup>8</sup>B low threshold data falls below the MSW curve with decreasing energy, but the significance is not high.

The transition region is sensitive to new physics. e.g non-standard interactions, sterile neutrinos.

Improving pep, and low energy <sup>8</sup>B data motivated by sensitivity to new physics.



W.C. Haxton, R.G. Hamish Robertson, and Aldo M. Serenelli, Annu. Rev. Astron. Astrophys. 2013. 51:21–61

### Geo-neutrinos

- Geo-neutrino data from 1353 days of data.
  - Physics Letters B 722 (2013) 295–300
- Geo-neutrino events in yellow; reactor event in orange.
- Antineutrinos detected by delayed coincidences from changed current reaction

   v+p -> e<sup>+</sup> + n
- Total 46 events detected
  - 14.3  $\oplus$  4.4 geo-neutrinos
  - 31.2  $\oplus$  6.5 reactor neutrinos



# Future Solar Neutrino Program

#### **1.** Detect/Measure CNO neutrinos

- Confirm proton burning process for stars more massive than Sun.
- CNO neutrino rate determines C, N abundances in core.
  - Clarify the "solar metallicity problem"
  - Haxton, Serenelli, and others suggest planetary accretion could explain difference in metal abundance in photospheric and helioseismology data.
  - High metalicity rate would support such possibilities.

#### 2. Improve accuracy of <sup>7</sup>Be and pep measurements.

- Neutrino rates could provide accurate prediction of power produced by solar nuclear fusion reactions.
- Comparing neutrino-related power to total solar luminosity could reveal new physics? Sterile neutrino tension? (H. Robertson)

#### 3. Non-standard interactions in vacuum- matter oscillations transition.

# Re-Purification of BX Scintillator 2010-2011

- Future Solar Program requires lower background.
  - <sup>210</sup>Bi < CNO (5 cpd/100t) might allow separation of CNO and <sup>210</sup>Bi spectra.
- From 2007 to 2010 the <sup>210</sup>Bi background increased.
  - <sup>210</sup>Bi rate:  $15 \rightarrow 70 \text{ cpd}/100t$  (cause: scintillator operations, other?)
  - <sup>85</sup>Kr rate: 30 cpd/100t (constant)
- To reduce background, scintillator was re-purified using two processes:
  - Water extraction to remove <sup>210</sup>Pb (<sup>210</sup>Bi) and other similar (e.g., <sup>226</sup>Ra)
  - Nitrogen stripping to remove <sup>85</sup>Kr and other volatiles.
- Six purification operations were done, each of about 1 month duration.
  - Each operation processed all 320 m<sup>3</sup> scintillator in the detector once.
  - Data were acquired to evaluate backgrounds after each operation.

# Background Reduction with Loop Purification of Liquid Scintillator

- "Loop" purification is achieved by draining fluid from bottom of vessel, passing it through purification system, and returning to the top.
- Processes available are:
  - Water extraction or distillation
  - Nitrogen stripping (<sup>85</sup>Kr)



### Results of 6 cycles of Re-purification

- <sup>85</sup>Kr:  $30 \text{ cpd}/100t \rightarrow < 5 \text{ cpd}/100t$
- <sup>210</sup>Bi: 70 cpd/100t  $\rightarrow$  20 ± 5 cpd/100t
- <sup>210</sup>Po: Essentially not reduced! Why?
- ${}^{238}U({}^{226}Ra): [(53 \pm 5) \rightarrow (1.6 \pm 0.6)] \times 10^{-19} g/g$  ${}^{214}Bi{}^{-214}Po$  Reduction factor = 33. 7 events/100t/yr.
- <sup>232</sup>Th:  $[(3.8 \pm 0.8 \rightarrow < 1.2] \times 10^{-18} \text{ g/g} (95\% \text{ CL})$ <sup>212</sup>Bi-<sup>212</sup>Po Reduction factor > 3. 2 ev./100t in 600 d

Rates before purifcation are based on 153.6 ton-yr exposure taken in 740.7 d between May 16, 2007 and May 8, 2010. See Borexino Coll. arXiv 1308.0443v1.

### Backgrounds after & before Water Extraction + N<sub>2</sub> Stripping



After re-purification 2012-2013 (with <sup>11</sup>C cuts)

Before re-purification 2008-2010 Without <sup>11</sup>C cuts. See arXiv1308.0443v1.

### Water Extraction Worked!

### CNO needs lower background.

<sup>210</sup>Pb (<sup>210</sup>Bi) and <sup>210</sup>Po found in "Purified Water" used for Water Extraction

New method developed to remove <sup>210</sup>Po.

# A Primer on U and Th Decay Chains



A lower <sup>210</sup>Bi rate compared to <sup>210</sup>Po implies a chemical separation process that removes Pb more efficiently than Po.

