Evidence for $v_{\mu} \rightarrow v_{\tau}$ oscillations in the OPERA experiment

Giovanni De Lellis

University "Federico II" of Napoli and INFN Napoli

On behalf of the OPERA Collaboration

PERA

THE OPERA COLLABORATION

150 physicists, 28 institutions in 11 countries

Physics motivation in the neutrino physics landscape Super-K (1998): atmospheric neutrino anomaly interpretable as $v_{\mu} \rightarrow v_{\tau}$ oscillation CHOOZ (reactor): $v_{\mu} \rightarrow v_{e}$ oscillation could not explain the anomaly K2K and MINOS (accelerator) confirmed the v_{μ} disappearance signal of Super-K

Missing tile: direct observation of v_{τ} appearance in a pure v_{μ} beam Oscillation in appearance mode in the atmospheric sector

THE CNGS NEUTRINO BEAM

Beam parameters

$< E \nu_{\mu} > (GeV)$	17
$(\overline{\nu_e} + \nu_e)/\nu_\mu$	0.8% *
$\overline{\nu}_{\mu}/\nu_{\mu}$	2.0% *
V_{τ} prompt	Negligible

* Interaction rate at LNGS

Nuclear emulsions in particle physics The discovery of the pion (1947)

Powell got the Nobel Prize for Physics in1950. The Committee underlined the simplicity of the used detector

"Charm" was born as "X-particle" (1971) in a 500 h exposure of a ~ 50 kg Emulsion Cloud Chamber (ECC) on a Jet Cargo Airplane

(a) First evidence for the production and decay of short-lived particles (-10^{19} s) in cosmic rays^[49]; (b) the event was observed in an emulsion chamber.

Prog. Theor. Phys. Vol. 46 (1971), No. 5

A Possible Decay in Flight of a New Type Particle

Kiyoshi NIU, Eiko MIKUMO ^{15/10/13} and Yasuko MAEDA our X particle could not be included either in strange particle or in resonance particle.

Nuclear Emulsion Experiments

Revival of the emulsion technique in 1990 due to the development of fully automated scanning systems

DONUT: 120kg emulsion at FNAL

CHORUS at CERN: 780kg(140x140x3 cm³) emulsio

mulaion target & fibre track et

Giovanni De Lellis, Princeton: US-Italy Physics Program at LNGS

OPERA at LNGS: 30000kg emulsion

Evolution of the scanning speed

Early stop institute of Physics The physical test at the NuMi beam at Fermilab

(1ton scale) in front of the MINOS near detector

New Journal of Physics 12 (2010) 113028

THE DETECTOR

Final performances of the CNGS beam after five years of data taking

20% less than the proposal value (22.5)

Charmed hadron production: an application of the decay search a control sample for τ

<u>Charm sample:</u>

Charm yield from the analysis of 2008÷2010 data

	charm	Background	expected	data
1 prong	21 ± 2	9 ± 3	30 ± 4	19
2 prong	14 ± 1	4 ± 1	18 ± 2	22
3 prong	4 ± 1	1.0 ± 0.3	5 ± 1	5
4 prong	0.9 ± 0.2	-	0.9 ± 0.2	4
All	40 ± 3	14 ± 3	54 ± 4	50

Background, mostly from hadronic interactions (contribution from strange particle decay)

Oscillation results

 $\nu_{\mu} \rightarrow \nu_{e}$ analysis

4.1 GeV electron

32 events found in the analyzed sample

19 candidates found in a sample of 505 neutrino interactions without muon

Background from $\nu_{\mu}NC (\pi^0 \rightarrow \gamma \gamma)$

Energy distribution of the 19 v_e candidates

Energy cut		$20~{\rm GeV}$	$30~{\rm GeV}$	No cut
BG common to	BG (a) from π^0	0.2	0.2	0.2
both analyses	BG (b) from $\tau \to e$	0.2	0.3	0.3
ν_e beam contamination			7.7	19.4
Total expected BG in 3-f	4.6	8.2	19.8	
BG to non-standard ν_e via 3-flavour oscillation		1.0	1.3	1.4
oscillation analysis only				
Total expected BG in not	5.6	9.4	21.3	
Data		4	6	19

Observation compatible with background-only hypothesis: 19.8±2.8 (syst) events

3 flavour analysis

Energy cut to increase the S/N

4 observed events 4.6 expected $\Rightarrow \sin^2(2\theta_{13}) < 0.44$ at 90% C.L.

