Entanglement in Quantum Field Theory

John Cardy

University of Oxford

University of Pisa, November 2013

Outline

- Quantum entanglement in general and its quantification
- Path integral approach
- Entanglement entropy in 1+1-dimensional CFT
- Higher dimensions
- Mixed states and negativity

Work largely carried out with Pasquale Calabrese (Pisa) and Erik Tonni (Trieste)

L I			•	
				ISSN 1751-8113
		Journal of Physics A	do una	Journal of F
		Mathematical and Theoretical	al of Phy	
		Volume 42 Number 50 18 December 2009	SESA Mag	Mathematical and
		SPECIAL ISSUE: ENTANGLEMENT ENTROPY IN EXTENDED QUANTUM SYSTEMS	Mathematical and Theor	
		INTRODUCTION	and	
	500301	Entanglement entropy in extended quantum systems Pasquale Calabrese, John Cardy and Benjarrin Doyon (Guest Editors)	The or effic	
		REVIEWS	E.	
	504001	Entanglement and magnetic order Luigi Amico and Rosario Fazio		Volume 42 Number 50 18
	504002	A short review on entanglement in quantum spin systems 11 Latorre and A Riera	Vol 42, No 50 50	Special issue
	504003	Reduced density matrices and entanglement entropy in free lattice models Into Peschel and Viktor Eisler		Entanglement entropy in extended qu
	504004	Renormalization and tensor product states in spin chains and lattices J Ignacio Cirac and Frank Verstraete		Guest Editors: Pasquale Calabrese, Jo Benjamin Doyon
	504005	Entanglement entropy and conformal field theory Posquale Calabeese and John Cardy	1050	
	504006	Bi-partite entanglement entropy in massive (1+1)-dimensional quantum field theories Olalla A Castro-Alvaredo and Benjamin Doyon	500001-501013	
	504007	Entanglement entropy in free quantum field theory H Casini and M Huerta	12	
	504008	Holographic entanglement entropy: an overview Tatsuma Nishioka, Shinsei Ryu and Tadashi Takayanagi		
	504009	Entanglement entropy in quantum impurity systems and systems with boundaries Ian Allleck, Nicolas Laflorencie and Erik S Sprensen		
	504010	Criticality and entanglement in random quantum systems G Refael and J E Moore		
	504011	Scaling of entanglement entropy at 2D quantum Lifshitz fixed points and topological fluids Eduardo Fradkin		
	504012	Entanglement between particle partitions in itinerant many-particle states Masudai Haque, O S Zozalya and K Schoutens		
			5	
		phic codes	15 December 200	www.iop.org/journals/jphysa
	CODEN:	JPHAC3 42 (50) 500301-504012 (2009) ISSN: 1751-8113	ar 200	IOP Publishing

of Physics A

0 18 December 2009

ended quantum systems brese, John Cardy and

۲

_

٢

----'

IOP Publishing

٢

Atheboowinds 2-4

11209 16:02:30

Quantum Entanglement (Bipartite, Pure State)

- quantum system in a pure state $|\Psi\rangle$, density matrix $\rho = |\Psi\rangle\langle\Psi|$
- $\blacktriangleright \mathcal{H} = \mathcal{H}_{\mathbf{A}} \otimes \mathcal{H}_{\mathbf{B}}$
- Alice can make unitary transformations and measurements only in A, Bob only in the complement B
- in general Alice's measurements are entangled with those of Bob
- example: two spin-¹/₂ degrees of freedom

$$|\psi\rangle = \cos\theta |\uparrow\rangle_{\mathbf{A}} |\downarrow\rangle_{\mathbf{B}} + \sin\theta |\downarrow\rangle_{\mathbf{A}} |\uparrow\rangle_{\mathbf{B}}$$

Measuring bipartite entanglement in pure states

Schmidt decomposition:

$$|\Psi\rangle = \sum_{j} c_{j} |\psi_{j}\rangle_{A} \otimes |\psi_{j}\rangle_{B}$$

with $c_j \ge 0$, $\sum_j c_j^2 = 1$.

one quantifier of the amount of entanglement is the entropy

$$\mathcal{S}_{\mathcal{A}} \equiv -\sum_{j} |c_{j}|^{2} \log |c_{j}|^{2} = \mathcal{S}_{\mathcal{B}}$$

- if $c_1 = 1$, rest zero, S = 0 and $|\Psi\rangle$ is unentangled
- ► if all c_j equal, S ~ log min(dimH_A, dimH_B) maximal entanglement

equivalently, in terms of Alice's reduced density matrix:

