The Bessel-Weighting Strategy

Daniël Boer 2nd Workshop on "Probing Strangeness in Hard Processes" Frascati, November 12, 2013

y university of groningen

Outline

- I. Introduction to azimuthal asymmetries and TMD factorization, Sivers effect example
- II. Weighted asymmetries, Sivers effect example
- **III.** Very different example: $cos(2\phi)$ asymmetry
- **IV.** Average transverse momentum and transverse momentum broadening

Introduction

Azimuthal asymmetries

Semi-inclusive DIS is a multi-scale process: M (hadronic), Q (large), and $P_{h\perp}$ (or Q_T) $|P_{h\perp}|$ could be anywhere from small to large

Scattering does not happen in one plane generally \rightarrow out-of-plane angles

Many azimuthal asymmetries in semi-inclusive DIS have been observed by HERMES, COMPASS, and JLab experiments

Transverse Momentum of Quarks

Azimuthal asymmetries are most naturally described in terms of transverse momentum distributions (TMDs)

[Ralston, Soper '79; Sivers '90; Collins '93; Kotzinian '95; Mulders, Tangerman '95; DB, Mulders '98]

Transverse momentum dependence can be correlated with spin dependence:

spin-orbit correlations

Azimuthal asymmetries can test the TMD framework, based on TMD factorization [Collins & Soper '81; Ji, Ma & Yuan '04 & '05; Collins '11]

TMD factorization

TMD factorization applies to SIDIS, but also $e^+e^- \rightarrow h_1 h_2 X$ and Drell-Yan (DY)

Schematic form of (new) TMD factorization [Collins 2011]:

 $d\sigma = H \times \text{convolution of } AB + \text{high-}q_T \text{ correction } (Y) + \text{power-suppressed}$

A & B are TMD pdfs or FFs

Details in book by J.C. Collins Summarized in arXiv:1107.4123

TMD factorization expressions

Fourier transforms of A and B are functions of the momentum fraction x, the transverse coordinate b_T , a rapidity ζ , and the renormalization scale μ

$$\frac{d\sigma}{d\Omega d^4 q} = \int d^2 b \, e^{-i\boldsymbol{b}\cdot\boldsymbol{q}_T} \tilde{W}(\boldsymbol{b}, Q; x, y, z) + \mathcal{O}\left(Q_T^2/Q^2\right)$$
$$\tilde{W}(\boldsymbol{b}, Q; x, y, z) = \sum_a \tilde{f}_1^a(x, \boldsymbol{b}^2; \zeta_F, \mu) \tilde{D}_1^a(z, \boldsymbol{b}^2; \zeta_D, \mu) H\left(y, Q; \mu\right)$$

TMD factorization expressions

Fourier transforms of A and B are functions of the momentum fraction x, the transverse coordinate b_T , a rapidity ζ , and the renormalization scale μ

$$\frac{d\sigma}{d\Omega d^4 q} = \int d^2 b \, e^{-i\boldsymbol{b}\cdot\boldsymbol{q}_T} \tilde{W}(\boldsymbol{b}, Q; x, y, z) + \mathcal{O}\left(Q_T^2/Q^2\right)$$
$$\tilde{W}(\boldsymbol{b}, Q; x, y, z) = \sum_a \tilde{f}_1^a(x, \boldsymbol{b}^2; \zeta_F, \mu) \tilde{D}_1^a(z, \boldsymbol{b}^2; \zeta_D, \mu) H\left(y, Q; \mu\right)$$

V torm

TMD factorization expressions

Fourier transforms of A and B are functions of the momentum fraction x, the transverse coordinate b_T , a rapidity ζ , and the renormalization scale μ

$$\frac{d\sigma}{d\Omega d^4 q} = \int d^2 b \, e^{-i\boldsymbol{b}\cdot\boldsymbol{q}_T} \tilde{W}(\boldsymbol{b}, Q; x, y, z) + \mathcal{O}\left(Q_T^2/Q^2\right)$$
$$\tilde{W}(\boldsymbol{b}, Q; x, y, z) = \sum_a \tilde{f}_1^a(x, \boldsymbol{b}^2; \boldsymbol{\zeta}_F, \mu) \tilde{D}_1^a(z, \boldsymbol{b}^2; \boldsymbol{\zeta}_D, \mu) H\left(y, Q; \mu\right)$$

