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Quantum Entanglement (Bipartite, Pure State)

I quantum system in a pure state |Ψ〉, density matrix
ρ = |Ψ〉〈Ψ|

I H = HA ⊗HB

I Alice can make unitary transformations and measurements
only in A, Bob only in the complement B

I in general Alice’s measurements are entangled with those
of Bob

I example: two spin-1
2 degrees of freedom

|ψ〉 = cos θ | ↑〉A| ↓〉B + sin θ | ↓〉A| ↑〉B



Measuring bipartite entanglement in pure states

I Schmidt decomposition:

|Ψ〉 =
∑

j

cj |ψj〉A ⊗ |ψj〉B

with cj ≥ 0,
∑

j c2
j = 1.

I one quantifier of the amount of entanglement is the entropy

SA ≡ −
∑

j

|cj |2 log |cj |2 = SB

I if c1 = 1, rest zero, S = 0 and |Ψ〉 is unentangled
I if all cj equal, S ∼ log min(dimHA,dimHB) – maximal

entanglement



I equivalently, in terms of Alice’s reduced density matrix:

ρA ≡ TrB |Ψ〉〈Ψ|

SA = −TrA ρA log ρA = SB

I the von Neumann entropy: similar information is contained
in the Rényi entropies

SA
(n) = (1− n)−1 log TrA ρA

n

I SA = limn→1 SA
(n)



I other measures of entanglement exist, but entropy has
several nice properties: additivity, convexity, . . .

I it increases under Local
Operations and Classical
Communication (LOCC)



I it gives the amount of classical information required to
specify ρA (important for numerical computations)

I it gives a basis-independent way of identifying and
characterising quantum phase transitions

I in a relativistic QFT the entanglement in the vacuum
encodes all the data of the theory (spectrum, anomalous
dimensions, . . .)



Entanglement entropy in QFT

In this talk we consider the case when:
I the degrees of freedom are those of a local relativistic QFT

in large region R in Rd

I the whole system is in the vacuum state |0〉
I A is the set of degrees of freedom in some large (compact)

subset of R, so we can decompose the Hilbert space as

H = HA ⊗HB

I in fact this makes sense only in a cut-off QFT (e.g. a
lattice), and some of the results will in fact be cut-off
dependent

I How does SA depend on the size and geometry of A
and the universal data of the QFT?
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Rényi entropies from the path integral (d = 1)
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I wave functional Ψ({a}, {b}) is proportional to the
conditioned path integral in imaginary time from τ = −∞ to
τ = 0:

Ψ({a}, {b}) = Z−1/2
1

∫
a(0)=a,b(0)=b

[da(τ)][db(τ)] e−(1/~)S[{a(τ)},{b(τ)}]

where S =
∫ 0
−∞ L

(
a(τ),b(τ)

)
dτ

I similarly Ψ∗({a}, {b}) is given by the path integral from
τ = 0 to +∞



Example: n = 2

ρA(a1,a2) =

∫
db Ψ(a1,b)Ψ∗(a2,b)

TrA ρ
2
A =

∫
da1da2db1db2 Ψ(a1,b1)Ψ∗(a2,b1)Ψ(a2,b2)Ψ∗(a1,b2)

B

A

TrA ρA
2 = Z (R2)/Z 2

1

where Z (R2) is the euclidean path integral (partition function)
on an 2-sheeted conifold R2



I in general

TrA ρA
n = Z (Rn)/Z n

1

where the half-spaces are connected as

BA

to form Rn.
I conical singularity of opening angle 2πn at the boundary of

A and B on τ = 0



v
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I if space is 1d and A is an interval (u, v) (and B is the
complement) then Z (Rn) can be thought of as the the
correlation function of twist operators:

Z (Rn)/Z n
1 = 〈T (u)T (v)〉

I we can either think of this as the partition function on a
conifold, or consider n copies of the QFT (with fields φj ) on
a single-sheeted surface with T acting as orbifold points in
the target space: on taking z in a closed contour around u

φj(z)T (u)→ φj+1(z)T (u) (mod n)



I these have similar properties to other local operators e.g.
I in a massless QFT (a CFT)

〈T (u)T (v)〉 ∼ |u − v |−2∆n

I in a massive QFT,

〈T 〉 ∼ m ∆n and 〈T (u)T (v)〉 − 〈T 〉2 ∼ e−2m|u−v |

I main result for d = 1

∆n = (c/12)(n − 1/n)

where c is the central charge of the UV CFT



I consider a single cone of radius R and opening angle α
I w = log z maps this into a cylinder of length log R and

circumference α

Zcone(2πn)

Zcone(2π)n =
Zcyl(2πn)

Zcyl(2π)n ∼
eπc log R/12πn

(eπc log R/12π)n ∼ R−∆n



I from this we see for example that for a single interval A of
length ` [Holzhey, Larsen, Wilczek 1994]

SA ∼ −
∂

∂n

∣∣∣∣
n=1

`−2∆n = (c/3) log(`/ε)

I note this is much less than the entanglement in a typical
state which is O(`)

I many more universal results, eg finite-temperature
cross-over between entanglement and thermodynamic
entropy (β = 1/kBT ):

SA = (c/3) log
(
(β/π) sinh(π`/β)

