Entanglement in Quantum Field Theory

John Cardy

University of Oxford

University of Pisa, November 2013

Outline

- Quantum entanglement in general and its quantification
- Path integral approach
- Entanglement entropy in 1+1-dimensional CFT
- Higher dimensions
- Mixed states and negativity

Work largely carried out with Pasquale Calabrese (Pisa) and Erik Tonni (Trieste)

Journal of Physics A
 Mathematical and Theoretical

Volume 42 Number 5018 December 2009
SPECIAL ISSUE: ENTANGLEMENT ENTROPY IN EXTENDED QUANTUM systems
introduction
500301 Entanglement entropy in extended quantum systems Pasquale Calabrese, John Cardy and Benjamin Doyon (Guest Editors) Reviews
S04001 Entanglement and magnetic order Entanglement and magnetic or
Luigi Atrico and Rosario Fuzio
S04002 A short review on entanglement in quantum spin systems
${ }^{3} 11$ Latorre and A Riera
S04003 Reduced density matrices and entanglement entropy in free lattice models Ingo Peschel and Viktor Eister Renormalization and tensor prod ${ }^{2}$ Igrascio Cirac and Frank Verstracte
S04005 Entanglement entropy and conformal field theory Pasquale Calabrese and John Cardy
$\begin{array}{ll}\text { S04006 } & \text { Bi-partite entanglement entropy in massive (} 1+1 \text {)-dimensional quantum field theories } \\ \text { Olalla A Castro-Alvaredo and Benjiamin Doyon }\end{array}$ Bi-partute entanglement entropy in massive (1
Olalla A Castro Alvaredo and Benjamin Doyon
504007 Entanglement entropy in free quantum field theory H Casini and M Huertia
50400s Holographic entanglement entropy: an overview
Tatsuma Nishiok.a, Shinssei Ryu and Tadashi Takayanagi
S04009 Entanglement entropy in quantum impurity systems and systems with boundaries Ian Affleck, Nicolas Laflorencie and Erik S Sorensen
504010 Criticality and entangle G Refiel and JE Moore
504011 Scaling of entanglement entropy at 2D quantum Lifshitz fixed points and topological lluids
Eduardo Fradkin
504012 Entanglement hetween particle partitions in itinerant many-particle states Masudul Haque, o S Zozulya and K Schoutens

Quantum Entanglement (Bipartite, Pure State)

- quantum system in a pure state $|\Psi\rangle$, density matrix $\rho=|\Psi\rangle\langle\Psi|$
- $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
- Alice can make unitary transformations and measurements only in A, Bob only in the complement B
- in general Alice's measurements are entangled with those of Bob
- example: two spin- $\frac{1}{2}$ degrees of freedom

$$
|\psi\rangle=\cos \theta|\uparrow\rangle_{A}|\downarrow\rangle_{B}+\sin \theta|\downarrow\rangle_{A}|\uparrow\rangle_{B}
$$

Measuring bipartite entanglement in pure states

- Schmidt decomposition:

$$
|\Psi\rangle=\sum_{j} c_{j}\left|\psi_{j}\right\rangle_{A} \otimes\left|\psi_{j}\right\rangle_{B}
$$

with $c_{j} \geq 0, \sum_{j} c_{j}^{2}=1$.

- one quantifier of the amount of entanglement is the entropy

$$
S_{A} \equiv-\sum_{j}\left|c_{j}\right|^{2} \log \left|c_{j}\right|^{2}=S_{B}
$$

- if $c_{1}=1$, rest zero, $S=0$ and $|\Psi\rangle$ is unentangled
- if all c_{j} equal, $S \sim \log \min \left(\operatorname{dim} \mathcal{H}_{A}, \operatorname{dim} \mathcal{H}_{B}\right)$ - maximal entanglement
- equivalently, in terms of Alice's reduced density matrix:

$$
\begin{gathered}
\rho_{A} \equiv \operatorname{Tr}_{B}|\Psi\rangle\langle\Psi| \\
S_{A}=-\operatorname{Tr}_{A} \rho_{A} \log \rho_{A}=S_{B}
\end{gathered}
$$

- the von Neumann entropy: similar information is contained in the Rényi entropies

$$
S_{A}^{(n)}=(1-n)^{-1} \log \operatorname{Tr}_{A} \rho_{A}^{n}
$$

- $S_{A}=\lim _{n \rightarrow 1} S_{A}(n)$
- other measures of entanglement exist, but entropy has several nice properties: additivity, convexity, ...
- it increases under Local Operations and Classical Communication (LOCC)

- it gives the amount of classical information required to specify ρ_{A} (important for numerical computations)
- it gives a basis-independent way of identifying and characterising quantum phase transitions
- in a relativistic QFT the entanglement in the vacuum encodes all the data of the theory (spectrum, anomalous dimensions, ...)

