

O.Cremonesi INFN - Sez. Milano Bicocca

The US-Italy Physics Program @ LNGS - October 15, 2013 - Princeton NJ

Outline

- Neutrinoless double beta decay
- Low temperatute detectors (LTD)
- The CUORE project
- CUORE0
- CUORE status
- Conclusions

Double beta decay

Very rare nuclear decay

 $(A,Z) \rightarrow (A,Z+2) + 2e-(+?)$

which can occurr according in different modes

2vββ decay:

- allowed within Standard model,
 - 2nd order process in Fermi theory
- observed for 12 isotopes:
 - ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ^{128,130}Te, ¹³⁶Xe, ¹⁵⁰Nd and ²³⁸U
- First double beta plus decay: ¹³⁰Ba
- $T^{2\nu\beta\beta}_{1/2} \sim 10^{(19-25)} y$
- Important constraint for nuclear matrix element calculation

0vββ decay (neutrinoless DBD):

- \rightarrow violates lepton number by 2 units
- → Current bounds:
 - $T_{0\nu\beta\beta_{1/2}} > ~10^{25} y$
 - m_v ≤ O(0.1 0.5) eV
- → Observation implies Physics beyond the standard model of particle physics

"Exotic" decays:

- \rightarrow for example X = J, i.e. Majoron
- → experimentally not observed (and no rumours!)
- → Best limit from:

 $\tau^{\beta\beta J_{1/2}(128\text{Te})} > \sim \text{few } 10^{24} \text{ y}$

Neutrinoless bouble beta decay

Exchange of a light Majorana neutrino

RH antineutrino (L=1) is emitted at one vertex

- LH neutrino (L=-1) is absorbed at the other vertex
 - Majorana particle
 - Helicity flip (neutrino mass dependence)

N.B.: Majorana phases make m_{ee} cancellation possible (m_{ee} could be smaller than any of the m_i).

$$< m_{ee} > = \sum_{k} U_{ek}^{2} m_{k} - \text{NEUTRINO MASS}_{EIGENALUES}$$

$$= c_{12}^{2} c_{13}^{2} m_{1} + s_{12}^{2} c_{13}^{2} e^{i\alpha} m_{2} + s_{13}^{2} e^{i\beta} m_{3}$$

m_v: Experimental methods

Experimental parameters are pictured as a function of the lightest mass eigenvalue:

---- Inverted Hierarchy

Bands arise from specific experimental and

- S.Pascoli et al., arXiv: 0505226
- R.Mohapatra et al., arXiv: 0510213
- A.Strumia and F.Vissani, IFUP-TH/2004-1; arXiv: 0606054

O.Cremonesi - October 15, 2013 - The US-Italy Physics program @ LNGS, Princeton

Experimental signature

 $(A,Z) \rightarrow (A,Z+2)^{++} + 2 e^{-1}$

- A new (ionised) isotope
- Two electrons

Minimal information:

• two e⁻ energy sum spectrum

0vββ exhibits a **peak at Q** over 2vββ tail (and background contributions)

Additional signatures:

- Single electron energy spectrum
- Angular correlation between the two electrons
- Daughter nuclear species

Track and event topology Time Of Flight

Moreover, to cure NME systematics:

• study as many as possible different isotopes

Experimental factor of merit

Low temperature detectors

Detection Principle

 $\Delta T = E/C$

- C: thermal capacity
 - low C
 - low *T* (i.e. *T*«1K)
 - dielectrics, superconductors
 - ultimate limit to E resolution: statistical fluctuation of internal energy *U*

$$\langle \Delta U^2 \rangle = k_B T^2 C$$

Thermal Detectors Properties

- good energy resolution
- wide choice of absorber materials
- true calorimeters
- slow $\tau = C/G \sim 1 \div 10^3$ ms

TeO₂ bolometers Evolution

Mass [kg]

CUORE

CUORE sensitivity

Background goal of 0.01 c/keV/kg/y

$$T_{1/2} = 1.6 \times 10^{26} \text{ y}$$

Cuoricino result and CUORE $I\sigma$ sensitivity overlaid on plots that show the bands preferred by neutrino oscillation data (inner region: best-fit data; outer region: at 3σ). Both normal (red) and inverted (green) hierarchies are shown.

