W,Z analysis items and tools

M. Bellomo, INFN Pavia

on behalf of Pavia, Roma I, Roma 2, Roma 3 groups

ATLAS Analysis Italia

Frascati June 19, 2008

Outline

First Part on Physics

- Acceptance
 - **★** studies from MC generator comparisons
- Efficiency
 - \star measurement from data
- Momentum scale
 - \star analysis from data with Z decay

Second Part on Tools (EWPA)

- Analysis tools
 - ★ Overview of EWPA framework

• Starting from the well-known formula

$$\sigma_{V \to ll} = \frac{(N_{obs} - N_{bgk})}{\int \mathcal{L}dt \cdot \mathbf{A} \cdot \boldsymbol{\epsilon}}$$

- In this talk focus on:
 - **★** Acceptance measured from MC and defined as (as example)
 - $W \rightarrow \mu \nu$: fraction of events with at least <u>I μ with $p_T > 20$ GeV & $|\eta| < 2.4$ </u>
 - $Z \rightarrow \mu\mu$: fraction of events with at least 2μ with $p_T > 20$ GeV & $|\eta| < 2.4$
 - ★ Efficiencies measured from data
 - $Z \rightarrow \mu \mu$: calculated from data using Tag&Probe method
 - $W \rightarrow \mu \nu$: use $\epsilon(p_T, \eta, \phi)$ calculated from Z events
 - ★ Analysis of muon momentum scale

Theoretical uncertainties coming from

★ NLO corrections (QCD and EW)

Acceptance

Theoretical uncertainties coming from

★ NLO corrections (QCD and EW)

★ Initial State Radiation (ISR) and Final State Radiation (FSR)

- **\star** Intrinsic k_T of the incoming partons (k_T)
- ★ Underlying Event (UE)
- ★ Matrix element corrections (ME)
- ★ Parton Density Functions (PDF)

taken from CSC note "Electroweak boson cross-section measurments with ATLAS"

- In HORACE (Higher Order RAdiative CorrEctions) is a Monte Carlo generator for single W/Z boson production at hadron colliders. It simulates:
 - ★ complete O(α) EW corrections and QED radiations beyond O(α) corrections
- Complete $O(\alpha)$ EW corrections
 - ★ vitual one-loop corrections⇒ electroweak Sudakov logs

★ real bremsstrahlung corrections
 ⇒ collinear singularities

¹ Carloni Calame, Montagna, Nicrosini, Treccani, Vicini - <u>http://www.pv.infn.it/~hepcomplex/horace.html</u>

- HORACE (Higher Order RAdiative CorrEctions) is a Monte Carlo generator for single W/Z boson production at hadron colliders. It simulates:
 - ★ complete O(α) EW corrections and QED radiations beyond O(α) corrections
- QED radiations beyond $O(\alpha)$ corrections
 - ★ to simulate the mechanism of multi-photon emission the QED Parton Shower approach is used to exactly solve the QED DGLAP equations for the lepton Structure Function $D(Q^2,x) \qquad Q^2 \frac{\partial}{\partial Q^2} D(x,Q^2) = \frac{\alpha}{2\pi} \int_x^1 \frac{dy}{y} P_+(y) D(\frac{x}{y},Q^2)$ $P_+(x) = \frac{1+x^2}{1-x^2} - \delta(1-x) \int^1 dt P(t)$
 - **\star** the D(Q²,x) accounts for universal virtual and real photon emissions, in collinear approximation, up to all order in p_T
 - allows for exclusive photon generations , a "full" radiation event simulation can be done
 - ★ QED PS matched with NLO EW (to avoid double counting)
 - ★ See <u>here</u> for Horace ATLAS Interface

¹ Carloni Calame, Montagna, Nicrosini, Treccani, Vicini - <u>http://www.pv.infn.it/~hepcomplex/horace.html</u>

NLO effects

Iffects for NLO QCD, QED and EW corrections have been evaluated comparing

- ★ Herwig LO vs Horace LO born tuning (born tuning)
- ★ Herwig+Photos vs Horace QED (NLO QED)
- ★ Herwig LO vs MC@NLO (NLO QCD)
- ★ Horace QED vs Horace EW (NLO EW)
- \odot Athena 11.5.0 EW corrections are evaluated in the G_{μ} scheme