Vtorm

Including partonic transverse momentum is more than just $f_1(x) \rightarrow f_1(x, k_T^2)$

k_T -odd functions may arise, that vanish upon integration over all k_T

For unpolarized hadrons with momentum P and partons with $k \approx xP + k_T$:

Sivers effect

Also new hadron spin dependent terms arise, such as the Sivers function

The leading twist TMDs:

$$\Phi(x, \mathbf{k}_{T}) = \frac{M}{2} \left\{ f_{1}(x, \mathbf{k}_{T}^{2}) \frac{\not{P}}{M} + f_{1T}^{\perp}(x, \mathbf{k}_{T}^{2}) \frac{\epsilon_{\mu\nu\rho\sigma}\gamma^{\mu}P^{\nu}k_{T}^{\rho}S_{T}^{\sigma}}{M^{2}} + g_{1s}(x, \mathbf{k}_{T}^{2}) \frac{\gamma_{5} \not{P}}{M} + h_{1T}(x, \mathbf{k}_{T}^{2}) \frac{\gamma_{5} \not{S}_{T} \not{P}}{M} + h_{1s}^{\perp}(x, \mathbf{k}_{T}^{2}) \frac{\gamma_{5} \not{k}_{T} \not{P}}{M^{2}} + h_{1}^{\perp}(x, \mathbf{k}_{T}^{2}) \frac{i \not{k}_{T} \not{P}}{M^{2}} \right\}$$

There are lots of TMDs (including TMD fragmentation functions), but in this talk only 2 will be discussed: the leading twist T-odd ones

Sivers effect

Also new hadron spin dependent terms arise, such as the Sivers function

D. Sivers ('89/'90):

$$\frac{\mathbf{P}}{\mathbf{S}_{T}} \neq \mathbf{S}_{T} \quad \mathbf{k}_{T} \times S_{T}$$
The leading twist TMDs:

$$\Phi(x, \mathbf{k}_{T}) = \frac{M}{2} \left\{ f_{1}(x, \mathbf{k}_{T}^{2}) \frac{\mathbf{P}}{M} + \underbrace{f_{1T}^{\perp}(x, \mathbf{k}_{T}^{2})}_{M} \stackrel{\epsilon_{\mu\nu\rho\sigma}\gamma^{\mu}P^{\nu}k_{T}^{\rho}S_{T}^{\sigma}}{M^{2}} + g_{1s}(x, \mathbf{k}_{T}^{2}) \frac{\gamma_{5} \mathbf{P}}{M} + h_{1T}(x, \mathbf{k}_{T}^{2}) \frac{\gamma_{5} \mathbf{S}_{T} \mathbf{P}}{M} + h_{1s}^{\perp}(x, \mathbf{k}_{T}^{2}) \frac{\gamma_{5} \mathbf{k}_{T} \mathbf{P}}{M^{2}} + h_{1}^{\perp}(x, \mathbf{k}_{T}^{2}) \frac{i \mathbf{k}_{T} \mathbf{P}}{M^{2}} \right\}$$

There are lots of TMDs (including TMD fragmentation functions), but in this talk only 2 will be discussed: the leading twist T-odd ones

Sivers effect

Also new hadron spin dependent terms arise, such as the Sivers function

There are lots of TMDs (including TMD fragmentation functions), but in this talk only 2 will be discussed: the leading twist T-odd ones

Evolution of Sivers function

Factorization dictates the evolution:

TMDs and their asymmetries become broader and smaller with increasing energy

TMDs and collinear pdfs

Large transverse momentum (perturbative) tail of TMD determined by collinear pdf

$$f_1(x, \boldsymbol{p}_T^2) \stackrel{\boldsymbol{p}_T^2 \gg M^2}{\sim} \alpha_s \frac{1}{\boldsymbol{p}_T^2} (K \otimes f_1) (x)$$

