

η and η' Physics at MAMI

Marc Unverzagt Institute for Nuclear Physics University Mainz Messina, 14th October 2013

Marc Unverzagt

LHPMF 2013

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections
- Timelike Transition Form Factor from $\eta/\eta' \rightarrow e^+e^-\gamma$
- Preliminary Results for $\eta \rightarrow \pi^0 \gamma \gamma$
- Future Plans
- Summary

Outline

• Crystal Ball Set-up at MAMI

- η/η' Cross Sections
- Timelike Transition Form Factor from $\eta/\eta' \rightarrow e^+e^-\gamma$
- Preliminary Results for $\eta \rightarrow \pi^0 \gamma \gamma$
- Future Plans
- Summary

Experiments at MAMI

Meson Production with Real Photons

Current production rates on lH₂ target feasible for taking data:

$$η: 10^5 h^{-1} \Rightarrow \text{Goal } 10^6 h^{-1}$$

η': 2·10³ h⁻¹ ⇒ Goal 1.5·10⁴ h⁻¹

Has to be imposed by detection and anlysis efficiencies

 \Rightarrow 4 π Crystal Ball/TAPS setup, e.m. Production mechanism very clean

⇒ Ideally suited to measure high rates of meson decays

η -Photoproduction

At MAMI a beam of tagged photons of excellent quality is available:

- High intensity photon beam
- Fine energy resolution
- Outstanding stability

Beam energy nearly perfect for high statistics η photoproduction

Outline

• Crystal Ball Set-up at MAMI

• η/η' Cross Sections

- Timelike Transition Form Factor from $\eta/\eta' \rightarrow e^+e^-\gamma$
- Preliminary Results for $\eta \rightarrow \pi^0 \gamma \gamma$
- Future Plans
- Summary

η Production

Marc Unverzagt

LHPMF 2013

$\eta' \to \eta \pi^0 \pi^0 \text{ Invariant Mass}$

Marc Unverzagt

LHPMF 2013

η ' Cross Section

Using $\eta' \rightarrow \eta \pi^0 \pi^0$

Marc Unverzagt

LHPMF 2013

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections

• Timelike Transition Form Factor from $\eta/\eta' \rightarrow e^+e^-\gamma$

- Preliminary Results for $\eta \rightarrow \pi^0 \gamma \gamma$
- Future Plans
- Summary

Transition Form Factor with VMD

- Mechanism especially pronounced in timelike region at $q^2 \approx m_V^2$
 - → Virtual meson reaches "mass shell", becomes real
 - → Strong resonance enhancement around vector meson mass
- \bullet TFF behaviour, especially for $\eta^{\prime},$ not well known
- TFF modifies differential decay width

$$\frac{d\Gamma}{dm^2} = \left[\frac{d\Gamma}{dm^2}\right]_{\text{QED}} \cdot \left|F(m^2)\right|^2$$

• For η often one-pole approximation used:

$$|F(m^2)|^2 = \left(1 - \frac{m^2}{\Lambda^2}\right)^{-2}$$
 $\Lambda \approx 0.72 \text{ GeV}$ VMD: $\Lambda \approx m_{\rho} = 0.77 \text{ GeV}$

• For η ' resonance shape:

$$\left|F(m^2)\right|^2 = \frac{\Lambda^2(\Lambda^2 + \gamma^2)}{(\Lambda^2 - m^2)^2 + \Lambda^2 \gamma^2} \qquad \Lambda \approx 0.76 \text{ GeV} \quad \gamma \approx 0.10 \text{ GeV}$$

Hadronic LbL Contribution to $a_{\mu} = (g-2)_{\mu}$

• QED contributions:

 $a_{\mu}^{\text{QED}} = (11658471.895 \pm 0.008) \cdot 10^{-10}$

T. Kinoshita et al., Phys. Rev. Lett. **109** (2012) 111808.

• Electro-Weak contribution:

 $a_{\mu}^{\text{Weak}} = (15.4 \pm 0.2) \cdot 10^{-10}$

A. Czarnecki et al., Phys. Rev. D 67 (2003) 073006. Erratum-ibid. D 73 (2006) 119901.
M. Knecht et al., JHEP 0211 (2002) 003.