\star here are the generators main parameters

$\alpha = 0.0072993$	$\alpha_s(M_Z) = 0.118$	$sin^2\theta_W = 0.2319$
$\Lambda_{QCD} = 0.18 \text{ GeV}$	$m_Z = 91.19 \text{ GeV}$	$m_W = 80.425 \text{ GeV}$
$\Gamma_Z = 2.495 \text{ GeV}$	$\Gamma_W = 2.124 \text{ GeV}$	$m_H = 115 \text{ GeV}$
$m_e=510.99892~{\rm KeV}$	$m_{\mu} = 105.658369 \text{ MeV}$	$m_{\tau} = 1.77699 \text{ GeV}$
$m_u = 320 \text{ MeV}$	$m_c = 1.55 \text{ GeV}$	$m_t = 174.3 \text{ GeV}$
$m_d = 320 \text{ MeV}$	$m_s = 500 \text{ MeV}$	$m_b = 4.95 \text{ MeV}$
$V_{ud}^2 = 0.9512$	$V_{us}^2 = 0.0488$	$V_{ub}^2 = 0$
$V_{cd}^2 = 0.0488$	$V_{cs}^2 = 0.9492$	$V_{cb}^2 = 0.002$
$V_{td}^2 = 0$	$V_{ts}^2 = 0.002$	$V_{tb}^2 = 0.998$

Explanation	name	value						
HERWIG - JIMMY								
Multiparton interaction	msflag	1						
version	jmueo	1						
\mathbf{p}_T^{min} of secondary scatters	ptjim	$3.85~{\rm GeV}$						
Inverse proton radius squared	jmrad(73)	1.8						
minimum lifetime for particle								
to be set stable $(K_0 \text{ and } \Lambda)$	pltcut	$3.33 \mathrm{\ ps}$						
\mathbf{p}_T^{min} in hadronic jet production	ptmin	$10.~{\rm GeV}$						
РНОТОЅ								
Enable radiation of photons								
for leptons and hadrons	pmode	1						
Infrared cutoff for photon radiation	xphcut	0.01						
α value used								
$(-1 \Rightarrow \alpha = 0.00729735039)$	alpha	-1						
Photon interference weight switch	interf	1						
Double bremsstrahlung switch	isec	1						
Higher bremsstrahlung switch	itre	1						
Exponential bremsstrahlung switch	iexp	1						
Switch for $gg(qq) \to t\bar{t}$ process radiation	iftop	0						

NLO effects: born tuning

• Born level tuning

 before make comparisons of QED radiation effects a born tuning has been done at 0.2% level

Generator	σ^W_{LO} (pb)
HERWIG _{LO}	17931.86 ± 6.49
$HORACE_{LO}$	17935.85 ± 4.97
$\delta = {\rm HO-HE/HO}$	$(2.2 \pm 4.6) \times 10^{-4}$

Acceptances have been studied as

$$A_W(\eta_\mu(max)) = \frac{1}{\sigma_{tot}} \int_0^{\eta_\mu(max)} d|\eta_\mu| \frac{d\sigma}{d|\eta_\mu|}$$

$$A_W(p_\mu^T(min)) = \frac{1}{\sigma_{tot}} \int_{p_\mu^T(min)}^{\sqrt{s}/2} dp_\mu^T \frac{d\sigma}{dp_\mu^T}$$

$$\Delta A_W = A_W^{HORACE_{LO}} - A_W^{HERWIG_{LO}}$$

NLO effects: QED

QED radiation as described in Herwig+Photos vs Horace_QED

Generator	σ^W_{LO} (pb)
LO+PHOTOS	17927.42 ± 6.44
HORACE _{QEDps}	17918.66 ± 4.93
$\delta = \text{HO-PHOT/HO}$	$(-4.9 \pm 4.5) \times 10^{-4}$

ATLAS Analysis Italia - Frascati - June 19, 2008

NLO effects: QED

 QED radiation as described in Herwig+Photos vs Horace_QED

\star acceptances agree within 1%

Generator	σ^W_{LO} (pb)
LO+PHOTOS	17927.42 ± 6.44
$HORACE_{QEDps}$	17918.66 ± 4.93
$\delta = \text{HO-PHOT/HO}$	$(-4.9 \pm 4.5) \times 10^{-4}$