Tail of Sivers function determined by the collinear twist-3 Qiu-Sterman function

$$f_{1T}^{\perp}(x, \boldsymbol{p}_T^2) \stackrel{\boldsymbol{p}_T^2 \gg M^2}{\sim} \alpha_s \frac{M^2}{\boldsymbol{p}_T^4} (K' \otimes T_F) (x)$$

[Ji, Qiu, Vogelsang, Yuan, PRL 97 (2006) 082002; PLB 638 (2006) 178; Koike, Vogelsang, Yuan, PLB 659 (2008) 878]

$$T_F(x,x) \stackrel{A^+=0}{\propto} \text{F.T.} \langle P | \overline{\psi}(0) \int d\eta^- F^{+\alpha}(\eta^-) \gamma^+ \psi(\xi^-) | P \rangle$$
[Qiu & Sterman, PRL 67 (1991) 2264]

One has to be careful when considering integrals over all transverse momenta Convergence issue and does not automatically yield collinear pdfs

Weighted asymmetries

Actual extraction of TMDs

A problem common to all TMD asymmetries: TMDs appear in convolution integrals For example, the expression for the Sivers asymmetry in SIDIS:

$$\frac{d\sigma(e\,p^{\uparrow} \to e'\,\pi\,X)}{d^2\boldsymbol{q}_T} \propto \frac{|\boldsymbol{S}_T|}{Q_T}\,\sin(\phi_{\pi}^e - \phi_S^e)\,\mathcal{F}\left[\frac{\boldsymbol{q}_T\cdot\boldsymbol{p}_T}{M}\,f_{1T}^{\perp}D_1\right]$$
$$\mathcal{F}\left[w\,f\,D\right] \equiv \int d^2\boldsymbol{p}_T\,d^2\boldsymbol{k}_T\,\delta^2(\boldsymbol{p}_T + \boldsymbol{q}_T - \boldsymbol{k}_T)\,w(\boldsymbol{p}_T, \boldsymbol{q}_T, \boldsymbol{k}_T)\,f(x, \boldsymbol{p}_T^2)D(z, z^2\boldsymbol{k}_T^2)$$

One solution (in this particular case) would be to measure ``jet SIDIS":

$$\frac{d\sigma(e\,p^{\uparrow} \to e'\,\text{jet}\,X)}{d^2\boldsymbol{q}_T} \propto |\boldsymbol{S}_T| \,\sin(\phi^e_{\text{jet}} - \phi^e_S) \,\frac{Q_T}{M} f_{1T}^{\perp}(x, Q_T^2), \qquad Q_T^2 = |\boldsymbol{P}_{\perp}^{\text{jet}}|^2$$

One can probe the k_T -dependence of the Sivers function directly in this way One can probe the k_T -broadening of the Sivers asymmetry with increasing Q^2

A more general solution is to consider weighted asymmetries

Weighted asymmetries

Cross sections integrated & weighted with a power of observed transverse momentum

$$\langle W \rangle \equiv \int dz \, d^2 \boldsymbol{P}_{h\perp} W \, \frac{d\sigma^{[e\,p \to e'\,h\,X]}}{dx \, dy \, dz \, d\phi_h^e d|\boldsymbol{P}_{h\perp}|^2}$$

$$A_{UT}^{\frac{|P_h\perp|}{zM}\sin(\phi_h-\phi_S)}(x,z,y)$$

$$=2\frac{\int d|P_{h\perp}| |P_{h\perp}| d\phi_h d\phi_S \frac{|P_{h\perp}|}{zM} \sin(\phi_h - \phi_S) \left(d\sigma^{\uparrow} - d\sigma^{\downarrow}\right)}{\int d|P_{h\perp}| |P_{h\perp}| d\phi_h d\phi_S \left(d\sigma^{\uparrow} + d\sigma^{\downarrow}\right)}$$

$$= -2 \frac{\sum_{a} e_{a}^{2} H_{UT,T}^{\sin(\phi_{h} - \phi_{S})}(Q^{2}, \mu^{2}) f_{1T}^{\perp(1)a}(x; \mu^{2}, \zeta) D_{1}^{(0)a}(z; \mu^{2}, \zeta)}{\sum_{a} e_{a}^{2} H_{UU,T}(Q^{2}, \mu^{2}) f_{1}^{(0)a}(x; \mu^{2}, \zeta) D_{1}^{(0)a}(z; \mu^{2}, \hat{\zeta})}$$

Contains a weighted Sivers function:

$$f_{1T}^{\perp(1)}(x) \equiv \int d^2k_T \frac{k_T^2}{2M^2} f_{1T}^{\perp}(x,k_T^2)$$

~

Such transverse moments appear in different asymmetries in exactly the same form

Why (Bessel) weight?