Challenges

Two big challenges:

tonne-sized bolometric detector

- operate in stable conditions for very long measure time (years)
- huge cryogenic system with unique features (e.g cryo-free), cold shields, embedded calibration system, mechanically decoupled, ...

lowest possible background

- selected materials
- lowest mass
- careful preparation
- material assay
- new detector design
- selected procedures
- underground location

CUORE Collaboration

CUORE Collaboration

18 groups

- Italy 9
- USA 6
- France 1
- 3 associated institutions

145 collaborators

- 111 researchers/authors
- Italy: 61
- USA: 38
- France: 3
- Associated Institutions: 9

Italy	
Bologna	4
Firenze	1
Frascati (LNF)	3
Genova	4
Gran Sasso (LNGS)	9
Legnaro (LNL)	4
Milano Bicocca	25
Padova	1
Roma	10

USA

Berkeley (UCB/LBNL)	13
Columbia (USC)	8
Livermore (LLNL)	6
Los Angeles (UCLA)	5
Madison (UW)	5
S. Louis Obispo (CalPoly)	1

France	
Orsay	3

Associated	
Zaragoza	1
Edinburgh (SUPA)	1
Shanghai (SINAP)	7

The LNGS underground facility

Cuoricino/CUORE-0 hut

Underground facility

- Average depth ~ 3650 m.w.e.
- Factor 10⁶ reduction in muon flux to $\sim 3 \times 10^{-8} \,\mu/(s \cdot cm^2)$

The CUORE experimental setup

Custom cryogenic system @ LNGS.

- Improved shielding and material selection.
- High efficiency in background rejection, due to the packed geometry: minimum lead thickness surrounding the detector ~ 36 cm
- No cryogenics liquids: better duty cycle
- Mechanical suspension of the detector assembly completely independent from the refrigeretor structure: better control of noise induced by vibrations
- Severe control of the radioactivity of the setup

Embedded in the setup (after a severe control of the radioactivity of the materials):

- Cryo-free dilution refrigerator (Leiden Cryogenics)
- Roman Lead (no ²¹⁰Pb) cold shield
- Detector and Pd shield suspension
- Calibration system

Detector calibration system

- 12 gamma source wires

 ²³²Th: thoriated tungsten wire
 ⁵⁶Co: proton activated Fe wire
- Minimize down time but rate at each crystal not exceeding 150 mHz
- Stringent heat load requirement

Detector evolution

- Cryostat and shields
- Calibration system
- Electronics

Background model

Available data: Cuoricino + dedicated background studies @ LNGS R&D setup

MC: the background in Cuoricino is due to degraded alpha particles which release only part of their energy in the detector (surface contamination)

C.Arnaboldi et al. Phys. Rev C 78 (2008) 035502

CUORE detector design

- Copper Frame:
 - Heat bath
 - Background source
- Teflon holders
 - The weak thermal link
 - Reduce vibration noise

Detector assembly

Ongoing activities

Setup and detector part preparation: almost completed

Main activities moved to LNGS:

- Detector construction
 - Detector construction: regular progress
 - >10 tower's worth "glued" crystals
 - 9 mechanically assembled towers
 - 5 completed towers

• Installation and test of cryogenic set-up

- Construction of the 3 inner chambers of the cryostat: completed timely and without major problems (delivered @ LNGS 06/05/2013)
- Commissioning @ LNGS of dilution unit: completed in April.
- PT characterization completed in January.
- Installation and test program proceeds regularly. 2 successful cooldowns to 4K (Mach & June).
- CUORE-0
 - Despite a non negligible number of adverse events mainly related to leaks of the (1989) Cuoricino cryostat
 - Successful cooldown at February. Optimization phase completed in April
 - Background data taking started at the beginning of May! Promising preliminary results.