NLO effects: EW

Analysis of the EW NLO corrections

★ comparisons to Horace_QED

Generator	σ^W_{LO} (pb)
HORACE _{LO}	17686.24 ± 1.51
$HORACE_{QEDps}$	17700.95 ± 1.51
$HORACE_{EW}$	17414.58 ± 1.98
$\delta = EW\text{-}LO/LO$	-0.0156 ± 0.0001
$\delta = EW\text{-}QEDps/QEDps$	-0.0164 ± 0.0001

Analysis of the EW NLO corrections

\star effects < 0.2%

• Analysis of the QCD NLO corrections

★ using MC@NLO

★ enhancement of production at high-pT

Generator	σ^W (pb)	$\epsilon_{g.f.} (p_{\mu}^{T} > 5 \ GeV \ , \ \eta < 2.8)$
HERWIG _{LO}	17931.86 ± 6.49	$0.712~(\sim 6\cdot 10^{-4})$
LO+PHOTOSME	17939.64 ± 6.42	$0.712~(\sim 6\cdot 10^{-4})$
MC@NLO	13861.55 ± 25.32	$0.999~(\sim 10^{-4})$
$HORACE_{EW}$	19032.66 ± 2.33	$0.719~(\sim 6\cdot 10^{-4})$

Analysis of the QCD NLO corrections

\star effects at the level of 1% going to 2% at high p_T cuts

ATLAS Analysis Italia - Frascati - June 19, 2008

- We studied acceptance's consistency between HERWIG and PYTHIA, both in Stand Alone mode and in the Athena framework at generation level, imposing kinematical cuts on the following Drell Yan processes:
 - **★** ₩→μν, ev
 - ★ Z→μμ, ee
- Goal is to understand the kinematical cuts to be applied and ensure all the job options to be exactly the same; compare acceptance values with previous work done at CERN
 - ★ M. Goulette's study of systematics with Herwig/Pythia/MC@NLO in Athena, at generation level
 - ★ T. Petersen's study of W mass; in particular, study of prefilter efficiencies at reconstruction level
 - * "W mass CSC Note: Measurement of W boson mass at ATLAS with early data" ATLAS Collaboration, 3 april 2008

Comparison with T. Petersen's work

Pythia in Athena			Channel k		inematics cuts (allowed region)					
C		Incha			$W \to e \nu$		p	$p_T^e >$	> 20 GeV,	$\not\!\!\!E_T = p_T^{\nu} > 20 \mathrm{GeV}$
								η_e	$< 1.37 \cup$	$1.52 < \eta_e < 2.5$
					$W \to \mu \nu$	1	p	$p_T^{\mu} >$	$> 20 \mathrm{GeV}$	$\not\!\!\!E_T = p_T^{\nu} > 20 \mathrm{GeV}$
							4	$\eta_{\mu} $	< 2.5	
					$Z \to e^+ e$		p	$p_T^{e^{\pm}}$	$> 20 \mathrm{GeV}$	
								$\eta_{e^{\pm}}$	<1.37 ($1.52 < \eta_{e^{\pm}} < 2.5$
					$Z \to \mu^+ \mu$	u ⁻	p	$p_T^{\mu^{\pm}}$	$> 20 \mathrm{GeV}$	
							,	$\eta_{\mu^{\pm}}$	< 2.5	
			Accepta	nces $[\%]$						
		Stand	Alone	Ath	ena		T.P.			
	Channel	Herwig	Pythia	Herwig	Pythia		CSC not	е		
	$W \to e \nu$	43.38	42.18	41.52	42.84	Ξ	44.3			
	$W \to \mu \nu$	46.12	45.29	45.12	46.37	-	45.4			those are at
	$Z \rightarrow e^+ e^-$	36.23	34.26	33.71	35.22		42.4			reconstruction level
	$Z \to \mu^+ \mu^-$	40.92	40.06	39.53	40.74	-	39.9			

lstituto Nazionale di Fisica Nucleare

Comparison with M. Goulette's results

Due cocc	Amelucia	ATHENA				
Process	Analysis	Herwig	Pythia	Mc@NLO*		
$\bigvee \rightarrow eV$ pT > 25 GeV: both $ \eta < 2.5+cracks$ only for electron	MG	34.27	34.5 I	36.84		
	RM2	34.4	34.12	(to do)		
$Z \rightarrow ee$ pT > 20 GeV: both	MG	45.27	46.20	51.02		
$ \eta < 2.5+cracks:$ both, $\sqrt{s} > 60$ GeV	RM2	33.7I	35.22	(to do)		

• Still to clarify $Z \rightarrow$ ee discrepancy: reconstructed events?