Convolution expressions of TMDs that appear in different processes in different ways Weighting projects out "portable" functions

[Kotzinian, Mulders, PLB 406 (1997) 373; DB, Mulders, PRD 57 (1998) 5780]

Conventional weighting with powers of transverse momentum assumes that: - integral converges

- integral over TMD expression (without large Q_T "Y term") is fine

To by-pass these tricky issues, both due to the perturbative tail of the asymmetries, one can consider a modified weighting: Bessel weighting

[DB, Gamberg, Musch, Prokudin, JHEP 10 (2011) 021]

Conventional weight for Sivers asymmetry: $\mathcal{W} \equiv |P_{h\perp}|/zM\sin(\phi_h - \phi_S)$

Bessel weighting: $|P_{h\perp}|^n \to J_n(|P_{h\perp}|\mathcal{B}_T) n! \left(\frac{2}{\mathcal{B}_T}\right)^n$

In the limit $\mathcal{B}_T \rightarrow 0$ conventional weights are retrieved

First studies for Bessel-weighted A_{LL} from CLAS (arXiv:1307.3500→Mher Aghasyan's talk)

Why Bessel weight?

If \mathcal{B}_T is not too small, the TMD region should dominate Allows to suppress Y term contribution & allows calculation of TMDs on the lattice! (\rightarrow Michael Engelhardt's talk) Weighted asymmetries for \mathcal{B}_T in the TMD region have reduced scale dependence (\rightarrow Leonard Gamberg's talk)

Why Bessel weight?

If \mathcal{B}_T is not too small, the TMD region should dominate Allows to suppress Y term contribution & allows calculation of TMDs on the lattice! (\rightarrow Michael Engelhardt's talk) Weighted asymmetries for \mathcal{B}_T in the TMD region have reduced scale dependence (\rightarrow Leonard Gamberg's talk) In the limit $\mathcal{B}_T \rightarrow 0$ of conventional weights, Y term becomes very important and divergences may arise

Bessel-weighted Sivers asymmetry

$$\begin{split} A_{UT}^{\frac{2J_{1}(|P_{h\perp}|\mathcal{B}_{T})}{z_{h}M\mathcal{B}_{T}}\sin(\phi_{h}-\phi_{S})}(\mathcal{B}_{T}) \\ &= 2\frac{\int d|P_{h\perp}| |P_{h\perp}| \, d\phi_{h} \, d\phi_{S} \, \frac{2J_{1}(|P_{h\perp}|\mathcal{B}_{T})}{z_{h}M\mathcal{B}_{T}}\sin(\phi_{h}-\phi_{S}) \left(d\sigma^{\uparrow}-d\sigma^{\downarrow}\right)}{\int d|P_{h\perp}| \, |P_{h\perp}| \, d\phi_{h} \, d\phi_{S} \, J_{0}(|P_{h\perp}| \, \mathcal{B}_{T}) \, \left(d\sigma^{\uparrow}+d\sigma^{\downarrow}\right)} \\ &= -2\frac{\sum_{a}e_{a}^{2} \, H_{UT,T}^{\sin(\phi_{h}-\phi_{S})}(Q^{2},\mu^{2}) \, \tilde{f}_{1T}^{\perp(1)a}(x,z^{2}\mathcal{B}_{T}^{2};\mu^{2},\zeta) \, \tilde{D}_{1}^{(0)a}(z,\mathcal{B}_{T}^{2};\mu^{2},\hat{\zeta})}{\sum_{a}e_{a}^{2} \, H_{UU,T}(Q^{2},\mu^{2}) \, \tilde{f}_{1}^{(0)a}(x,z^{2}\mathcal{B}_{T}^{2};\mu^{2},\zeta) \, \tilde{D}_{1}^{(0)a}(z,\mathcal{B}_{T}^{2};\mu^{2},\hat{\zeta})} \end{split}$$