• Hadronic vacuum polarisation:

 $a_{\mu}^{\rm VP} = (692.3 \pm 4.2) \cdot 10^{-10}$

M. Davier et al., Eur. Phys. J. C **71** (2011) 1515.

• Hadronic light-by-light:

 $a_{\mu}^{\rm LbL} = (10.5 \pm 2.6) \cdot 10^{-10}$

J. Prades et al., arXiv:0901.0306 (2009).

Transition Form Factors of light pseudoscalar mesons could give important input for SM calculations of $(g-2)_{\mu}$

π⁰, η,

= external B-field

μ

First A2 Result for η TFF

H. Berghäuser et al. (A2-Collaboration), Phys. Rev. B 701 (2011) 562-567.

- Based on kinematic cuts
- Small amount of data
- Limited photoproduction energy range

LHPMF 2013

New Analysis of η TFF

- Based on kinematic fitting
- 3x more data
- \bullet Full η photoproduction range accessible at MAMI used
- 18,000 events (no proton requirement: 22,000 events)

New A2 Result for η TFF

S. Prakhov, M. Unverzagt et al., submitted to Phys. Rev. C

A2, 2011: H. Berghäuser et al., Phys. Rev. B 701 (2011) 562-567.
NA60, In-In: R. Arnaldi et al., Phys. Lett. B 677 (2009) 260.
TL calculation: C. Terschlüsen, Diploma thesis, University Gießen, 2010.
Padé-approximants: R. Escribano, P. Masjuan, P. Sanchez-Puertas, arXiv:1307.2061 [hep-ph].
DT calculation: C. Hahnhart, A. Kupść, U.-G. Meißner, F. Stollenwerk, A. Wirzba, arXiv: 1307.5654 [hep-ph].

Marc Unverzagt

LHPMF 2013

Timelike TFF for η'

S. Wagner, Master thesis, University Mainz, 2013 M. Unverzagt, A. Denig

- $\eta' \to e^+ e^- \gamma$ no observation published yet
- Simulation based on
 - PDG upper limit for branching ratio
 - η' production rate at MAMI-C (5 weeks, total 1.65 million η')
 - Acceptance from ~8.5% (after background suppression)

Marc Unverzagt

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections
- Timelike Transition Form Factor from $\eta/\eta' \rightarrow e^+e^-\gamma$
- Preliminary Results for $\eta \rightarrow \pi^0 \gamma \gamma$
- Future Plans
- Summary

Double Radiative $\eta \rightarrow \pi^0 \gamma \gamma$

- Tree level amplitudes at O(p²) and O(p⁴) vanish
- π and K loops largly suppressed by G-parity and large Kaon mass
- First sizable contribution from (p⁶)
- Coefficients must be determined using models (e.g. VMD)

⇒ Stringent test for χ PT at O(p⁶) as well as models

- Calculations must describe $\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)$ and differential decay width $d\Gamma/dm^2(\gamma \gamma)$
- Discrepancies between models in $d\Gamma/dm^2(\gamma\gamma)$
- Discrepancies in emperimental results for $\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)$
- Experimental challenges:
 - Small rate
 - Large background (e.g. $\pi^0\pi^0$)
 - Only three measurements of $d\Gamma/dm^2(\gamma\gamma)$: CB@AGS, CB@MAMI, WASA@COSY
- New CB@MAMI analysis based on data taken in 2007 and 2009 (6·10⁷ η produced)

Analysis of $\eta \to \pi^0 \gamma \gamma$

- Based on kinematic fitting
- $\pi^0\pi^0$ background suppressed by anti-hypothesis
- Results based on $1.2 \cdot 10^3 \eta \rightarrow \pi^0 \gamma \gamma$ events

• Below preliminary results from 2009

Decay Rate $\eta \rightarrow \pi^0 \gamma \gamma$

General agreement but statistics still not sufficient to distinguish between models. To be submitted soon!