• MC@NLO comparison

• Studies with MC@NLO of systematic errors on acceptance due to:

★ Different PDFs, ISR, FSR, kT of incoming partons, UE, ME, EW corrections

Acceptance

Summarizing all considered effects (from CSC note and previous analysis)

channel effect	ISR*	kτ	UE	ME	PDF**	QED	QCD	EW
W→µv	10.2%	I.9%	I.0%	neglig.	۱%	I.8%	0.6%	neglig.
Z→µµ	2.8%	0.5%	0.9%	neglig.	۱%	2.8%	tbe***	tbe***

^{*} effect only in Pythia

** measured from CTEQ 6.5 error set

** to be evaluated in new analysis in release 14

• Total relative uncertainty is calculate taking 20% (th. uncert.) of above numbers

 \star $\delta A/A = 2.3\%$ for W events and $\delta A/A = 1.1\%$ for Z events

- \star QCD and EW effects to be added
- Next analysis will focus on complete calculation for QCD and EW NLO effects and PDF uncertainties impact (using also different sets/effects, help is needed here!)

- Measurements referred to Inner Detector or Muon Spectrometer offline reconstruction c₁*c₂ <0, 81<M_{μμ}<101 GeV, p_T>20 GeV
- Background rejection with kinematic and tight isolation cuts
 - ★ ID ⇒ ΣN^{ID} < 4, Σp^{ID} < 8GeV,

Cut-flow diagram

 $fLdt = 50 \text{ pb}^{-1}$

of selected (ID) probes

★ Calo \Rightarrow E_{jet} < 15GeV, ΣE_T^{EM} < 6GeV

OppCharge Start DeltaPhi Solation Veto Cand Probes

```
• Errors for 50 pb<sup>-1</sup> \approx 0.3% (stat) ± 0.5% (syst.) background contribution <0.1%
```

 $Z/\gamma^2 \rightarrow \mu\mu$

bb → μμ

∐tī → WW

Ζ/γ → ττ

2

tag and probe cut flow

EF

Tag and Probe method

 10^{9}

 10^{8}

 10^{7}

10⁶

10⁵

10⁴

 10^{3}

10²

10

10⁻¹

1

entries

ATLAS Analysis Italia - Frascati - June 19, 2008

Fractional efficiency difference

- Study trigger efficiency using Tag and Probe on $Z \rightarrow \mu^+ \mu^-$ events
- ATHENA algorithm
- Analysis from AOD with ROOT output (ntuple and histograms)
- Efficiency is evaluated using only reconstructed quantities; MC truth is used only to control the fake level
- Segnale $Z \rightarrow \mu^+ \mu^-$:
 - ★ 33.000 events (about 40 pb⁻¹ @ 10 TeV)
 - ★ no pile-up and cavern background
 - ★ generation filter: at least 1µ with $p_T > 10$ GeV in the acceptance region ($\epsilon \approx 85\%$)
- Samples and cross cross sections [pb]
 - **★** Z→μ+μ- (5145) σ = 1200
 - ★ Z→τ+τ- (5146) σ = 1200
 - ★ W→µν (5105) σ = 10000
 - ★ Zbb→4l (5177) σ = 0.5
 - **\star** ttbar (5205) σ = 460

Still missing bbar (not simulated in rel13)

- Tag selection:
 - \star pT >5 GeV and $|\eta| < 2.5$
 - ★ Combined muon (or standalone for first data analysis)
 - ★ Impact parameter cut $d_0 < 0.1$ mm
 - ★ Trigger EF (EF_mu20)
 - ★ ID and Calorimeter isolation in a 0.3 cone (4.5 GeV)
 - \star If more than I tag is found, then we keep them all
- Probe selection:
 - ★ ID tracks (tag subtracted) w/ opp charge
 - ★ pT >5 GeV and $|\eta|$ < 2.4
 - **\star** Impact parameter cut d₀ < 0.1 mm
 - **\star** Same tag vertes $d_{z0} < 0.5$ mm (for pile-up)
 - ★ ID isolation in a 0.3 cone (1.6 GeV)
 - $\star \Delta \phi$ cut tag-probe (π ± 1.0)