Entanglement entropy in QFT

In this talk we consider the case when:

- the degrees of freedom are those of a local relativistic QFT in large region \mathcal{R} in \mathbb{R}^{d}
- the whole system is in the vacuum state $|0\rangle$
- A is the set of degrees of freedom in some large (compact) subset of \mathcal{R}, so we can decompose the Hilbert space as

$$
\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

- in fact this makes sense only in a cut-off QFT (e.g. a lattice), and some of the results will in fact be cut-off dependent

Entanglement entropy in QFT

In this talk we consider the case when:

- the degrees of freedom are those of a local relativistic QFT in large region \mathcal{R} in \mathbb{R}^{d}
- the whole system is in the vacuum state $|0\rangle$
- A is the set of degrees of freedom in some large (compact) subset of \mathcal{R}, so we can decompose the Hilbert space as

$$
\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

- in fact this makes sense only in a cut-off QFT (e.g. a lattice), and some of the results will in fact be cut-off dependent
- How does S_{A} depend on the size and geometry of A and the universal data of the QFT?

Rényi entropies from the path integral $(d=1)$

- wave functional $\Psi(\{a\},\{b\})$ is proportional to the conditioned path integral in imaginary time from $\tau=-\infty$ to $\tau=0:$
$\Psi(\{a\},\{b\})=Z_{1}^{-1 / 2} \int_{a(0)=a, b(0)=b}[d a(\tau)][d b(\tau)] e^{-(1 / \hbar) S[\{a(\tau)\},\{b(\tau)\}]}$
where $S=\int_{-\infty}^{0} L(a(\tau), b(\tau)) d \tau$
- similarly $\Psi^{*}(\{a\},\{b\})$ is given by the path integral from
$\tau=0$ to $+\infty$

Example: $n=2$

$$
\left.\operatorname{Tr}_{A} \rho_{A}^{2}=\int d a_{1} d a_{2} d b_{1}, a_{2}\right)=\int d b_{2} \Psi\left(a_{1}, b_{1}\right) \Psi^{*}\left(a_{2}, b_{1}\right) \Psi\left(a_{2}, b_{2}\right) \Psi^{*}\left(a_{1}, b_{2}\right)
$$

where $Z\left(\mathcal{R}_{2}\right)$ is the euclidean path integral (partition function) on an 2 -sheeted conifold \mathcal{R}_{2}

- in general

$$
\operatorname{Tr}_{A} \rho_{A}{ }^{n}=Z\left(\mathcal{R}_{n}\right) / Z_{1}^{n}
$$

where the half-spaces are connected as

to form \mathcal{R}_{n}.

- conical singularity of opening angle $2 \pi n$ at the boundary of A and B on $\tau=0$

u

v

- if space is 1 d and A is an interval (u, v) (and B is the complement) then $\boldsymbol{Z}\left(\mathcal{R}_{n}\right)$ can be thought of as the the correlation function of twist operators:

$$
Z\left(\mathcal{R}_{n}\right) / Z_{1}^{n}=\langle\mathcal{T}(u) \mathcal{T}(v)\rangle
$$

- we can either think of this as the partition function on a conifold, or consider n copies of the QFT (with fields ϕ_{j}) on a single-sheeted surface with \mathcal{T} acting as orbifold points in the target space: on taking z in a closed contour around u

$$
\phi_{j}(z) \mathcal{T}(u) \rightarrow \phi_{j+1}(z) \mathcal{T}(u) \quad(\bmod n)
$$

- these have similar properties to other local operators e.g.
- in a massless QFT (a CFT)

$$
\langle\mathcal{T}(u) \mathcal{T}(v)\rangle \sim|u-v|^{-2 \Delta_{n}}
$$

- in a massive QFT,

$$
\langle\mathcal{T}\rangle \sim m^{\Delta_{n}} \quad \text { and } \quad\langle\mathcal{T}(u) \mathcal{T}(v)\rangle-\langle\mathcal{T}\rangle^{2} \sim \mathrm{e}^{-2 m|u-v|}
$$