 $\rho_{\mathbf{A}} \equiv \operatorname{Tr}_{\mathbf{B}} |\Psi\rangle\langle\Psi|$

$$S_A = -\text{Tr}_A \rho_A \log \rho_A = S_B$$

the von Neumann entropy: similar information is contained in the Rényi entropies

$$S_{\mathbf{A}}^{(n)} = (1-n)^{-1} \log \operatorname{Tr}_{\mathbf{A}} \rho_{\mathbf{A}}^{n}$$

$$\blacktriangleright S_{\mathbf{A}} = \lim_{n \to 1} S_{\mathbf{A}}^{(n)}$$

other measures of entanglement exist, but entropy has several nice properties: additivity, convexity, ...

 it increases under Local Operations and Classical Communication (LOCC)

- it gives the amount of classical information required to specify ρ_A (important for numerical computations)
- it gives a basis-independent way of identifying and characterising quantum phase transitions
- in a relativistic QFT the entanglement in the vacuum encodes all the data of the theory (spectrum, anomalous dimensions, ...)

Entanglement entropy in QFT

In this talk we consider the case when:

- ► the degrees of freedom are those of a local relativistic QFT in large region R in R^d
- \blacktriangleright the whole system is in the vacuum state $|0\rangle$
- ► A is the set of degrees of freedom in some large (compact) subset of R, so we can decompose the Hilbert space as

$$\mathcal{H} = \mathcal{H}_{A} \otimes \mathcal{H}_{B}$$

 in fact this makes sense only in a cut-off QFT (e.g. a lattice), and some of the results will in fact be cut-off dependent

Entanglement entropy in QFT

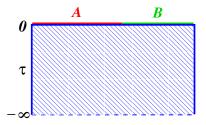
In this talk we consider the case when:

- ► the degrees of freedom are those of a local relativistic QFT in large region *R* in ℝ^d
- the whole system is in the vacuum state $|0\rangle$
- ► A is the set of degrees of freedom in some large (compact) subset of R, so we can decompose the Hilbert space as

$$\mathcal{H} = \mathcal{H}_{A} \otimes \mathcal{H}_{B}$$

- in fact this makes sense only in a cut-off QFT (e.g. a lattice), and some of the results will in fact be cut-off dependent
- How does S_A depend on the size and geometry of A and the universal data of the QFT?

Rényi entropies from the path integral (d = 1)



wave functional Ψ({a}, {b}) is proportional to the conditioned path integral in imaginary time from τ = −∞ to τ = 0:

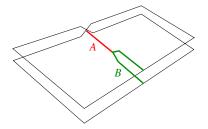
$$\Psi(\{a\},\{b\}) = Z_1^{-1/2} \int_{a(0)=a,b(0)=b} [da(\tau)] [db(\tau)] e^{-(1/\hbar)S[\{a(\tau)\},\{b(\tau)\}]}$$

where $S = \int_{-\infty}^{0} L(a(\tau), b(\tau)) d\tau$

 similarly Ψ*({a}, {b}) is given by the path integral from τ = 0 to +∞ Example: n = 2

$$\rho_{\mathsf{A}}(\mathbf{a}_1,\mathbf{a}_2) = \int db \,\Psi(\mathbf{a}_1,b) \Psi^*(\mathbf{a}_2,b)$$

 $\operatorname{Tr}_{A} \rho_{A}^{2} = \int da_{1} da_{2} db_{1} db_{2} \Psi(a_{1}, b_{1}) \Psi^{*}(a_{2}, b_{1}) \Psi(a_{2}, b_{2}) \Psi^{*}(a_{1}, b_{2})$



$$\mathrm{Tr}_{\mathbf{A}} \rho_{\mathbf{A}}^{2} = Z(\mathcal{R}_{2})/Z_{1}^{2}$$

where $Z(\mathcal{R}_2)$ is the euclidean path integral (partition function) on an 2-sheeted conifold \mathcal{R}_2

▶ in general

$$\operatorname{Tr}_{\mathbf{A}} \rho_{\mathbf{A}}{}^{n} = Z(\mathcal{R}_{n})/Z_{1}^{n}$$

where the half-spaces are connected as

to form \mathcal{R}_n .

conical singularity of opening angle 2πn at the boundary of
 A and B on τ = 0

if space is 1d and A is an interval (u, v) (and B is the complement) then Z(R_n) can be thought of as the the correlation function of twist operators:

$$Z(\mathcal{R}_n)/Z_1^n = \langle \mathcal{T}(u)\mathcal{T}(v) \rangle$$

we can either think of this as the partition function on a conifold, or consider *n* copies of the QFT (with fields φ_j) on a single-sheeted surface with *T* acting as orbifold points in the target space: on taking *z* in a closed contour around *u*

$$\phi_j(z)\mathcal{T}(u) \to \phi_{j+1}(z)\mathcal{T}(u) \pmod{n}$$

- these have similar properties to other local operators e.g.
- ▶ in a massless QFT (a CFT)

$$\langle \mathcal{T}(u)\mathcal{T}(v) \rangle \sim |u-v|^{-2\Delta_n}$$

► in a massive QFT,

 $\langle \mathcal{T}
angle \sim m^{\Delta_n}$ and $\langle \mathcal{T}(u) \mathcal{T}(v)
angle - \langle \mathcal{T}
angle^2 \sim \mathrm{e}^{-2m|u-v|}$