CB (AGS): S. Prakhov et al., Phys. Rev. C **78** (2008) 015206. A2 MAMI-B: S.Prakhov, Proceedings of MENU 2007, published in eConf C070910 (2007) 159. WASA: K. Lalwani, Ph.D. Thesis, Depart. of Physics, Indian Inst. of Technology, Bombay (2010). VMD: J. N. Ng, D. J. Peters, Phys. Rev. D **46** (1992) 5034. Ch. Unitary: E. Oset, J.R. Palaez, L. Roca, Phys. Rev. D **77** (2008) 073001. Ch. Lagrang.: I. V. Danilkin, M. F. M. Lutz, S. Leupold, C. Terschlüsen, arXiv:1211.1503 [hep-ph].

Marc Unverzagt

LHPMF 2013

Decay Width of $\eta \to \pi^0 \gamma \gamma$

 $\Gamma = (0.84 \pm 0.19) \ {\rm eV}, \ {\rm GAMS2000, 1984}$

 $\Gamma = (0.45 \pm 0.12) \text{ eV}, \text{ CB(AGS)}, 2005$

 $\Gamma = (0.11 \pm 0.04) \text{ eV}, \text{ KLOE}, 2006 \text{ (preliminary)}$

 $\Gamma = (0.290 \pm 0.063)$ eV, A2(MAMI B), 2007 (preliminary)

 $\Gamma = (0.285 \pm 0.068)$ eV, CB(AGS), 2008 (reanalysis of 2005)

 $\Gamma = (0.33 \pm 0.11) \text{ eV}, \text{ WASA at COSY}, \text{Ph.D. thesis of K. Lalwani, 2010 (preliminary)}$

$$\begin{split} \Gamma &= (0.30^{+0.16}_{-0.13}) \text{ eV}, \text{ VMD}, 1992 \\ \Gamma &= (0.33 \pm 0.08) \text{ eV}, \text{ Ch. Unitary}, 2008 \\ \Gamma &= 0.31 \text{ eV}, \text{ Ch. Lagrang.}, 2012 \end{split}$$

CB at MAMI (2013): S. Prakhov (UCLA, University Mainz)

• Data from 2007 and 2009 combined:

 $\Gamma(\eta \to \pi^0 \gamma \gamma) = (0.33 \pm 0.03_{\text{tot}}) \text{ eV} \quad preliminary$

- Agreement with latest results, except KLOE
- Most precise value from CB@MAMI

Marc Unverzagt

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections
- Timelike Transition Form Factor from $\eta/\eta' \rightarrow e^+e^-\gamma$
- Preliminary Results for $\eta \rightarrow \pi^0 \gamma \gamma$
- Future Plans
- Summary

η/η' Programme

Precise Results in η/η' Physics:

- Cross sections, especially precise in threshold region
- $\eta \rightarrow 3\pi^0$ (Dalitz plot parameter α), $\eta \rightarrow e^+e^-\gamma$ (TFF), $\eta \rightarrow \pi^0\gamma\gamma$ (χ PT, VMD)
- First glances at $\eta' \rightarrow \eta \pi^0 \pi^0$, $\eta' \rightarrow e^+e^-\gamma$

Next η ' Production:

- Summer/fall 2014
- Measure with x4 DAQ speed and longer period
- Goal: 400,000 $\eta' \rightarrow \eta \pi^0 \pi^0$ (Dalitz plot analysis)

~800 $\eta' \rightarrow e^+e^-\gamma$ (Transition Form Factor)

Future Goals:

- Improve Transition Form Factors for η/η' (single/double Dalitz decays) (and $\omega \rightarrow \pi^0 e^+ e^-$?)
- Improve Dalitz plot analyses $\eta/\eta' \rightarrow 3\pi^0$, $\eta' \rightarrow \eta\pi^0\pi^0$ (cusp effects?)
- Radiative decays $\eta' \rightarrow \omega \gamma$, $\omega \rightarrow \pi^0 / \eta \gamma$
- Long term plan: Charged decays

A. Denig, W. Gradl, A. Neiser, M. Ostrick, P. Ott, S. Prakhov, O. Steffen, M. Unverzagt, S. Wagner, M. Wolfes (University Mainz)

Marc Unverzagt

Outline

- Crystal Ball Set-up at MAMI
- η/η' Cross Sections
- Timelike Transition Form Factor from $\eta/\eta' \rightarrow e^+e^-\gamma$
- Preliminary Results for $\eta \rightarrow \pi^0 \gamma \gamma$
- Future Plans
- Summary