Bessel-weighted asymmetries involves generalized transverse moments:

$$\tilde{f}^{(n)}(x, \boldsymbol{b}_{T}^{2}) = \frac{2\pi \ n!}{(M^{2})^{n}} \int d|\boldsymbol{p}_{T}||\boldsymbol{p}_{T}| \left(\frac{|\boldsymbol{p}_{T}|}{|\boldsymbol{b}_{T}|}\right)^{n} J_{n}(|\boldsymbol{b}_{T}||\boldsymbol{p}_{T}|) \ f(x, \boldsymbol{p}_{T}^{2})$$
$$\tilde{D}^{(n)}(z, \boldsymbol{b}_{T}^{2}) = \frac{2\pi \ n!}{(z^{2}M_{h}^{2})^{n}} \int d|\boldsymbol{K}_{T}||\boldsymbol{K}_{T}| \left(\frac{|\boldsymbol{K}_{T}|}{|\boldsymbol{b}_{T}|}\right)^{n} J_{n}(|\boldsymbol{b}_{T}||\boldsymbol{K}_{T}|) \ D(z, \boldsymbol{K}_{T}^{2})$$

In the limit $\mathcal{B}_T \rightarrow 0$ conventional weighted expression and moments are retrieved

Bessel-weighted Sivers asymmetry

$$\begin{split} A_{UT}^{\frac{2J_{1}(|P_{h\perp}|\mathcal{B}_{T})}{z_{h}M\mathcal{B}_{T}}\sin(\phi_{h}-\phi_{S})}(\mathcal{B}_{T}) \\ &= 2\frac{\int d|P_{h\perp}| |P_{h\perp}| \, d\phi_{h} \, d\phi_{S} \, \frac{2J_{1}(|P_{h\perp}|\mathcal{B}_{T})}{z_{h}M\mathcal{B}_{T}}\sin(\phi_{h}-\phi_{S}) \left(d\sigma^{\uparrow}-d\sigma^{\downarrow}\right)}{\int d|P_{h\perp}| \, |P_{h\perp}| \, d\phi_{h} \, d\phi_{S} \, J_{0}(|P_{h\perp}| \, \mathcal{B}_{T}) \, \left(d\sigma^{\uparrow}+d\sigma^{\downarrow}\right)} \\ &= -2\frac{\sum_{a}e_{a}^{2} \, H_{UT,T}^{\sin(\phi_{h}-\phi_{S})}(Q^{2},\mu^{2}) \, \tilde{f}_{1T}^{\perp(1)a}(x,z^{2}\mathcal{B}_{T}^{2};\mu^{2},\zeta) \, \tilde{D}_{1}^{(0)a}(z,\mathcal{B}_{T}^{2};\mu^{2},\dot{\zeta})}{\sum_{a}e_{a}^{2} \, H_{UU,T}(Q^{2},\mu^{2}) \, \tilde{f}_{1}^{(0)a}(x,z^{2}\mathcal{B}_{T}^{2};\mu^{2},\zeta) \, \tilde{D}_{1}^{(0)a}(z,\mathcal{B}_{T}^{2};\mu^{2},\dot{\zeta})} \end{split}$$

This is the result of Bessel-weighting the TMD expression (\mathcal{B}_T not small) For small \mathcal{B}_T the Y terms need to be considered, but give same type contribution They should not be added though (would be double counting) Bacchetta, DB, Diehl, Mulders, JHEP 0808 (2008) 023

Low-Q_T Sivers asymmetry expression matches onto high-Q_T Qiu-Sterman asymmetry! Ji, Qiu, Vogelsang, Yuan, PRL 97 (2006) 082002; PLB 638 (2006) 178; Koike, Vogelsang, Yuan, PLB 659 (2008) 878

In this case the Y term in the numerator falls off faster than in the denominator Their ratio is twist-3, when weighted their contribution is not suppressed

