The New Muon g-2 Experiment at Fermilab

David Rubin Cornell University October 14, 2013

Measurement

 Anomalous magnet moment of muon measured in BNL E821 (2001) to be
a_μ = 116592089(54)_{stat}(33)_{sys} ×10⁻¹¹
[± 0.54 ppm]

 $[a_{\mu} = (g-2)/2]$

Standard Model Calculation

 At ~ ppm level all standard model particles contribute to the magnetic moment

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{hadronic} + a_{\mu}^{weak}$$

 $a_{\mu} = (g-2)/2$ includes contributions from all standard model particles

Physics

14 October 2013

Contributions to g-2

	Value (× 10^{-11}) units
QED $(\gamma + \ell)$	$116584718.951\pm0.009\pm0.019\pm0.007\pm0.077_{\alpha}$
HVP(lo) [47]	6923 ± 42
HVP(lo) [48]	6949 ± 43
HVP(ho) [48]	-98.4 ± 0.7
HLbL [61]	105 ± 26
EW [54]	153.6 ± 1.0
Total SM $[47]$	$116591802 \pm 42_{\rm H-LO} \pm 26_{\rm H-HO} \pm 2_{\rm other}(\pm 49_{\rm tot})$
Total SM $[48]$	$116591828 \pm 43_{\rm H\text{-}LO} \pm 26_{\rm H\text{-}HO} \pm 2_{\rm other}(\pm 45_{\rm tot})$

Status of Muon g-2 measurement

 Δa_{μ} (E821-SM)=(261/287±80) × 10⁻¹¹ => 3.3/3.6 standard deviations

International Symposium on Lepton Hadron

Statistical fluctuation or new physics

$$\delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2, \quad C = \frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}}$$

14 October 2013

International Symposium on Lepton Hadron

Physics

New muon g-2 experiment

- Goal reduce total uncertainty (statistical and systematic combined) 4-fold to < 0.14 ppm
- If the present discrepancy is a statistical fluctuation, and the measurement is consistent with the standard model, a variety of BSM physics is ruled out.
- If the discrepancy persists with the reduced uncertainty, then new physics, and somewhat constrained

Repeat BNL experiment with more statistics and reduced systematics

Create a beam of polarized muons

Inject the polarized muons into uniform magnetic field – a storage ring

Muons circulate in the B-field

Muon cyclotron frequency for particle of charge "e" in a B field

Muon spin precession rate

$$\omega_s = rac{g_\mu eB}{2m_\mu c} + (1-\gamma)rac{eB}{m_\mu c\gamma}$$

Larmor Thomas precession precession

Muons circulate and decay to positrons $\mu^+ \rightarrow e^+ \nu_\mu \bar{\nu}_e$

Highest energy positrons emitted along muon's spin direction (in Muon center of mass frame)

Energy of decay electrons is correlated with spin of muons The number of high energy decay electrons will oscillate with frequency $\;\;\omega_a$

Schematic of Experiment

Physics

Measurement of ω_a

High energy positrons vs time for 700 us run

International Symposium on Lepton Hadron

Precision B-field

Physics

Storage Ring and Detectors

$$\omega_a = a_\mu \frac{eB}{m_\mu c}$$

To extract a_{μ} need to know the magnetic field B B is measured in terms of precession of free protons in the same B field as muons

We can write $a_{\mu} = \frac{\omega_a}{\omega_L - \omega_a}$ ω_p from NMR probes And then $a_{\mu} = \frac{\omega_a/\omega_p}{\omega_L/\omega_p - \omega_a/\omega_p} = \frac{\omega_a/\omega_p}{\mu_{\mu}/\mu_p - \omega_a/\omega_p}$

Ratio of magnetic moments from muonium hyperfine measurement (30 ppb)

Physics

Vertical focusing

In a perfectly uniform B-field, there is no stable orbit. Particles stray from the plane of the orbit. In order for particles to circulate for 4500 turns require focusing

- Magnetic focusing is precluded as the field would no longer be uniform and it would be difficult to extract a_u
- ? Electrostatic focusing?