• main result for d = 1

$$\Delta_n = (\mathbf{c}/12)(n-1/n)$$

where c is the central charge of the UV CFT

- consider a single cone of radius R and opening angle α
- w = log z maps this into a cylinder of length log R and circumference α

$$\frac{Z_{\text{cone}}(2\pi n)}{Z_{\text{cone}}(2\pi)^n} = \frac{Z_{\text{cyl}}(2\pi n)}{Z_{\text{cyl}}(2\pi)^n} \sim \frac{\mathrm{e}^{\pi c \log R/12\pi n}}{(\mathrm{e}^{\pi c \log R/12\pi})^n} \sim R^{-\Delta_n}$$

▶ from this we see for example that for a single interval A of length ℓ [Holzhey, Larsen, Wilczek 1994]

$$S_{\mathbf{A}} \sim -\left. \frac{\partial}{\partial n} \right|_{n=1} \, \ell^{-2\Delta_n} = (\mathbf{C}/3) \log(\ell/\epsilon)$$

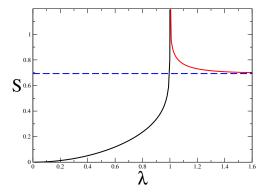
- ► note this is much less than the entanglement in a *typical* state which is O(ℓ)
- many more universal results, eg finite-temperature cross-over between entanglement and thermodynamic entropy (β = 1/k_BT):

$$egin{array}{rcl} S_{m{A}} &=& (c/3)\log\left((eta/\pi)\sinh(\pi\ell/eta)
ight) \ &\sim& (c/3)\log\ell & ext{for }\ell\lleta \ &\sim& \pi c\ell/3eta & ext{for }\ell\ggeta \end{array}$$

Massive QFT in 1+1 dimensions

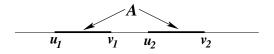
▶ for 2 intervals
$$A = (-\infty, 0)$$
 and $B = (0, \infty)$

 $S_A \sim (c/6) \log(1/m \cdot \epsilon)$



1+1-dimensional Ising model, $m \propto |\lambda - 1|$

Two intervals



► in general there is no simple result since Z(R_n) depends on the moduli of the conifold but we can use an operator product expansion

$$\mathcal{T}(u)\mathcal{T}(v) = \sum_{\{k_j\}} C_{\{k_j\}}(u-v) \prod_{j=1}^n \Phi_{k_j}(\frac{1}{2}(u+v)_j)$$

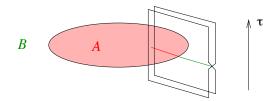
in terms of a complete set of local operators Φ_{k_i}

this gives the Rényi entropies as an expansion in powers

$$\sum_{\{k_j\}} C_{\{k_j\}}^2 \eta^{\sum_j \Delta_{k_j}} \quad \text{where} \quad \eta = \frac{(u_1 - v_1)(u_2 - v_2)}{(u_1 - u_2)(v_1 - v_2)}$$

• the $C_{\{k_i\}}$ encode all the data of the CFT

Higher dimensions d > 1

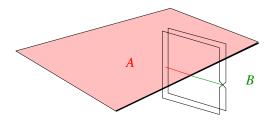


- ► the conifold R_n is now {2d conifold} × {boundary ∂A} log Z(R_n) ~ Vol(∂A) · ϵ^{-(d-1)}
- this is the 'area law' in 3+1 dimensions [Srednicki 1992]
- coefficient is non-universal
- ▶ for even d + 1 there are interesting corrections

 $\operatorname{Vol}(\partial A) m^2 \log(m\epsilon), \quad \log(R_A/\epsilon)$

whose coefficients are related to curvature anomalies of the CFT and are universal

e.g. in 3+1 dimensions, if *A* is the interior of a sphere S², we can make a conformal mapping so the boundary of *A* becomes ℝ²



In cylindrical coordinates (ρ, θ, x₃, x₄)

$$\langle T_{
ho
ho}
angle \propto rac{(1-1/n^4)a}{
ho^4}$$
 'a-anomaly'

