The Bessel-Weighting Strategy

Daniël Boer
2nd Workshop on
"Probing Strangeness in Hard Processes"

Frascati, November 12, 2013

Outline

I. Introduction to azimuthal asymmetries and TMD factorization, Sivers effect example
II. Weighted asymmetries, Sivers effect example
III. Very different example: $\cos (2 \phi)$ asymmetry
IV. Average transverse momentum and transverse momentum broadening

Introduction

Azimuthal asymmetries

$$
e p \rightarrow e^{\prime} h X
$$

Semi-inclusive DIS is a multi-scale process: M (hadronic), Q (large), and $\mathrm{P}_{\mathrm{h} \perp}$ (or $\mathrm{Q}_{\text {T }}$) $\left|\mathrm{P}_{\mathrm{h}_{\perp}}\right|$ could be anywhere from small to large

Scattering does not happen in one plane generally \rightarrow out-of-plane angles
Many azimuthal asymmetries in semi-inclusive DIS have been observed by HERMES, COMPASS, and JLab experiments

Transverse Momentum of Quarks

Azimuthal asymmetries are most naturally described in terms of transverse momentum distributions (TMDs)
[Ralston, Soper '79; Sivers '90; Collins '93; Kotzinian '95; Mulders, Tangerman '95; DB, Mulders '98]
Transverse momentum dependence can be correlated with spin dependence:
spin-orbit correlations

Azimuthal asymmetries can test the TMD framework, based on TMD factorization [Collins \& Soper '8I; Ji, Ma \& Yuan '04 \& '05; Collins 'II]

TMD factorization

TMD factorization applies to SIDIS, but also $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}$ and Drell-Yan (DY) Schematic form of (new) TMD factorization [Collins 201 I]:
$d \sigma=H \times$ convolution of $A B+$ high- q_{T} correction $(Y)+$ power-suppressed
$A \& B$ are TMD pdfs or FFs
Details in book by J.C. Collins Summarized in arXiv: I I 07.4I23

Convolution in terms of A and B best deconvoluted by Fourier transform

TMD factorization expressions

Fourier transforms of A and B are functions of the momentum fraction x, the transverse coordinate b_{T}, a rapidity ζ, and the renormalization scale μ

$$
\begin{gathered}
\frac{d \sigma}{d \Omega d^{4} q}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}(\boldsymbol{b}, Q ; x, y, z)+\mathcal{O}\left(Q_{T}^{2} / Q^{2}\right) \\
\tilde{W}(\boldsymbol{b}, Q ; x, y, z)=\sum_{a} \tilde{f}_{1}^{a}\left(x, \boldsymbol{b}^{2} ; \zeta_{F}, \mu\right) \tilde{D}_{1}^{a}\left(z, \boldsymbol{b}^{2} ; \zeta_{D}, \mu\right) H(y, Q ; \mu)
\end{gathered}
$$

TMD factorization expressions

Fourier transforms of A and B are functions of the momentum fraction x, the transverse coordinate b_{T}, a rapidity ζ, and the renormalization scale μ

$$
\begin{gathered}
\frac{d \sigma}{d \Omega d^{4} q}=\int d^{2} b e^{-i b \cdot \boldsymbol{q}_{T}} \tilde{W}(\boldsymbol{b}, Q ; x, y, z)+\mathcal{O}\left(Q_{T}^{2} / Q^{2}\right) \\
\tilde{W}(\boldsymbol{b}, Q ; x, y, z)=\sum_{a} \tilde{f}_{1}^{a}\left(x, \boldsymbol{b}^{2} ; \zeta_{F}, \mu\right) \tilde{D}_{1}^{a}\left(z, \boldsymbol{b}^{2} ; \zeta_{D}, \mu\right) H(y, Q ; \mu)
\end{gathered}
$$

TMD factorization expressions

Fourier transforms of A and B are functions of the momentum fraction x, the transverse coordinate b_{T}, a rapidity ζ, and the renormalization scale μ

$$
\begin{gathered}
\frac{d \sigma}{d \Omega d^{4} q}=\int d^{2} b e^{-i b \cdot \boldsymbol{q}_{T}} \tilde{W}(\boldsymbol{b}, Q ; x, y, z)+\mathcal{O}\left(Q_{T}^{2} / Q^{2}\right) \\
\tilde{W}(\boldsymbol{b}, Q ; x, y, z)=\sum_{a} \tilde{f}_{1}^{a}\left(x, \boldsymbol{b}^{2} ; \zeta_{F}, \mu\right) \tilde{D}_{1}^{a}\left(z, \boldsymbol{b}^{2} ; \zeta_{D}, \mu\right) H(y, Q ; \mu)
\end{gathered}
$$

Including partonic transverse momentum is more than just $f_{1}(x) \rightarrow f_{1}\left(x, k_{T}{ }^{2}\right)$