- main result for $d=1$

$$
\Delta_{n}=(c / 12)(n-1 / n)
$$

where \boldsymbol{c} is the central charge of the UV CFT

- consider a single cone of radius \boldsymbol{R} and opening angle α
- $w=\log z$ maps this into a cylinder of length $\log R$ and circumference α

$$
\frac{Z_{\text {cone }}(2 \pi n)}{Z_{\text {cone }}(2 \pi)^{n}}=\frac{Z_{\text {cyl }}(2 \pi n)}{Z_{\text {cyl }}(2 \pi)^{n}} \sim \frac{\mathrm{e}^{\pi c \log R / 12 \pi n}}{\left(\mathrm{e}^{\pi c \log R / 12 \pi}\right)^{n}} \sim R^{-\Delta_{n}}
$$

- from this we see for example that for a single interval A of length ℓ [Holzhey, Larsen, Wilczek 1994]

$$
S_{A} \sim-\left.\frac{\partial}{\partial n}\right|_{n=1} \ell^{-2 \Delta_{n}}=(c / 3) \log (\ell / \epsilon)
$$

- note this is much less than the entanglement in a typical state which is $O(\ell)$
- many more universal results, eg finite-temperature cross-over between entanglement and thermodynamic entropy $\left(\beta=1 / k_{B} T\right)$:

$$
\begin{aligned}
S_{A} & =(c / 3) \log ((\beta / \pi) \sinh (\pi \ell / \beta)) \\
& \sim(c / 3) \log \ell \quad \text { for } \ell \ll \beta \\
& \sim \pi c \ell / 3 \beta \quad \text { for } \ell \gg \beta
\end{aligned}
$$

Massive QFT in 1+1 dimensions

- for 2 intervals $A=(-\infty, 0)$ and $B=(0, \infty)$

$$
S_{A} \sim(c / 6) \log (1 / m \cdot \epsilon)
$$

1+1-dimensional Ising model, $m \propto|\lambda-1|$

Two intervals

- in general there is no simple result since $\boldsymbol{Z}\left(\mathcal{R}_{n}\right)$ depends on the moduli of the conifold but we can use an operator product expansion

$$
\mathcal{T}(u) \mathcal{T}(v)=\sum_{\left\{k_{j}\right\}} C_{\left\{k_{j}\right\}}(u-v) \prod_{j=1}^{n} \Phi_{k_{j}}\left(\frac{1}{2}(u+v)_{j}\right)
$$

in terms of a complete set of local operators $\Phi_{k_{j}}$

- this gives the Rényi entropies as an expansion in powers

$$
\sum_{\left\{k_{j}\right\}} C_{\left\{k_{j}\right\}}^{2} \eta^{\sum_{j} \Delta_{k_{j}}} \quad \text { where } \quad \eta=\frac{\left(u_{1}-v_{1}\right)\left(u_{2}-v_{2}\right)}{\left(u_{1}-u_{2}\right)\left(v_{1}-v_{2}\right)}
$$

- the $C_{\left\{k_{j}\right\}}$ encode all the data of the CFT

Higher dimensions $d>1$

- the conifold \mathcal{R}_{n} is now $\{2 d$ conifold $\} \times\{$ boundary $\partial A\}$

$$
\log Z\left(\mathcal{R}_{n}\right) \sim \operatorname{Vol}(\partial A) \cdot \epsilon^{-(d-1)}
$$

- this is the 'area law' in 3+1 dimensions [Srednicki 1992]
- coefficient is non-universal
- for even $d+1$ there are interesting corrections

$$
\operatorname{Vol}(\partial A) m^{2} \log (m \epsilon), \quad \log \left(R_{A} / \epsilon\right)
$$

whose coefficients are related to curvature anomalies of the CFT and are universal

- e.g. in 3+1 dimensions, if A is the interior of a sphere S^{2}, we can make a conformal mapping so the boundary of A becomes \mathbb{R}^{2}

- in cylindrical coordinates ($\rho, \theta, x_{3}, x_{4}$)

$$
\left\langle T_{\rho \rho}\right\rangle \propto \frac{\left(1-1 / n^{4}\right) a}{\rho^{4}} \quad \text { 'a-anomaly' }
$$

$$
\epsilon(\partial / \partial \epsilon) \log Z\left(\mathcal{R}_{n}\right)=n \int\left\langle T_{\rho \rho}\right\rangle \rho d \rho d \theta d x_{3} d x_{4} \sim \epsilon^{-2} \times \operatorname{Area}(\partial A)
$$

- but when we map back to the sphere

$$
\left\langle T_{\rho \rho}\right\rangle \propto a\left(1-1 / n^{4}\right)\left(\frac{1}{\rho^{4}}+\frac{1}{R_{A}^{2} \rho^{2}}+\cdots\right)
$$

$$
\epsilon(\partial / \partial \epsilon) \log Z\left(\mathcal{R}_{n}\right) \sim \epsilon^{-2} \times\left(4 \pi R_{A}^{2}\right)+\text { universal } O(1)
$$

$$
S_{A}^{(n)} \sim \epsilon^{-2} \operatorname{Area}(\partial A)+\# a\left(n-1 / n^{3}\right) \log \left(R_{A} / \epsilon\right)
$$

[Casini/Huerta, Fursaev/Soludukhin,... .]