Sivers shift

The average transverse momentum shift orthogonal to a given transverse polarization:

$$\langle p_y(x) \rangle_{TU} = \frac{\int d^2 p_T \, p_y \, \Phi^{[\gamma^+]}(x, p_T, P, S, \mu^2, \zeta)}{\int d^2 p_T \, \Phi^{[\gamma^+]}(x, p_T, P, S, \mu^2, \zeta)} \bigg|_{S^{\pm}=0, \, S_T=(1,0)}$$
$$= M \frac{f_{1T}^{\perp(1)}(x; \mu^2, \zeta)}{f_1^{(0)}(x; \mu^2, \zeta)}$$

And its Bessel-weighted analogue:

$$\langle p_{y}(x) \rangle_{TU}^{\mathcal{B}_{T}} = \frac{\int d|p_{T}| |p_{T}| \int d\phi_{p} \frac{2J_{1}(|p_{T}|\mathcal{B}_{T})}{\mathcal{B}_{T}} \sin(\phi_{p} - \phi_{S}) \Phi^{[\gamma^{+}]}(x, p_{T}, P, S, \mu^{2}, \zeta)}{\int d|p_{T}| |p_{T}| \int d\phi_{p} J_{0}(|p_{T}|\mathcal{B}_{T})) \Phi^{[\gamma^{+}]}(x, p_{T}, P, S, \mu^{2}, \zeta)} \Big|_{|S_{T}|=1}$$

$$= M \frac{\tilde{f}_{1T}^{\perp(1)}(x, \mathcal{B}_{T}; \mu^{2}, \zeta)}{\tilde{f}_{1}^{(0)}(x, \mathcal{B}_{T}; \mu^{2}, \zeta)}$$

For nonzero \mathcal{B}_T this involves well-defined (finite) quantities, with Wilson lines that are off the lightcone (spacelike)

After taking Mellin moments and Bessel transverse moments of the Sivers function, one has a well-defined quantity $\langle k_T \times S_T \rangle$ (n, \mathcal{B}_T), that can be evaluated on the lattice

Sivers function on the lattice

The first `first-principle' demonstration in QCD that the Sivers function is nonzero It clearly corroborates the sign change relation!

$$f_{1T}^{\perp[\text{SIDIS}]} = -f_{1T}^{\perp[\text{DY}]}$$

compatible with fits and models: up Sivers (f_{1T}^{\perp}) of SIDIS < 0 and down Sivers of SIDIS > 0 and smaller

Qiu-Sterman function

The limit $\mathcal{B}_T \rightarrow 0$ tells us something about the Qiu-Sterman function

$$f_{1T}^{\perp(1)}(x) \equiv \int d^2k_T \frac{k_T^2}{2M^2} f_{1T}^{\perp}(x,k_T^2) \propto T_F(x,x)$$

[DB, Mulders & Pijlman, NPB 667 (2003) 201]

$$\lim_{b_T \to 0} \tilde{f}_{1T}^{(1)[+]}(x, b_T^2; \mu, \zeta) \stackrel{?}{=} \frac{T_F(x, x; \mu)}{2M}$$

'?' because of rapidity dependence of r.h.s., identification meaningful when viewed as part of the full cross section expression, just like for:

$$\lim_{b_T \to 0} \tilde{f}_1^{(0)}(x, b_T^2; \mu, \zeta) \stackrel{?}{=} f_1(x; \mu)$$

Nevertheless, a very interesting limit to consider, since Qiu-Sterman function itself is intrinsically non-local along the lightcone and cannot be evaluated on the lattice

$$T_F(x,x) \stackrel{A^+=0}{\propto} \text{F.T.} \langle P | \overline{\psi}(0) \int d\eta^- F^{+\alpha}(\eta^-) \gamma^+ \psi(\xi^-) | P \rangle$$

But first Bessel-moment of Sivers function *can* be evaluated (for given rapidity)

Qiu-Sterman function

The limit $\mathcal{B}_T \rightarrow 0$ tells us something about the Qiu-Sterman function

$$f_{1T}^{\perp(1)}(x) \equiv \int d^2k_T \frac{k_T^2}{2M^2} f_{1T}^{\perp}(x,k_T^2) \propto T_F(x,x)$$