Summary

- Most precise η/η' photoproduction cross sections
 - Especially in the threshold regions up to E_{γ} =1.6 GeV
- $\bullet~\eta'$ production at MAMI possible now
 - Preliminary results on η' photoproduction cross section
 - First glances on $\eta' \rightarrow \eta \pi^0 \pi^0$ Dalitz plot and η' Transition Form Factor
- New determination of the Transition Form Factor in $\eta \rightarrow e^+e^-\gamma$
 - More than one order of magnitude more than previous A2 analysis
 - Based on 18,000 events
 - Submitted to Phys. Rev. C
- Very accurate determination of $\eta \rightarrow \pi^0 \gamma \gamma$ decay rate
 - Most precise result today
 - To be submitted soon
- 12 years physics programme funded through DFG (SFB 1044)
 - Broad physics programme including Light Meson Dynamics Transition Form Factors of pseudoscalar Mesons

A2 Experiments

Meson decays with all including physical aspects Polarisabilities of nucleons and pions Properties of the first nucleon excitations

Photoproduction ($E_{\gamma} \leq 1604 \text{ MeV}$)

Mainz Microtron

Mainz Microtron (MAMI-B)

Acceleration via em wave (2.45GHz) cw: bunch structure ~0.4ns Injektion LINAC 3 cascaded Race-Track-Microtrons Magnet of RTM 3 ~450t per Magnet, 1.28T

Marc Unverzagt

LHPMF 2013

Real Photons in A2

Linearly and circularly polarised photon-beam Tagging range: 5.1 to 93% of E_{γ} → Maximum energy tagged for E_0 =1604 MeV is 1491 MeV

Marc Unverzagt

LHPMF 2013

End-Point-Tagger

• Installation of EPT during 2012

Same working principle as main tagging spectrometer $E_{\gamma} \approx 1445-1595 \text{ MeV}$ $\Delta E_{\gamma} \approx 2.5 \text{MeV}$ Non-permanent installation infront of main Tagger

Marc Unverzagt

LHPMF 2013

4π-Setup

Crystal Ball:672 NaI(Tl) crystals93,3% of total solid angleEach crystal equipped with PMT $\frac{\sigma}{E_{\gamma}} = \frac{2\%}{(E_{\gamma}/GeV)^{0.25}}$ $\sigma(\theta) = 2^{\circ}...3^{\circ}$ $\Delta t = 2.5 \text{ ns FWHM}$ $\sigma(\phi) = \frac{2^{\circ}...3^{\circ}}{\sin(\theta)}$

<u>TAPS:</u> Up to 510 BaF₂ crystals Polar acceptance: 4-20° $\Delta t = 0.5 \text{ ns FWHM}$ $\frac{\sigma}{E_{\gamma}} = \frac{0.79\%}{\sqrt{E_{\gamma}/GeV}} + 1.8\%$

Marc Unverzagt

CB PID

Particle Identificaton Detector (PID):

- Cylindrical Detector inside CB
- 24 scintillator strips
- PMT readout

TAPS PI

Marc Unverzagt

LHPMF 2013

Setup Performance

<u>Two main η decay modes:</u>

BR($\eta \rightarrow 2\gamma$)=39.38%

BR($\eta \rightarrow 3\pi^{0}$)=32.51%

 $3 \cdot 10^6 \eta \rightarrow 3\pi^0$ analysed from ~6 weeks $\rightarrow 30M \eta$ produced

Marc Unverzagt

LHPMF 2013

Measurement of TFFs

Marc Unverzagt

Time-like TFF in $\pi^0 \to e^+ e^- \gamma$

H. Berghäuser, PhD thesis, University Gießen, 2010. A2-Collaboration

N.P. Samios et al. (BNL), Phys. Rev. 121 (1961) 275-281.

• Expected behaviour:

$$F(m^2) = \frac{1}{1 - \frac{m^2}{\Lambda^2}} \quad m_{\pi} << \Lambda \quad \Rightarrow \quad F(m^2) \approx 1$$

Marc Unverzagt