Mutual Information of multiple regions

B

- the non-universal 'area' terms cancel in

$$
I^{(n)}\left(A_{1}, A_{2}\right)=S_{A_{1}}^{(n)}+S_{A_{2}}^{(n)}-S_{A_{1} \cup A_{2}}^{(n)}
$$

- this mutual Rényi information is expected to be universal depending only on the geometry and the data of the CFT
- e.g. for a free scalar field in 3+1 dimensions [JC 2013]

$$
I^{(n)}\left(A_{1}, A_{2}\right) \sim \frac{n^{4}-1}{15 n^{3}(n-1)}\left(\frac{R_{1} R_{2}}{r_{12}^{2}}\right)^{2}
$$

Negativity

- however, mutual information does not correctly capture the quantum entanglement between A_{1} and A_{2}, e.g. it also includes classical correlations at finite temperature
- more generally we want a way of quantifying entanglement in a mixed state $\rho_{A_{1} \cup A_{2}}$
- one computable measure is negativity [Vidal, Werner 2002]
- let $\rho_{A_{1} \cup A_{2}}^{T_{2}}$ be the partial transpose:

$$
\rho_{A_{1} \cup A_{2}}^{T_{2}}\left(a_{1}, a_{2} ; a_{1}^{\prime}, a_{2}^{\prime}\right)=\rho_{A_{1} \cup A_{2}}\left(a_{1}, a_{2}^{\prime} ; a_{1}^{\prime}, a_{2}\right)
$$

- $\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{T_{2}}=1$, but it may now have negative eigenvalues λ_{k}

$$
\text { Log-negativity } \quad \mathcal{N}=\log \operatorname{Tr}\left|\rho_{A_{1} \cup A_{2}}^{T_{2}}\right|=\log \sum_{k}\left|\lambda_{k}\right|
$$

- if this is >0 there are negative eigenvalues. This is an entanglement measure with nice properties, including increasing under LOCC - for a pure state $\mathcal{N}=S_{A_{1}}^{(1 / 2)}$

Negativity in QFT

- 'replica trick'

$$
\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}=\sum_{k} \lambda_{k}^{n}=\sum_{k}\left|\lambda_{k}\right|^{n} \quad \text { if } n \text { is even }
$$

- analytically continue to $n=1$ to get $\sum_{k}\left|\lambda_{k}\right|$ (!!)
- we can compute $\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$ by connecting the half-spaces in the opposite order along A_{2} :

A_{1}

- going around each conical singularity corresponds to a cyclic permutation P_{n} or P_{n}^{-1} of the n sheets:
- for $\rho_{A_{1} \cup A_{2}}$

- for $\rho_{A_{1} \cup A_{2}}^{T_{2}}$

$$
P^{-1} \quad P \quad P \quad P^{-1}
$$

$$
P_{n}^{2} \cong P_{n} \quad(n \text { odd }) \rightarrow I d \quad \text { for } n \rightarrow 1
$$

$$
\cong P_{n / 2} \otimes P_{n / 2} \quad(n \text { even }) \rightarrow P_{1 / 2} \otimes P_{1 / 2} \quad \text { for } n \rightarrow 1
$$

- so for example for $d>1$ for 2 large regions a finite distance apart
$\mathcal{N}\left(A_{1}, A_{2}\right) \propto$ Area of common boundary between A_{1} and A_{2}
- \mathcal{N} appears to decay exponentially with separation of the regions, even in a CFT

Other Related Stuff

- 'quantum quenches' where the system is prepared in a state $|\psi\rangle$ which is not an eigenstate of hamiltonian: how does entanglement (and correlation functions) behave?
- topological phases in 2 (and higher) spatial dimensions entanglement entropy distinguishes these in absence of local order parameter [Kitaev/Preskill and many others]
- 'entanglement spectrum' of the eigenvalues of $\log \rho_{A}$ [Haldane]
- entanglement in random states [Nadal/Majumdar]
- holographic computation of entanglement using AdS/CFT [Ryu/Takayanagi and many others]
- entanglement and RG flows [Casini/Huerta, Soludukhin,...]