A LOT OF PROGRESS in 2013

CUORE-0

- fully CUORE-like tower (parts, design, assembly)
- operated as a stand alone experiment in the Cuoricino cryostat

Size similar to CUORICINO:

- 52x750g bolometers
- 13 floor of
- 4 crystals each Active mass:
- TeO2: 39 kg
- 130Te: 11 kg

goal:

full test and debug of the new CUORE design and assembly to identify:

- critical items
- flaws and inefficiencies

Cryostat:

- Inner shield:
 - 1cm Roman Pb A (210Pb) < 4 mBq/Kg
- External Shield:
 - 20 cm Pb 10 cm Borated polyethylene
- Nitrogen flushing
 - to avoid Rn contamination.

Same as for Cuoricino:

- γ background (232Th) not expected to change
- test the α background

Construction & Installation

Energy resolution: calibration

CUORE0 exposure

Data taking since May 2013

O.Cremonesi - October 15, 2013 - The US-Italy Physics program @ LNGS, Princeton

CUORE-0 Background Spectrum

Energy resolution

CUORE background budget

0vββ region: CUORE0 blind analysis

CUORE0 blinding

Exchange a small (and blinded) fraction of ²⁰⁸Tl events (2615 keV) with events in the $\mathbf{0}_{V\beta\beta}$ region, producing a fake peak

CUORE0 sensitivity

CUORE schedule

Task Name	Start	Finish	2013			2014			2	2015			
			Q1 Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2		Q3
1.0 Hut (Faraday Cage)	1/7/13	2/4/14	C										
2.0 Detector	8/1/07	2/20/14	-					dotor	otor				
Crystal Procurement	6/30/10	4/30/13						uelet					
Crystal Refurbishment	5/1/13	//23/13	_					prepa	aration				
Thermistors	3/16/11	4/24/13		•									
Thermistors (spares)	5/2/13	7/10/13	_										
Structure - Design, Prod.	8/1/07	9/5/13											
Surface Cleaning	4/16/12	2/20/14											
3.0 Cryogenics	8/1/07	1/15/14	-										
3.1 Cryo Design & Construction	8/1/07	1/15/14					-						
Cooling Units and Test Dewar	8/1/07	7/3/13						crvc	aonic				
Cryostat Construction	5/10/10	6/10/13	-					CryC	yenic				
300K - 4K Chamber Fab	5/10/10	7/23/12	-					sub	-				
600111R - MC Fab Wiring for Commissioning	8/1//12	0/10/13						ovet	omo				
	5/51/15	10/24/13	-					L SYSI	EIII2				
Internal Lead Shielding	12/1/08	1/15/14											
3.2 Calibration System	4/23/09	12/27/13	_										
Calibration Prototypes	4/23/09	12/21/12				_							
	//2/12	10/4/13					12/27						
Calibration System Fabrication Complete	12/27/13	12/2//13	-			•	12/2/						
3.3 Interfaces between Towers and Cryostat	6/20/11	9/10/13											
4.0 Front End Electronics	12/22/09	1/7/14	_				₩						
Elec. Production & Testing	12/22/09	1/7/14											
5.0 Data Acquisition Systems	1/9/12	3/4/14											
6.0 Data Analysis Tools	1/6/14	8/22/14					C						
7.0 Assembly Integration & Test	5/7/12	2/27/15											
Initial Installation and 4K Tests - Commissioning Phase I	7/31/12	6/17/13] in	etallati	ion	
Base T no Load - Commissioning Phase II	6/17/13	7/23/14	_								เรเลแลเ		
Installation of external shield	11/4/13	1/15/14	-			C	3			a	nd test	: of th	ne
Base T Full Load - Commissioning Phase III	7/24/14	10/8/14	-						C 3		nunann	io oo	.+
7.3 Tower Assembly & Integration	5/7/12	7/21/14	-						· -	- C	yogen	ic se	er-up
Crystal Gluing	5/7/12	1/23/14			_					deter	tor		
Assemble Towers 1 to 5	3/21/13	8/7/13					_			ucico			
Assemble Towers 6 to 11	8/8/13	1/9/14	-		C					asser	nbl		
Assemble Towers 12 to 19	1/10/14	7/21/14	-										
7.4 Electronics install & Commissioning	0/00/14	0/07/15	-						_				
US Scope Complete	0/22/14	2/21/15	-						A 9/22				
Open and prepare for Installation	10/0/14	11/12/14	-						• 0/22				
Installation of the 19 CLIORE Towers	11/13/14	12/11/14	-					dataatar					
DCS Internal Guide Tube Installation and Connections	12/12/14	12/18/14	-					delector	_				
Detector Insertion Complete	1/14/15	1/14/15	-					insertion			▲ 1/14		
System Closeout Complete	1/14/15	1/14/15	-						L .		▲ 1/14		
			-								• -,		
Pre-Ops	3/2/15	8/14/15	-								-		
Pre-Ops	3/2/15	8/14/15									Ē		
Start Data Taking	8/14/15	8/14/15	-								_		