)
∼ (c/3) log ` for `� β

∼ πc`/3β for `� β



Massive QFT in 1+1 dimensions
I for 2 intervals A = (−∞,0) and B = (0,∞)

SA ∼ (c/6) log(1/m · ε)
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1+1-dimensional Ising model, m ∝ |λ− 1|



Two intervals

u vu v
1 21 2

A

I in general there is no simple result since Z (Rn) depends
on the moduli of the conifold
but we can use an operator product expansion

T (u)T (v) =
∑
{kj}

C{kj}(u − v)
n∏

j=1

Φkj

(1
2(u + v)j

)
in terms of a complete set of local operators Φkj

I this gives the Rényi entropies as an expansion in powers∑
{kj}

C2
{kj}η

∑
j ∆kj where η =

(u1 − v1)(u2 − v2)

(u1 − u2)(v1 − v2)

I the C{kj} encode all the data of the CFT



Higher dimensions d > 1

B A

o

I the conifold Rn is now {2d conifold} × {boundary ∂A}

log Z (Rn) ∼ Vol(∂A) · ε−(d−1)

I this is the ‘area law’ in 3+1 dimensions [Srednicki 1992]
I coefficient is non-universal
I for even d + 1 there are interesting corrections

Vol(∂A) m2 log(mε) , log(RA/ε)

whose coefficients are related to curvature anomalies of
the CFT and are universal



I e.g. in 3+1 dimensions, if A is the interior of a sphere S2,
we can make a conformal mapping so the boundary of A
becomes R2

A
B

I in cylindrical coordinates (ρ, θ, x3, x4)

〈Tρρ〉 ∝
(1− 1/n4)a

ρ4 ‘a-anomaly’

ε(∂/∂ε) log Z (Rn) = n
∫
〈Tρρ〉ρdρdθdx3dx4 ∼ ε−2×Area(∂A)



I but when we map back to the sphere

B A

o

〈Tρρ〉 ∝ a (1− 1/n4)

(
1
ρ4 +

1
R2

Aρ
2

+ · · ·

)

ε(∂/∂ε) log Z (Rn) ∼ ε−2 × (4πR2
A) + universal O(1)

S(n)
A ∼ ε−2Area(∂A) + #a (n − 1/n3) log(RA/ε)

[Casini/Huerta, Fursaev/Soludukhin,. . .]



Mutual Information of multiple regions

B A

A

2

1

I the non-universal ‘area’ terms cancel in

I(n)(A1,A2) = S(n)
A1

+ S(n)
A2
− S(n)

A1∪A2

I this mutual Rényi information is expected to be universal
depending only on the geometry and the data of the CFT

I e.g. for a free scalar field in 3+1 dimensions [JC 2013]

I(n)(A1,A2) ∼ n4 − 1
15n3(n − 1)

(
R1R2

r2
12

)2



Negativity
I however, mutual information does not correctly capture the

quantum entanglement between A1 and A2, e.g. it also
includes classical correlations at finite temperature

I more generally we want a way of quantifying entanglement
in a mixed state ρA1∪A2

I one computable measure is negativity [Vidal, Werner 2002]
I let ρT2

A1∪A2
be the partial transpose:

ρT2
A1∪A2

(a1,a2; a′1,a
′
2) = ρA1∪A2(a1,a′2; a′1,a2)

I Tr ρT2
A1∪A2

= 1, but it may now have negative eigenvalues λk

Log-negativity N = log Tr
∣∣ρT2

A1∪A2

∣∣ = log
∑

k

|λk |

I if this is > 0 there are negative eigenvalues. This is an
entanglement measure with nice properties, including
increasing under LOCC – for a pure state N = S(1/2)

A1



Negativity in QFT

I ‘replica trick’

Tr (ρT2
A1∪A2

)n =
∑

k

λn
k =

∑
k

|λk |n if n is even

I analytically continue to n = 1 to get
∑

k |λk | (!!)
I we can compute Tr (ρT2

A1∪A2
)n by connecting the half-spaces

in the opposite order along A2:

2A A1



I going around each conical singularity corresponds to a
cyclic permutation Pn or P−1

n of the n sheets:
I for ρA1∪A2

-1P PP P-1

I for ρT2
A1∪A2

-1P PP P-1

P2
n
∼= Pn (n odd)→ Id for n→ 1
∼= Pn/2 ⊗ Pn/2 (n even)→ P1/2 ⊗ P1/2 for n→ 1



2AA1

I so for example for d > 1 for 2 large regions a finite
distance apart

N (A1,A2) ∝ Area of common boundary between A1 and A2

I N appears to decay exponentially with separation of the
regions, even in a CFT



Other Related Stuff

I ‘quantum quenches’ where the system is prepared in a
state |ψ〉 which is not an eigenstate of hamiltonian: how
does entanglement (and correlation functions) behave?

I topological phases in 2 (and higher) spatial dimensions -
entanglement entropy distinguishes these in absence of
local order parameter [Kitaev/Preskill and many others]

I ’entanglement spectrum’ of the eigenvalues of log ρA
[Haldane]

I entanglement in random states [Nadal/Majumdar]
I holographic computation of entanglement using AdS/CFT

[Ryu/Takayanagi and many others]
I entanglement and RG flows [Casini/Huerta,

Soludukhin,. . .]