### Water Extraction and Nitrogen Stripping Performed 2010-2011

- Contacting high purity water with scintillator can remove radioactive impurities from the scintillator.
  - Works best if impurities have higher affinity for water, e.g., polar species, but can also be effective if not.
- For water extraction, we use LNGS ground water purified by the following:
  - Reverse osmosis and Ion-exchange (de-ionization water plant)
  - Single stage evaporator distillation.
- Ground water has high levels of radioactivity.
  - ICPMS studies show that <sup>238</sup>U, <sup>232</sup>Th, <sup>40</sup>K are removed effectively by de-ionization.
  - <sup>222</sup>Rn is very high (10,000 Bq/ton), but can removed by de-gasification, e.g. N2 stripping.
  - Radon daughters <sup>210</sup>Pb, <sup>210</sup>Bi, and <sup>210</sup>Po had not been studied until recently.
  - New data show that de-ionization processes are not very effective in removing <sup>210</sup>Pb and <sup>210</sup>Po.
  - The main radioactivity in Borexino de-ionized water is <sup>210</sup>Pb and <sup>210</sup>Po.



The water extraction system. N<sub>2</sub> stripping column used in series

# Volatile Polonium Compounds?

- <sup>210</sup>Po compounds were thought to be non-volatile, and would be removed by distillation.
- Recent studies provide evidence that some of the <sup>210</sup>Po in well water is a volatile compound produced by biological (bacteria) processes.
  - "Bio-Volatilization of Polonium: Results from Laboratory Analyses", N.
     HUSSAIN, T. G. FERDELMAN, T. M. CHURCH, Aquatic Geochemistry 1: 175-188, 1995
  - "Impact of microorganism on polonium volatilization", N. Momoshima, et. al.
     J. Radioanalytical and Nuclear Chemistry 272, 413 (2007)
- Dimethyl polonium: Boiling point ~138 C (est.)
- Poor removal of <sup>210</sup>Po by de-ionization and ineffective distillation due to volatile polonium compound could explain problems Borexino has had with this isotope.

# New Distillation System to Remove <sup>210</sup>Po and <sup>210</sup>Pb from Ground Water.

- A small-scale distillation system was designed are tested at Princeton to remove dimethyl polonium from ground water.
  - A tall column with structured packing and high reflux was designed for x1000 reduction.
- Princeton well water, noted for its high radon levels, made it easy to measure the polonium before and after distillation.
- Results:
  - When system was operated as simple evaporator, the <sup>210</sup>Po was not separated. Explains many problems.
  - When operated with full column and high reflux, the output water showed no measurable <sup>210</sup>Po.
  - Reduction factor > 300.



Small prototype distillation system with two 6-foot column 2 l/hr capacity. Students : B.Russell, C. Aurup, W. Taylor

### Current & Proposed Upgraded Water Extraction Systems



# Summary/Conclusions

- Initial scintillator purification produced low backgrounds in Borexino.
  - Solar neutrino rates measured: <sup>7</sup>Be, pep, <sup>8</sup>B
  - High <sup>210</sup>Po background was compensated with alpha/beta pulse shape discrimination.
- Future research toward CNO and pp neutrinos, requires lower background.
- Scintillator re-purification worked!
- Discovered that de-ionization systems are ineffective on <sup>210</sup>Pb and <sup>210</sup>Po.
- Confirmed presence of volatile polonium, and removed it with fractional distillation.
- Water extraction with better water can reduce backgrounds and set stage for CNO.

# Status of Solar/Neutrino Science

- Bethe's pp fusion cycle
  - Observed 3 of the 4 neutrinos.
- Neutrino oscillations
  - Solar neutrinos consistent with MSW theory
  - Vacuum-matter effect transition study still needed.
- CNO physics
  - Solar metallicity problem still unexplained
  - Future contribution from Borexino?

# The Princeton-Gran Sasso Summer School

- Education of our youth is very important.
- The Princeton-GS summer school brought 20-40 Italian high school students to Princeton for a month of study and cultural experiences.
- The program continued for nine successful years trying to spark interest in science.
- Inspired by Bruce Springsteen "Dancing in the dark- ...you can't start a fire without a spark..."



This photo from 2005

### What makes the Sun shine?

- Pre-scientific:
  - Deities and sacred bodies: Helios (Greek), etc
  - Giant flaming metal ball
    - Anaxagoras: imprisoned for suggesting it wasn't Helios
- Scientific based ideas:
  - Gravity (19' th century)
  - Nuclear (20' th century)
- Solar Metallicy Problem
  - More surprises??



Han Bethe 1906-2005



Ray Davis 1914-2006



Bruno Pontecorvo 1913-1993



John Bahcall 1935-2005

## The End