- Cut on the tag-probe invariant mass within
 6σ from Z mass, about 12 GeV
- ★ If more than I probe selected, keep the one with tag-probe invariant mass closer to Z mass

Tag and Probe selection

 \odot transverse momentum and η, ϕ distribution for selected probes

• Then check after trigger level

★ Level I acceptance effects clearly visible

• Trigger turn-on curves for mul0 and mu20

MC TagAndProbe

Background analysis

sample	probe/pb ⁻¹	
Z→µ⁺µ⁻	730.9	96.74%
W→µv	20.2	2.67%
ttbar	2.9	0.38%
Z→µ⁺µ⁻	I.5	0.2%
Z→T⁺T⁻	I.3	0.17%
Zbb→4l	5 I 0 ⁻⁴	<0.01%

- On 33000 events we select (wrt sample w/o pile-up) 27491 (32414) tag
 - \star most are reduced by the trigger
- 15752 (20144) probe, where isolation cut has the bigger impact
 - **★** cause we are not asking that isolation tracks are coming from interaction vertex
- 0.3% (0.2%) is the probe fake level

- After last W,Z meeting we (Rome3) we have decided to use EWPA for Combined Performance (CP) studies and also for physics analysis
- EWPA tutorial was made in Roma Tre on May 12 See link from twiki <u>https://twiki.cern.ch/twiki/bin/view/Atlas/EWPARome3TutorialSession</u> (Note this is with ATHENA 13.0.40, outdate for recent devs ...)
- However tutorial has been very useful to start first CP studies from AODs of release I3 and to make a preliminary analysis of FDR2 data

- FDR2: Run 52293 ~ 110000 events from the Muon Stream
- In the second second
- DPDs have been produced on the grid from AODs (Athena 14.1.0, EWPA-00-02-03) and then analized locally in ROOT
- Di-muon invariant mass selected with only
 - ★ pt>10 GeV & |η|<2.4</p>

- EWPA modularity allows to easily create new analysis tools in Athena
- We are now developing the EWMuCP tool to study Combined Performance on the momentum scale. Developments is done also at ROOT level using the D3PD made in EWPA
 - \star easy test of the new code before update into EWMuCP
- To study the momentum scale we use the parametrization proposed by O. Kortner

- The analysis is organized into 2 steps:
 - \star I) Study of effects of δB, δgr, ε parameters variations on observables (today results)
 - \star 2) Reconstruction of variations starting from observables with a constrained-fit event-by-event minimizing the difference (M_{inv}-M_Z).
- ${\small \odot}$ Constrained-fit: we use a X^2 function with $\delta B, \delta gr, \epsilon$ as fit parameters:

$$X^{2} = \left(\frac{\delta \overline{B}}{1\%(?)}\right)^{2} + \left(\frac{\delta gr}{500\,\mu m(?)}\right)^{2} + \left(\frac{\varepsilon}{5\%(?)}\right)^{2} + \frac{\left(M_{inv} - 91\right)^{2}}{\Gamma_{Z}^{2}} + ?$$

- The '?' means that the variation scales have to be optimized and that other terms could be added (e.g. asymmetry)
- The distributions of the fit parameters should give the mean corrections to be applied to the given set of data

\odot 30 k events, variation of B from 0 to 1 %

\odot 30 k events, variation of B from 0 to 1 %

$$\delta p = p_{MS} \left(\delta \overline{B} + \frac{p_{MS}}{g | \int_{P} \overline{B} \times d\overline{l} |} \bullet \delta gr \right) + (1 + \varepsilon) E_{loss}$$

Momentum scale

- <u>Acceptances</u>: different effects have to be considered
 - ★ Focalize to NLO effects to fill the table with updated numbers (PV)
 - \star Help is needed for the analysis of the impact of PDFs (?)
 - ★ Still to clarify $Z \rightarrow ee$ discrepancy: reconstructed events? (RM2)
 - ★ MC@NLO comparison (RM2)
 - ★ Studies with MC@NLO of systematic errors on acceptance (RM2)
- Efficiencies from data:
 - ★ Analysis and method are quite stable since CSC analysis, going to be ported to common tools for the collaboration (PV in collab. with M.Schott, see next slides ...)
 - ★ If enough statistic they will be tested also in FDR2 data (PV)
 - ★ Detailed tests with new pile-up (first results show robustness of method) (PV-RMI)
 - ★ Analysis of bbar background (RMI)
 - ★ Efficiency without combined muons (RMI)
- Momentum scale
 - ★ Continue the development of the constrained fit (RM3)
 - ★ The first results show a good sensibility in studied variables and it should be possible to determine single contributions (RM3)
- ${\ensuremath{\, \bullet }}$ I've prepared a item-table to discuss with you at the end of the talk ...

