The High Energy cosmic Radiation Detection (HERD) facility onboard China's Space Station

> Shuang-Nan Zhang (张双南) zhangsn@ihep.ac.cn

> Center for Particle Astrophysics 粒子天体物理中心 Institute of High Energy Physics Chinese Academy of Sciences

IHEP Campus Map

Research in IHEP: >1300 fulltime staff

Science goals

Fundamental structure of matter and evolution of the universe

Total funding in 2012: ~140 Meu

Multidiscipline Platform

Collider, Synchrotron, Underground lab, highaltitude cosmic ray observatory, space instruments

China's Space Station Program

- Three phases
 - 1st phase: so far 7 Chinese astronauts have been sent out and returned back successfully; many space science research has been done.
 Completed successfully.
 - 2nd phase: spacelab: docking of 3 spaceships with astronauts delivering and installing scientific instruments. 1st launch on Sept. 29, 2011.
 - 3rd phase: spacestation: several large experimental cabins with astronauts working onboard constantly. 1st launch ~2018.

International collaborations on space science research have been and will continue to be an important part.

Cosmic Lighthouse Program: China's Space Station

Candidate Projects	Main Science Topics
Large scale imaging and spectroscopic survey facility (approved)	Dark energy, dark matter distribution, large scale structure of the universe
HERD (concept)	Dark matter properties, cosmic ray composition, high energy electron and gamma-rays
Soft X-ray-UV all sky monitor (?)	X-ray binaries, supernovae, gamma-ray bursts, active galactic nuclei, tidal disruption of stars by supermassive black holes
X-ray polarimeter (?)	Black holes, neutron stars, accretion disks, supernova remnants
Galactic warm-hot gas spectroscopic mapper (?)	The Milky Way, interstellar medium, missing baryons in the Universe
High sensitivity solar high energy detector (?)	Solar flares, high energy particle acceleration mechanism, space weather
Infrared spectroscopic survey telescope (?)	Stars, galaxies, active galactic nuclei

AMS02

Recent AMS02 Results: electrons

Recent AMS02 Results: protons

Recent AMS02 Results: Heliums

Beyond AMS: DAMPE

e: 0.3m²sr@200GeV p: 0.12 m²sr@100TeV

The detector is consisted of 4 parts: Top scintillators Si tracker (5 layers) BGO calorimeter Neutron detector

Beyond AMS: CALET

Expected CALET proton and He spectra after 5 years of observation

Expected CALET measurement of more abundant heavy nuclei

Beyond AMS: CREAM

Science goals and requirements for HERD

Science goals	Mission requirements
Dark matter search	R1: Better statistical measurements of e/γ between 100 GeV to 10 TeV
Origin of Galactic Cosmic rays	R2: Better spectral and composition measurements of CRs between 300 GeV to PeV* with a large geometrical factor

Secondary science: monitoring of GRBs, microquasars, Blazars and other transients.

*Complimentary to key LHAASO science

HERD Cosmic Ray Capability Requirement

Old Baseline design of HERD

The detector is consisted of 4 parts:

New Baseline design of HERD

Characteristics of all components

	type	size	Χ0,λ	unit	main functions
tracker (top)	Si strips	70 cm $ imes$ 70 cm	2 X0	7 x-y (W foils)	Charge Early shower Tracks
tracker 4 sides	Si strips	$65~\mathrm{cm} imes$ 50 cm		3 х-у	Nucleon Track Charge
CALO	LYSO cubes	$\begin{array}{c} \text{63 cm} imes \\ \text{63 cm} imes \\ \text{63 cm} \end{array}$	55 X0 3 λ	$3 \text{ cm} \times$ $3 \text{ cm} \times$ 3 cm	e/γ energy nucleon energy e/p separation

Why LYSO detectors?

Crystal	Csl(Na)	BGO	PWO	LYSO
Density (g/cm3)	4.51	7.13	8.3	7.4
1 X0 (cm)	1.86	1.12	0.89	1.14
Rm (cm)	3.57	2.23	2.00	2.07
1 λ (cm)	39.3	22.8	20.7	20.9
Decay time (ns)	690	300	30	40
Light yield (%)	88	21	0.3	85

crystal + wls fiber

Proton energy resol. vs. detector thickness

→63*63*63cm
3 nucl.inter.length,
20% resolution

→77*77*42cm
2 nucl.inter.length,
30% resolution

→90*90*31cm
1.5 nucl.inter.length,
50% resolution

Total detector weight: 2000 kg

HERD reconstruction vs. energy resol.