 $\nu_{\mu} \rightarrow \nu_{\tau}$ analysis

- 2008-2009 run analysis
- Get confidence on the detector performances before applying any kinematical cut
- No kinematical cut
- Slower analysis speed (signal/noise not optimal)
- Good data/MC agreement achieved

The first v_{τ} "appearance" candidate (2010)

Candidate v_{τ} interaction and τ decay from $v_{\mu} \rightarrow v_{\tau}$ oscillation

Physics Letters B 691 (2010) 138-145

Observation of a first v_{τ} candidate event in the OPERA experiment in the CNGS beam $_{15/10/13}$ Giovanni De Lellis, Princeton: US-Italy Physics Program at LNGS

Event reconstruction in the brick

Kinematical variables

VARIABLE	AVERAGE
kink (mrad)	41 ± 2
decay length (μm)	1335 ± 35
P daughter (GeV/c)	12 ⁺⁶ _3
Pt (MeV/c)	470 ⁺²⁴⁰ -120
missing Pt (MeV/c)	570 +320 -170
ф (deg)	173 ± 2

Strategy for the 2010÷2012 runs

- Apply kinematical selection
- 15 GeV µ momentum cut (upper bound)
- Anticipate the analysis of the most probable brick for all the events: optimal ratio between efficiency and analysis time
- Anticipate the analysis of 0μ events (events without any μ in the final state)

arXiv:1308.2553, to appear on JHEP

Kinematics of the second Candidate Event

	Cut	Value
φ (Tau - Hadron) [degree]	>90	167.8±1.1
average kink angle [mrad]	< 500	87.4±1.5
Total momentum at 2ry vtx [GeV/c]	> 3.0	8.4±1.7
Min Invariant mass [GeV/c ²]	0.5 < < 2.0	0.96±0.13
Invariant mass [GeV/c ²]	0.5 < < 2.0	0.80±0.12
Transverse Momentum at 1ry vtx [GeV/c]	< 1.0	0.31±0.11

Kinematics of the second candidate event

cut

After 2012 Summer conferences

• *Extension of the analysed sample to events* with one μ in the final state

Third tau neutrino event taken on May 2nd 2012

$\tau \rightarrow \mu$ candidate brick analysis and decay search

Decay in the plastic base

Giovanni De Lellis, Princeton: US-Italy

Physics Program at LNGS

Third tau neutrino event $\tau \rightarrow \mu$

15/10/13

Giovanni De Lellis, Princeton: US-Italy

Physics Program at LNGS

Event tracks' features

TRACK NUMBER	PID	MEASUREMENT 1			N	IEASUR	EMENT 2
		$\Theta_{\rm X}$	$\Theta_{ m Y}$	P (GeV/c)	$\Theta_{\rm X}$	$\Theta_{ m Y}$	P (GeV/c)
1 DAUGHTER	MUON	-0.217	-0.069	3.1 [2.6,4.0]MCS	-0.223	-0.069	2.8±0.2 Range (TT+RPC)
2	HADRON Range	0.203	-0.125	0.85 [0.70,1.10]	0.205	-0.115	0.96 [0.76,1.22]
3	PHOTON	0.024	-0.155	2.64 [1.9,4.3]	0.029	-0.160	3.24 [2.52,4.55]
4 PARENT	TAU	-0.040	0.098		-0.035	0.096	

y attachment

	$\delta heta_{ m RMS}$ (mrad)	DZ (mm)	Measured IP (µm)	IP resolution (µm)	ATTACHMENT
1ry vertex	6	3.1	18.2	13.6	ОК
2ry vertex	6	2.8	68.7	12.2	EXCLUDED

Muon charge and momentum reconstruction

Charge determination of the muon

Charge measurement based on TT and RPC hits Parabolic Fit with p2 as quadratic term coefficient in the magnetized region Linear fit in the non-magnetized region

Physics Program at LNGS

Kinematical variables. All cuts passed: $\tau \rightarrow \mu$ candidate

Statistical considerations

	Background	Charm	µ scattering	had int
$\tau \rightarrow h$	$0.027 {\pm} 0.005$	0.011		0.016
$\tau \rightarrow 3h$	0.12±02	0.11		0.0021
$\tau \rightarrow \mu$	$0.02{\pm}0.01$	0.0023	0.009	
$\tau \rightarrow e$	0.020 ± 0.004	0.02		
total	0.184±0.025	0.15	0.018	0.019

3 events observed in the τ→ h and τ→ 3h and τ→ μ channels with a total background of 0.184±0.025
p-values of each channel combined with an estimator p* = p_µp_ep_hp_{3h} Probability to be explained as a background, p* < p_{obs} = 2.9 x 10⁻⁴
→ 3.4 σ significance of non-null observation

Evidence for $v_{\mu} \rightarrow v_{\tau}$ oscillations in appearance mode

Thank you for your attention