- EWPA has its own Tag and Probe Athena/ARA tool that allow to loop on pairs of selected TP tracks flagged with a selection bit-set
 - * see more details at https://twiki.cern.ch/twiki/bin/view/Atlas/EWPATagAndProbeMethod

Objectives

- Not every user should run own performance evaluation in data
- Performance groups should provide central processed information
 - Common definition of efficiency and resolution
 - Common basis for calculating systematic uncertainties
- Common database access
- Provide Interface to ATLFast I

Probe Collection Tool

- Athena Tool
- Creating a collection of Probe-tracks in Store-Gate
- Example for muons: Collection of ID tracks which fulfill the Z Boson selection requirements

Efficiency determination

- Athena Algorithm (should be independent from probe selection)
- Testing if reconstructed muon can be matched to Truth/Probe/...

Storage of efficiency information

- Common way of representation efficiencies
 - Tag & Probe efficiencies
 - Based on Monto Carlo Truth
- For various reconstruction algorithms

Condition database

 Common access of performance information for the whole collaboration

- The direction is for common tools for the collaboration developed together with Performance Groups
 - ***** i'm collaborating with M. Schott to merge our tools as a standard tool (also for egamma)
 - **★** working also on representation of efficiency with DB connection

APEfficiencyEntry

- Number of trials
- Number of successes
- Methods for efficiency/ uncertainty calculation

Derived classes: Muon Example

- Predefined binning with respect of the muon spectrometer
- Predefined dimensions: φ, η, p_T, (isolation)
- Special functions for Muon-Object support

APEfficiencyMatrix

- Represents a 1 to 4 dimensional matrix
- Full userdefined, variable binning
- Projection methods, i.e. can project efficiency distribution on chosen dimension
- Additive, i.e.
 - can add efficiency information of two Athena jobs, luminosity blocks, ...
- Interface to conditions database
- Member variables for identification in database: NameID, Software Version, Interval of validity
- Further user-methods:
 - Create Root histograms

• ...

EWPA analysis package

M. Bellomo, INFN

ATLAS Analysis Italia

Frascati June 19, 2008

- Every AOD based analysis requires a set of common actions
 - **★** accessing information from AOD through StoreGate service
 - \star pre-filter particles when reading
 - ★ remove overlap between objects
 - ★ make track-matching
 - **★** calculate general User Data information and attach it to the relevant objects
 - \star save all of that on disk to iterate analysis over more steps

- Every AOD based analysis requires a set of common actions
 - ★ accessing information from AOD through StoreGate service
 - \star pre-filter particles when reading
 - ★ remove overlap between objects
 - ★ make track-matching
 - \star calculate general User Data information and attach it to the relevant objects
 - \star save all of that on disk to iterate analysis over more steps
- So why not take these actions to a common abstract level ? This will
 - prevent to "re-invent the wheel" every time :-)
 - * easy the development of new analysis tools since many services are already in place
 - ★ allow for validation of common part by a larger community of people with all the derived benefits
 - \star easy the comparisons of different analysis results
 - \star easy the collaboration among different groups

- Every AOD based analysis requires a set of common actions
 - ★ accessing information from AOD through StoreGate service
 - \star pre-filter particles when reading
 - ★ remove overlap between objects
 - ★ make track-matching
 - \star calculate general User Data information and attach it to the relevant objects
 - \star save all of that on disk to iterate analysis over more steps
- So why not take these actions to a common abstract level ? This will
 - prevent to "re-invent the wheel" every time :-)
 - * easy the development of new analysis tools since many services are already in place
 - ★ allow for validation of common part by a larger community of people with all the derived benefits
 - \star easy the comparisons of different analysis results
 - \star easy the collaboration among different groups
 - \star ... i guess that the list of pro's is clearly longer that the cons's one ...

