Study on L2 FTK efficiency and rejection

V.Kazanine, T.Kubota, C.Roda

29 agosto 2013

◆□▶ ◆圖▶ ◆臣▶ ◆臣≯

æ

- TDR validation of FTK track multiplicity;
- ΔR distribution to assess the ΔR cuts used in matching, signal cone, isolation cone;
- Efficiency in τ -truth to L1Rol matching;
- Signal trigger efficiency on $H \rightarrow \tau(h)\tau(h)$ and $H \rightarrow \tau(l)\tau(h)$ samples;
- Background efficiency based on samples of $WH \rightarrow l\nu qq$.

As a first step we are trying to reproduce TDR results and as further we will try to improve the fake rejection keeping a high efficiency.

Data samples

```
\begin{array}{l} \mbox{Signal } (VBFH \rightarrow \tau \tau \rightarrow hh) \\ \mbox{eos/atlas/user/v/vcavalie/VBFHR125hh_46_D3PD} \\ \mbox{Signal } (VBFH \rightarrow \tau \tau \rightarrow lh) \\ \mbox{eos/atlas/user/v/vcavalie/VBFHR125lh_46_D3PD} \\ \mbox{Background } (WH \rightarrow qq) \\ \mbox{eos/atlas/user/v/vcavalie/WHuu_46_D3PD} \\ \end{array}
```

TDR validation: offline τ -based selection details

No look at L1Rol information Offline τ selection

- JetBDTSigMedium
- $P_T > 20 \text{ GeV}$
- $|\eta| < 2.5$
- Veto on Leading track is in crack region $(1.37 < |\eta| < 1.52)$

Tracks selection

- $P_T > 2 \text{ GeV}$
- d₀ < 1.0 mm
- $z_0 < 100 \text{ mm}$
- (offline) (nPixHits + nPixelDeadSensors + nSCTHits + nSCTDeadSensors)> 8

- (offline) nPixHoles = 0
- if leading track exists Δz_0 (z_0 difference from leading track z_0) < 2.0 mm
- ΔR is from direction of the offline au

Using samples $\tau(l)\tau(h)$, background $HW \rightarrow uu$.

On the top – signal cone, on the bottom – isolation ring barrel

endcap

These distributions are the same in 3 validation groups. It was starting point of this study.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

L1Rol: selection details

What we do:

- for each L1RoI (named 'HA8') match FTK leading track in $\Delta R < 0.2$;
- **②** for each matched leading FTK track search for FTK tracks in $\Delta R < 0.1$ (signal cone) and $0.1 < \Delta R < 0.3$ (isolation ring);
- L1Rol is also matched with ΔR < 0.2 to τ-objects (tau_ and tau_jet) to allow pT dependence study;</p>
- Signal samples: L1Rol matched to true τ -s with $\Delta R < 0.2$.

Containers

- trig_L1_emtau_
- trig_L2_trk_Ftk_tau_
- trueTau_
- tau_
- tau_jet_

LeadFTK track selection

- Matched w/ L1_Roi('HA8') in $\Delta R < 0.2$
- $P_T > 2 \text{ GeV}$
- d₀ < 2.0 mm
- $z_0 < 150 \text{ mm}$

FTK tracks selection

- same as for LeadFTK
- $\Delta z_0 (z_0 \text{ difference from leading track } z_0) < 2.0 \text{ mm}$

 if no LeadFTK found use direction of L1Rol

τ selection

Used for offline and truth τ -s.

- $p_T > 8 \text{GeV/c}$
- $|\eta| < 2.49$

Sometimes used "L1_TAU8" variable, which is event bool variable
 Use trig_L1_* objects information which satisfy HA8. And trig_L2_* is connected trig_L1_* using Rol information.

- Used L2Rol direction for counting #tracks \rightarrow Use L1Rol direction
- Used ΔR^2 matching \rightarrow Use square root and ΔR matching
- Used tau_jet_* variables for BKG efficiency

 \rightarrow Use tau_ variables for also estimating efficien cy plots.

 Used definition for BKG efficiency Bkg eff 1(3) = Denominator && pass L2 && nTrk=1(3) Pass L1 && not truth match && jet match → now we keep the old definition and use new: Bkg eff = Denominator && pass L2 Pass L1 && not truth match && offline match

ΔR (L1Rol, leadFTK) - Checking the ΔR cut for leading FTK to L1Rol matching

Angle between matched L1Rol and leading FTK

Distributions of ΔR for background a little bit wider. The value of $\Delta R = 0.2$ is maybe even too large.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

ΔR (L1Rol, leadFTK) - Checking the ΔR cut for leading FTK to L1Rol matching

Same plots as in previous page but in linear scale - Angle between matched L1Rol and leading FTK

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- In case of background the distribution is wider. The signal cone definition with $\Delta R < 0.1$ is good.
- For the 1/3 prong we have some signal (peak at low DR) where the signal is not defined as 1 prong because of the selection criteria in isolation cone: < 2 trks in isolation ring.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Previous plots in wide angle range.