[DB, Mulders & Pijlman, NPB 667 (2003) 201]

$$\lim_{b_T \to 0} \tilde{f}_{1T}^{(1)[+]}(x, b_T^2; \mu, \zeta) \stackrel{?}{=} \frac{T_F(x, x; \mu)}{2M}$$

'?' because of rapidity dependence of r.h.s., identification meaningful when viewed as part of the full cross section expression, just like for:

$$\lim_{b_T \to 0} \tilde{f}_1^{(0)}(x, b_T^2; \mu, \zeta) \stackrel{?}{=} f_1(x; \mu)$$

Nevertheless, a very interesting limit to consider, since Qiu-Sterman function itself is intrinsically non-local along the lightcone and cannot be evaluated on the lattice

$$T_F(x,x) \stackrel{A^+=0}{\propto} \text{F.T.} \langle P | \overline{\psi}(0) \int d\eta^- F^{+\alpha}(\eta^-) \gamma^+ \psi(\xi^-) | P \rangle$$

But first Bessel-moment of Sivers function *can* be evaluated (for given rapidity)

$\cos(2\phi)$ asymmetry

Quark polarization inside unpolarized hadrons

cos 2 ϕ asymmetry in unpolarized DY ($\pi D(W) \rightarrow \mu^+ \mu^- X$) is *incompatible* with NNLO collinear pQCD

[Collins '79; Brandenburg, Nachtmann & Mirkes '93; Mirkes & Ohnemus '95]

Naturally explained within TMD framework [DB '99]

It allows for transversely polarized quarks inside an unpolarized hadron:

It generates azimuthal asymmetries in unpolarized collisions, like cos 2ϕ in DY

Lattice calculation

Taking Mellin moments and Bessel transverse moments of the BM function, yields a well-defined quantity $\langle k_T \times s_T \rangle$ (n, \mathcal{B}_T), that can be evaluated on the lattice

[Musch, Hägler, Engelhardt, Negele & Schäfer, PRD 85 (2012) 094510]

Compatible with SIDIS $h_1^{\perp u,d}$ both negative and $|h_1^{\perp u}|$ quite a bit larger than $|h_1^{\perp d}|$ (comes possibly in addition to u-quark dominance due to the electric charge)

up and down same sign: Pobylitsa, hep-ph/0301236 both negative in SIDIS: Burkardt & Hannafious, PLB 658 (2008) 130

$\cos 2\varphi$ in SIDIS

The cos 2 ϕ asymmetry has different high and low Q_T contributions

At low Q_T : ~ $h_1^{\perp} H_1^{\perp}$, with M^2/Q_T^2 suppressed high- Q_T tail At high Q_T : ~ $f_1 D_1$, which is Q_T^2/Q^2 suppressed at low Q_T

The two contributions both need to be included, which is not double counting

$$\nu = \nu_{h_1^{\perp}} + \nu_{\text{pert}} + \mathcal{O}(\frac{Q_T^2}{Q^2} \text{ or } \frac{M^2}{Q_T^2})$$

Nontrivial since a ratio of sums becomes approximately a sum of ratios

Bacchetta, DB, Diehl, Mulders, JHEP 0808 (2008) 023

At low Q^2 the twist-4 Cahn effect (~ M^2/Q^2) also enters

Weighted cos 2¢ asymmetry

The cos 2 ϕ asymmetry as function of Q_T has different high and low Q_T contributions

At low Q_T : ~ $h_1^{\perp} H_1^{\perp}$ At high Q_T : ~ $f_1 D_1$, i.e. dominated by the perturbative contribution

Unfortunately sensitive mainly to the high QT part of the asymmetry (Y-terms) Teaches us little about TMD part Bacchetta, DB, Diehl, Mulders, JHEP 0808 (2008) 023

Solutions: use Lam-Tung relation to largely cancel Y or calculate and subtract Y or do Bessel weighting with sufficiently large \mathcal{B}_T in order to suppress Y

Average transverse momentum

Defining the average p_T

Higher transverse moments in general diverge due to power law tail

Up Quark TMD PDF, x = .09, Q = 91.19 GeV

1 $b_{T,max} = .5 \text{ GeV}^{-1}$ Q = 91.19 GeV0.1 Gaussian Fit 0.01 $F_{up/p}(x=.09,k_T) (GeV^{-2})$ 0.001 001 5 10 15 20 $b_{T,max} = 1.5 \text{ GeV}^{-1}$ 0.1 0.01 0.001 0.0001 0 15 5 10 20 k_T (GeV) Aybat & Rogers, PRD 83 (2011) 114042