• EWPA is a modular framework trying to address previous points

• EWPA can run transparently in Athena or in ARA with the same configuration files

- There are inserter tools to read/pre-select objects from StoreGate and put them inside EWEventLibrary
 - ★ interact with SG retrieving the AOD container
 - * apply the pre-selection (fully configurable and with by-pass mode)
 - **★** build the EWEventObject passing to it the AOD particle pointer

- There are inserter tools to read/pre-select objects from StoreGate and put them inside EWEventLibrary
 - \star interact with SG retrieving the AOD container
 - * apply the pre-selection (fully configurable and with by-pass mode)
 - **★** build the EWEventObject passing to it the AOD particle pointer
 - ★ filling EWEventLibrary attaching a Label (C++ enumeration)

- EWEventLibrary holds the vectors of inserted objects labelled in a simple way
- Provides methods to get them, single and combinatorial loops
- \star This greatly simplify the data access
- ★ AOD pre-selection will be made standard for ATLAS with common tools

if(track->muon())
float chi2 = track->muon()->matchChi2();

combinatorial loops

EWEventObject* track; EWEventLibrary::resetCombCounter(EWPA::MuidCBMuon); while(EWEventLybrary::getNextComb(EWPA::MuidCBMuon, track1, track2))

float invMass = trackI->invMass(track2);

- ★ EWTagAndProbe: to select probe tracks for performance from data <THIS WILL BE PORTED OUTSIDE EWPA AS COMMON TOOL>
- **★** Each of them asks particles to EWEventLibrary and add information to EWEventObject

- EWPA can be configured as DPD maker
 - Primary DPD (DIPD): nothing but a small AOD (or ESD for that matter), e.g. a typical AOD may be ~200 KB/event, whereas the DIPD will be ~ 10KB/event
 - ★ Secondary DPD (D2PD): POOL-based DPD with more analysis-specific information. Typically, this is produced from Primary DPD and may be created using standard Athena or by using a framework like <u>EventView</u> or <u>EWPA</u>
 - ★ <u>Tertiary DPD (D3PD)</u>: Does not need to be POOL-based, it includes flat ntuples. Typically the output of an analysis
- DPD making is done via
 - ★ <u>Skimming</u>: Removing uninteresting events (filtering) ex: check if the event has objects fulfilling some conditions on and pt and η
 - Thinning :Removing unused objects ex: electrons, tracks, jets not satisfying particular requirements
 - **<u>Slimming</u>** : Removing properties of objects ex: track summary
- EWPA-00-02-03 supports for thinning of objects, also other features will be added in next update

• Twiki page for run in Ganga <u>https://twiki.cern.ch/twiki/bin/view/Atlas/EWPAFdr2</u>

 \star Just an example of Z to muon selection on 0.36 pb⁻¹ of data

• Different exercises to make D2PD, D3PD stored on the grid

Documentation

Documentation

- **TWiki page** <u>https://twiki.cern.ch/twiki/bin/view/Sandbox/EWPAMainPage</u>
- ★ CVS repository /offline/PhysicsAnalysis/AnalysisCommon/EWPA
- mailing list <u>https://lists.infn.it/sympa/info/ewpa-news</u>
- HowTo tutorials listed from the main twiki
 - ★ How to read the D3PD EWTree
 - ★ How to develop dual tools in EWPA
 - ★ How to run EWPA with FDR2 data
- Doxygen code is quite in place: need only to generate pages and do some checks
 i expect they will be ready soon :-)
- A EWPA session with PAT tutorial will be done at Cern in July (in 14-18 week)

W,Z analysis: trying to fill a table ...

Acceptance	NLO EW	NLO QCD	NLO QED PV R2	PDF
	ISR R2	kt R2	ME R2	UE R2
Efficiency from data	trigger/offline R1 PV	backgrounds R1 PV	probe system	pile-up - caver R1 PV
	fakes R1 PV	efficiency storage x PV		
Momentum scale	Z spectrum analysis R3	constrained fits		
Signal selection and Background estimation [*]	W/Z signals x	EW backgrouns x	QCD background	
EWPA code	PV, RM3 users R3 PV	more devs ?		

*probably all of us want to have a look here

X = others, basically CERN and Lisbona group