Building

2nd Level

- Top flange access
- Suspension access
- Electronics & DAQ

- services (pumps, DU gas handling, compressors...)
- shields and screens storage

Cryogenic Set-up

- Dilution unit fully commissioned at LNGS. Performance better than expected (T<5mK).
- Cryostat fully delivered at LNGS
- Commissioning of the cryogenic setup started on July 2012
- 3 (of 6) cryostat vessels (OVC+IVC) installed and tested:
- 2 successful cooldowns (4K)
- subsystem tests:
 - suspension
 - DCS
 - cooling units

Installation & test

DCS (top view)

Details inside the cryostat

External shield

Room Temperature (ext) shield

PSA (Part Storage Area)

- Boxes of glued crystals are put inside N₂-fluxed
- PSA storage cabinets to await assembly

Detector assembly

Organized in 4 main operations

- 1. Cleaning of the copper wiring strips as well as assembly tools and equipment;
- 2. Gluing of thermistors and heaters to the TeO2 crystals;
- 3.Mechanical assembly of the glued crystals, copper, PTFE, and wire strips into towers;
- 4.Bonding of Au wires between the crystals' thermistors & heaters and the wire strips
- All activities are carried out inside the clean room on the second floor of the CUORE hut.
- Started gluing operations in late February 2013.

Presently:

- glued crystals for about 10.5 towers
- assembled (mechanically): 9 towers
- bonded: 5 (soon 7).
- Bonding problem with T5 and T6. Different recovery options

Detector assembly

CLEANING	GLUING	ASSEMBLY	BONDING
CLEANING	GLUING	ASSEMBLY	BONDING
 Gluing consumables Periodic clooping of 	 Attach NTDs & heaters to crystals 	 Mechanical assembly of crystals and copper into towers 	 Bond Au wires connecting NTDs & heaters to external traces
cleaning of glove boxes (every ~ 3	Many ta	asks can be done in par	allel, but there are constr

CUORE Clean Room

Sensor gluing

Mechanical assembly

Cabling

Assembly: tower n.2

Bonding

Storage

- 6 storage stations inside clean room
- 13 more stations planned for upstairs electronics room

Detector finalization

TSP (Tower Support Plate)

- Detector suspension •
- Wire routing/installation ullet
- DCS routing •
- Cryostat & suspension interface

Mockup

Tower installation

O.Cremonesi - October 15, 2013 - The US-Italy Physics program @ LNGS, Princeton

Conclusions

CUORE-0

- After a series of problems mainly related to yieldings of the old Cuoricino cryostat (installed at Gran Sasso since 1989) CUORE-0 has entered data taking phase.
- Preliminary informations on detector performance and background are already available
- According to CUORE0 performance, CUORE0 will overtake Cuoricino sensitivity in spring 2014. It is providing important information for CUORE

CUORE

- Preparation phase almost completed or going to completion (crystals, copper parts, cryogenics, shields,...)
- Detector construction and setup installation are well advanced.
- Construction and installation programs constantly checked against master plan
- Cryostat construction has been completed.
- The commissioning of the 3 external chambers at 300, 40 e 4 K has been completed. The system has been cooled successfully to 4K twice .
- According to present plan the first cool-down of CUORE cryostat to base T is expected for the beginning of 2015