- Goal: estimate the efficiency of L1 HA8 triggering on tau in $H \rightarrow \tau(h)\tau(h)$ events;
- Use HA8 a L1 trigger, datasample: VBFHtt125hh_46_D3PD;
- Approach: loop over true taus in events and find the L1Rol within $\Delta R <$ 0.2 of true tau direction;

• Tau preselection: $p_T(\tau) > 8 GeV$, $|\eta(\tau)| < 2.49$.

Number of true taus in events

- Total number of true τ-s passing preselection: 90%;
- Total number of events with no true τ -s passing preselection: $\sim 3\%$;
- Total number of events with no L1RoI matched to true τ -s: ~10%;
- Total number of preselected true τ -s matched to L1RoI: 78%;
- Why no matched? The ΔR distribution between true τ and the nearest L1RoI (right) shows that $\Delta R < 0.2$ for matching looks reasonable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

p_T for lead and 2nd $\tau\text{-s}$

- Efficiency: # preselected true-τs && matched to L1Rol / # of preselected true-τs;
- η: moreless uniform distribution, slightly expressed crack-region;
- *p_T*: very dependant on *p_T*, smoothly arises, 80% of efficiency at 50 GeV/c;

- Total number of true τ-s passing preselection: 90%;
- Total number of events with no true *τ*-s passing preselection: ~3%;
- Total number of events with no L1Rol matched to true τ-s: ~18% (10%);
- Total number of preselected true τ-s matched to L1Rol: 64% (78%);

The cone $\Delta R < 0.1$ around leading track is signal cone. The ring $0.1 < \Delta R < 0.3$ around leading track is isolation ring. Number of FTK tracks in cone and ring (nCone, nlso), respectively.

We determine signal efficiency as: Sig 1p Eff = #(Denominator && L2 trigger) / #(L1TAU8 objects && truth τ matched && true_tau_nProng=1) Sig 3p Eff = #(Denominator && L2 trigger) / #(L1TAU8 objects && truth τ matched && true_tau_nProng=1) We determine background efficiency as: Back Eff = #(Denominator && L2 trigger) / #(L1TAU8 objects && not truth τ matched && offline τ matched) Definition of rejection factor as in TDR is: Jet 1p Eff = #(Denominator && L2 trigger && tau_jet_nTrack=1) / #(L1TAU8 objects && not truth τ matched && jet τ matched) Jet 3p Eff = #(Denominator && L2 trigger && tau_jet_nTrack=3) / #(L1TAU8 objects && not truth τ matched && jet τ matched) Jet Eff = #(Denominator && L2 trigger) / #(L1TAU8 objects && not truth τ matched && jet τ matched)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Signal L2 efficiency w.r.t. true τ , barrel

On the top -1-prongs, on the bottom -3-prongs events

90.87

50.8

э

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

L2 background efficiency w.r.t. offline τ jet (tau_jet_) – replication TDR plots

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

L2 efficiency w.r.t. offline τ jet, barrel: TDR comparison

On the top – out result, on the bottom – TDR

Tracks in jet VS FTKs in signal cone

The number of tracks in jets (tau_jet_nTrk) and number of FTK in signal cone are quite different. The multiplicity of tracks in jets is higher, so the determination of 1/3 prong efficiency using tau_jet_nTrk to determine 1/3 prong categories is wrong.

An attempt to implement modified selection on FTK

- We modify selection on nlso, from *nlso* < 2 to *nlso* = 0;
- Doing so, we descrease signal efficiency on \sim 5-7% and gain background suppression on 20 40%.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

FTK multiplicity: modified cone size

Signal cone $\Delta R < 0.2$

Isolation ring $0.2 < \Delta R < 0.4$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

FTK multiplicity for HA15 trigger

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

FTK multiplicity for HA15 trigger: modified cone size

Signal cone $\Delta R < 0.2$

Isolation ring $0.2 < \Delta R < 0.4$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

- We need to validate basic distributions with other groups;
- Improve the rejection factor optimizing: DR thresholds, pT thresholds and selection criteria;
- Add for comparison TauB and old FTK algorithm into efficiencies plot;
- Use other appropriate triggers (HA12I, HA20I) that suggested by trigger community;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• New background samples ..