$$\vec{\omega_a} = \frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) (\vec{\beta} \times \vec{E}) \right]$$

If Υ = 29.3 and p_{μ} = 3.09GeV/c, no effect on ω_{a} => magic momentum B = 1.45T => R = 7.112 m

Electrostatic quadrupoles are used to vertically focus the muons \Rightarrow Very weakly focusing storage ring

G-2 storage ring at BNL

Moving the ring from Brookhaven to Fermilab

The hard part is moving the three superconducting coils

Continuously wound coils, can't break into pieces can't flex > 3mm

They' re big! 50 ft diameter (takes up \sim 4 lanes on the highway). Not terribly heavy at 15 tons

Traversing Brookhaven National Lab

20 October 2013

Off it goes

off the barge in Illinois

22 October 2013

International Symposium on Lepton Hadron Physics

Wednesday night, on the Tollway

Fermilab Beam Improvements

`Recycler Ring'

Splits each Booster Batch into 4 smaller batches 8-12 msec apart, each 100 nsec wide. (reduces instantaneous rate)

Target Station

Reuse "Lithium Lens" that was used to make antiprotons

Longer pion decay channel Larger Acceptance

`Antiproton Accumulator and Debuncher'

Additional decay line Time-of-flight separation of background protons.

14 October 2013

Physics

Muon production

International Symposium on Lepton Hadron Physics

The Destination (2014)

New building for g-2

`Muon Campus'

How do twiss parameters propagate through iron, cryostat, inflector into ring

(1) hole in back leg, (2) storage ring fringe field, (3) inflector channel

Beam through inflector is tangent to magic radius displaced 77 mm from the center of the storage region

Internally Inflector cancels main dipole field

International Symposium on Lepton Hadron

14 October 2013

Muon storage ring

14 October 2013

International Symposium on Lepton Hadron Physics vacuum chamber 28

Storage Ring Kicker

Coherent oscillations of centroid of imperfectly matched beam

14 October 2013

Transmission line Pulse Forming Network

Ring Injection Kicker

Kicker System – Blumlein PFN

Blumlein prototype

- Length 5m
- Pulse width 50ns
- Impedance 25 ohms
- 561 Transformer oil ε = 2.7

14 October 2013

Kicker system R&D – kicker plates

14 October 2013

International Symposium on Lepton Hadron Physics

Inflector

E821 Inflector

Beam Went Thru Coil Windings !

Inflector aperture is narrow (18mm) Poor match to storage ring acceptance

International Symposium on Lepton Hadron Physics

Electric Quadrupole System Upgrades (BNL)

Thinner Quadrupole Plates And Support Structures

E821: Portions Chemically Thinned to 100 μm Aluminum

Stronger Focusing

Systematics

- Coherent betatron oscillations
 - Horizontal oscillations modulate acceptance of positron detectors
- Electric field not all muons are at precisely the magic momentum
- Pitch vertical betatron motion velocity is not perpendicular to B-field
- Differential decay pions decay in a bend so that muon spin is correlated with energy
- Spin momentum correlation due to bend fields in delivery ring
- Lost muons –
- Pile up in detectors (two positrons hit at nearly the same time confusing energy measurement)
- Drift of detector gain early to late in fill
- Magnetic field uniformity => 0.07 ppm

Just passed DOE CD-1 Review!

		_		•		•										•	•					•														
		2012								2013								Г	2014								2015									
	J	F	Μ.	<u>A N</u>	1 1	J /	A S	0	N D	1	F I	M A	M	3.3	J A	S	0	N D	J	ΕM	A	Μ.	J]	I A	S	01	ND	J	F I	M A	М	1	1 A	S	01	N D
MC-1 Bldg planning																																				
MC-1 Construction																																				
Disassemble BNL ring/beam																	Ι.																			
Shipping window (barge)																			L											_						
Reassemble ring/upgrades										Ι.																										
Cryo plant construction																																				
Field shimming																																				
Detector construction																																				
Accelerator modifications	L																																			

End

BNL E821 Innovation: Muon Injection into Ring

International Symposium on Lepton Hadron Physics