Under the weight limitation of 2 tons, resolution is more important for spectral reconstruction, based on the current design.

Simulation results: energy resolutions

e/p separation (TMVA)

e/p separation (TMVA)

29/45

HERD Geometrical Factor

Expected performance of HERD

γ (electron) energy range	tens of GeV-10TeV		
nucleon energy range	up to PeV		
γ angular resol. (silicon)	0.1°		
nucleon charge resol. (silicon)	0.1-0.15 c.u		
γ (electron) energy resolution	1%@200GeV		
proton energy resolution	20%		
e/p separation power	10 ⁻⁶		
electron geometrical factor	3.1 m ² sr@200 GeV		
proton geometrical factor	2.3 m ² sr@100 TeV		

performance comparison

	Χ0(λ)	∆E/E for e	e/p sep.	e GF m ² sr@ 200GeV	p GF m²sr@ 100TeV
HERD (2020)	55(3)	1%	10-6	3.1	2.3
Fermi (2008)	10	12%	10 ⁻³	0.9	
AMS02 (2011)	17	2%	10 ⁻⁶	0.12	
DAMPE (2015)	31	1%	10-4	0.3	
ISS-CREAM (2015)	20(1.5)				0.2

HERD can improve by at least 10X for electrons and 20X for cosmic rays over previous missions: this is necessary since it will operate much later.

HERD sensitivity to gamma-ray line

PAMELA: 2006-2016 CALET: 2015-2020; AMS: 2011-2021; DAMPE: 2015-2020; Fermi: 2008-2018; HERD: 2020-2021

HERD electron detection capability: 2021

HERD proton (nucleon) detection capability

HERD: 2020-2022 CREAM: 2015-2020 DAMPE: 2015-2020

But CREAM is planned to operate only for several months on ISS.

New calorimeter readout technique

Wavelength shifter fiber readout

Direct Coupling

PD, APD, SiPM: Complicated system, high power consumption

MAPMT, SiPM: high power consumption CCD: No single photon detection EMCCD, EBCCD: no ns gate control ICCD: no above problems, but premature

An example

Sun, X. L. and et al. (2011). "A Digital Calorimeter for Dark Matter Search in Space." Journal of Physics: Conference Series **293(1): 012038.**

Test set-up and results

 $2 \times 2 \times 6$ granular CsI with fibers sandwiched between two detectors

Taper +Imaging Intensifier + ICCD

ICCD image of typical muon events

Concept of ICCD readout system

Cathode Triggered Intensifier Optical Coupler High frame rate and large format CCD

Two types of coupling

Single unit: weight of 18.393 kg, size, size of ϕ 176×670(mm).

Taper

Technology development funded by XIOPM, CAS and NSFC. Looking for collaborators in Italy.

ICCD readout R&D

Current status of HERD

- The mission concept (science goals with requirements) has been selected, not in competition with other missions.
- The design concept has been reviewed on Feb. 29, 2012, together with all other proposals in all fields.
- Technical review for mission selection may happen anytime.
- Launch in 2018-2020.

1st HERD workshop, Oct.17-18, 2012, IHEP, Beijing

The HERD Team

- Current Chinese member institutions
 - Institute of High Energy Physics, China
 - Purple Mountain Observatory, China
 - Xi'an Institute of Optical and Precision Mechanics, China
 - University of Science and Technology of China
- Current international member institutions (tentative)
 - University of Geneva, Switzerland
 - Università di Pisa and INFN, Italy
 - IAPS/INAF, Italy
 - University of Florence and INFN Firenze, Italy
 - University of Perugia/Trento and INFN, Italy
 - University of Bari and INFN, Italy
 - KTH, Sweden

Possible contributions from INFN?

- Mission concept and design of HERD detectors
- Silicon trackers: similar to Italian contribution to DAMPE
- CALO: joint development
- Additional detectors for complementarities/redundancies
- Anything else is also welcome!