 $\epsilon(\partial/\partial\epsilon)\log Z(\mathcal{R}_n) = n \int \langle T_{\rho\rho} \rangle \rho d\rho d\theta dx_3 dx_4 \sim \epsilon^{-2} \times \operatorname{Area}(\partial A)$

but when we map back to the sphere

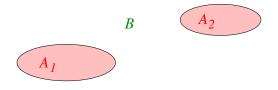
$$\langle T_{\rho\rho} \rangle \propto \boldsymbol{a} (1 - 1/n^4) \left(\frac{1}{\rho^4} + \frac{1}{R_A^2 \rho^2} + \cdots \right)$$

 $\epsilon(\partial/\partial\epsilon)\log Z(\mathcal{R}_n)\sim\epsilon^{-2}\times(4\pi R_A^2)+\text{universal }O(1)$

$$S_A^{(n)} \sim \epsilon^{-2} \operatorname{Area}(\partial A) + \#a(n-1/n^3) \log(R_A/\epsilon)$$

[Casini/Huerta, Fursaev/Soludukhin,...]

Mutual Information of multiple regions



► the non-universal 'area' terms cancel in $I^{(n)}(A_1, A_2) = S^{(n)}_{A_1} + S^{(n)}_{A_2} - S^{(n)}_{A_1 \cup A_2}$

- this mutual Rényi information is expected to be universal depending only on the geometry and the data of the CFT
- e.g. for a free scalar field in 3+1 dimensions [JC 2013]

$$I^{(n)}(A_1, A_2) \sim \frac{n^4 - 1}{15n^3(n-1)} \left(\frac{R_1R_2}{r_{12}^2}\right)^2$$

Negativity

- however, mutual information does not correctly capture the quantum entanglement between A₁ and A₂, e.g. it also includes classical correlations at finite temperature
- more generally we want a way of quantifying entanglement in a mixed state ρ_{A1∪A2}
- one computable measure is negativity [Vidal, Werner 2002]
- let $\rho_{A_1 \cup A_2}^{T_2}$ be the *partial* transpose:

$$\rho_{A_1 \cup A_2}^{T_2}(a_1, a_2; a_1', a_2') = \rho_{A_1 \cup A_2}(a_1, a_2'; a_1', a_2)$$

- ► Tr $\rho_{A_1 \cup A_2}^{T_2} = 1$, but it may now have negative eigenvalues λ_k Log-negativity $\mathcal{N} = \log \operatorname{Tr} \left| \rho_{A_1 \cup A_2}^{T_2} \right| = \log \sum_k |\lambda_k|$
- ► if this is > 0 there are negative eigenvalues. This is an entanglement measure with nice properties, including increasing under LOCC for a pure state N = S^(1/2)_{A1}

Negativity in QFT

'replica trick'

$$\operatorname{Tr}(\rho_{A_1\cup A_2}^{T_2})^n = \sum_k \lambda_k^n = \sum_k |\lambda_k|^n \quad \text{if } n \text{ is even}$$

- analytically continue to n = 1 to get $\sum_{k} |\lambda_k|$ (!!)
- we can compute $\operatorname{Tr}(\rho_{A_1 \cup A_2}^{T_2})^n$ by connecting the half-spaces in the opposite order along A_2 :

- ▶ going around each conical singularity corresponds to a cyclic permutation P_n or P_n⁻¹ of the n sheets:
- for $\rho_{A_1 \cup A_2}$

$$P^{-l} P P^{-l} P$$

$$P^{-l} P$$

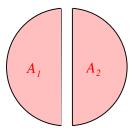
$$P^{-l} P$$

$$P^{-l} P P^{-l}$$

$$P^{-l} P P^{-l}$$

$$P_{n}^{2} \cong P_{n} (n \text{ odd}) \rightarrow ld \text{ for } n \rightarrow 1$$

$$\cong P_{n/2} \otimes P_{n/2} (n \text{ even}) \rightarrow P_{1/2} \otimes P_{1/2} \text{ for } n \rightarrow 1$$



so for example for d > 1 for 2 large regions a finite distance apart

 $\mathcal{N}(\textit{A}_{1},\textit{A}_{2}) \propto$ Area of common boundary between \textit{A}_{1} and \textit{A}_{2}

 N appears to decay exponentially with separation of the regions, even in a CFT

Other Related Stuff

- ► 'quantum quenches' where the system is prepared in a state |ψ⟩ which is not an eigenstate of hamiltonian: how does entanglement (and correlation functions) behave?
- topological phases in 2 (and higher) spatial dimensions entanglement entropy distinguishes these in absence of local order parameter [Kitaev/Preskill and many others]
- entanglement spectrum' of the eigenvalues of log ρ_A [Haldane]
- entanglement in random states [Nadal/Majumdar]
- holographic computation of entanglement using AdS/CFT [Ryu/Takayanagi and many others]
- entanglement and RG flows [Casini/Huerta, Soludukhin,...]