 $f_{1}^{(1)}(x)$

Average p_T can be defined by Gaussian fit

Defining the average p_T

$$\frac{\langle p_T^2 \rangle}{2M^2} = f_1^{(1)}(x)$$

$$\to \tilde{f}_1^{(1)}(x, \boldsymbol{b}_T^2) = \frac{2\pi}{M^2} \int d|\boldsymbol{p}_T| \frac{|\boldsymbol{p}_T|^2}{|\boldsymbol{b}_T|} J_1(|\boldsymbol{b}_T||\boldsymbol{p}_T|) f_1(x, \boldsymbol{p}_T^2)$$

With respect to cutting off the perturbative tail any regularization will do, but Bessel weighting is natural from the perspective of deconvoluting and:

$$\tilde{f}^{(n)}(x, \boldsymbol{b}_T^2) = n! \left(-\frac{2}{M^2} \partial_{\boldsymbol{b}_T^2} \right)^n \quad \tilde{f}(x, \boldsymbol{b}_T^2)$$

It suggests a lattice study of the gauge link dependence of $ilde{f}_1^{(1)[\mathcal{U}]}(x,m{b}_T^2)$

It can be shown that for U=+ (SIDIS) and U=- (DY) the answer is the same, but not for TMD-factorizing processes with more complicated links (e p→e' jet jet X?) In all cases there will be contributions from double gluonic pole matrix elements Buffing, Mukherjee, Mulders, PRD 83 (2011) 114042

p_T-broadening

pt broadening involves a pt² weighting, which theoretically yields divergent quantities, hence usually it is defined as a (finite) difference: $\Delta p_T^2 \equiv \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_p$

An alternative is to consider Bessel weighting:

$$\tilde{f}_1^{(1)q/A}(x, \boldsymbol{b}_T^2) - \tilde{f}_1^{(1)q/p}(x, \boldsymbol{b}_T^2) \xrightarrow{\boldsymbol{b}_T^2 \to 0} \Delta p_T^2 \equiv \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_p$$

Converges very slowly, but Δp_T^2 also converges very slowly to 'true' value as function of (experimental or theoretical) cut-off on p_T

A study of the link (in)dependence of p_T -broadening would be interesting

$$\tilde{f}_1^{(1)q/A[\mathcal{U}]}(x,\boldsymbol{b}_T^2) - \tilde{f}_1^{(1)q/p[\mathcal{U}]}(x,\boldsymbol{b}_T^2) \xrightarrow{\boldsymbol{b}_T^2 \to 0} \Delta p_T^2 \xrightarrow{[\mathcal{U}]} \equiv \langle p_T^2 \rangle_A^{[\mathcal{U}]} - \langle p_T^2 \rangle_p^{[\mathcal{U}]}$$

A well-defined ratio can also be formed, but as b_T gets smaller the interesting information about the A versus p difference is lost, $(\infty + \Delta)/\infty$:

$$R_{\Delta} \equiv \frac{\tilde{f}_1^{(1)q/A}(x, \boldsymbol{b}_T^2)}{\tilde{f}_1^{(1)q/p}(x, \boldsymbol{b}_T^2)} \stackrel{\boldsymbol{b}_T^2 \to 0}{\to} 1$$

Conclusions

Conclusions

- Bessel-weighted asymmetries are well-defined and emphasize TMD region
- Y-term of an asymmetry can be decreasing or increasing, in the latter case best first subtracted or cancelled (like in the cos 2φ example)
- Bessel-weighted TMDs, including T-odd ones, are calculable on the lattice, can even tell us about size and shape of Qiu-Sterman function
- The limit $\mathcal{B}_T \rightarrow 0$ should be taken with care, divergences and operator mixing can arise
- Average p_T and p_T -broadening can be redefined in a useful manner (lattice)

In general, Bessel-weighting offers a more 'stable' look at TMDs