For unpolarized hadrons with momentum P and partons with $\mathrm{k} \approx \mathrm{xP}+\mathrm{k}_{\mathrm{T}}$:

$$
\Phi\left(x, \boldsymbol{k}_{T}\right)=\frac{M}{2}\left\{f_{1}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\not P}{M}+h_{1}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{i \not 火_{T} \not P}{M^{2}}\right\}
$$

Sivers effect

Also new hadron spin dependent terms arise, such as the Sivers function

The leading twist TMDs:

$$
\begin{aligned}
& \Phi\left(x, \boldsymbol{k}_{T}\right)=\frac{M}{2}\left\{f_{1}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\not P}{M}+f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} P^{\nu} k_{T}^{\rho} S_{T}^{\sigma}}{M^{2}}+g_{1 s}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} \not P}{M}\right. \\
&\left.+h_{1 T}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} \mathscr{S}_{T} \not P}{M}+h_{1 s}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} \not k_{T} \not P}{M^{2}}+h_{1}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{i \not k_{T} \not P}{M^{2}}\right\}
\end{aligned}
$$

There are lots of TMDs (including TMD fragmentation functions), but in this talk only 2 will be discussed: the leading twist T-odd ones

Sivers effect

Also new hadron spin dependent terms arise, such as the Sivers function
D. Sivers ('89/'90):

$$
k_{T} \times S_{T}
$$

The leading twist TMDs:
Sivers function

$$
\left.\begin{array}{rl}
\Phi\left(x, \boldsymbol{k}_{T}\right)=\frac{M}{2}\left\{f_{1}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\not P}{M}+f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right. & \epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} P^{\nu} k_{T}^{\rho} S_{T}^{\sigma} \\
M^{2}
\end{array} g_{1 s}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} \not P}{M}, h_{1 T}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} \phi_{T} \not P}{M}+h_{1 s}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} k_{T} \not P}{M^{2}}+h_{1}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{i \not k_{T} \not P}{M^{2}}\right\}, ~ \$
$$

There are lots of TMDs (including TMD fragmentation functions), but in this talk only 2 will be discussed: the leading twist T-odd ones

Sivers effect

Also new hadron spin dependent terms arise, such as the Sivers function
D. Sivers ('89/'90):

$$
k_{T} \times S_{T}
$$

The leading twist TMDs:
Sivers function

$$
\begin{aligned}
& \Phi\left(x, \boldsymbol{k}_{T}\right)=\frac{M}{2}\left\{f_{1}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\not P}{M}+f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right) \frac{\epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} P^{\nu} k_{T}^{\rho} S_{T}^{\sigma}}{M^{2}}+g_{1 s}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} \not P}{M} \\
& \left.+h_{1 T}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} \mathbb{S}_{T} \not P}{M}+h_{1 s}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} k_{T} \not P}{M^{2}}+h_{1}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{k_{T} \not{ }^{2}}{M^{2}}\right\}
\end{aligned}
$$

Boer-Mulders function
There are lots of TMDs (including TMD fragmentation functions), but in this talk only 2 will be discussed: the leading twist T-odd ones

Evolution of Sivers function

Factorization dictates the evolution:
TMDs and their asymmetries become broader and smaller with increasing energy

D'Alesio, A.Kotzinian, S.Melis, F.
Murgia, A. Prokudin, C.Turk; 2009

Aybat \& Rogers, PRD 83 (201I) II4042
Aybat, Collins, Qiu, Rogers, PRD 85 (2012) 034043

TMDs and collinear pdfs

Large transverse momentum (perturbative) tail ofTMD determined by collinear pdf

$$
f_{1}\left(x, \boldsymbol{p}_{T}^{2}\right) \stackrel{\boldsymbol{p}_{T}^{2} \gg M^{2}}{\sim} \alpha_{s} \frac{1}{\boldsymbol{p}_{T}^{2}}\left(K \otimes f_{1}\right)(x)
$$

Tail of Sivers function determined by the collinear twist-3 Qiu-Sterman function

$$
f_{1 T}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right) \stackrel{\boldsymbol{p}_{T}^{2} \gg M^{2}}{\sim} \alpha_{s} \frac{M^{2}}{\boldsymbol{p}_{T}^{4}}\left(K^{\prime} \otimes T_{F}\right)(x)
$$

[Ji, Qiu,Vogelsang,Yuan, PRL 97 (2006) 082002; PLB 638 (2006) I78;
Koike,Vogelsang,Yuan, PLB 659 (2008) 878]

$$
T_{F}(x, x) \stackrel{A^{+}=0}{\propto \text { F.T. }\langle P| \bar{\psi}(0) \int d \eta^{-} F^{+\alpha}\left(\eta^{-}\right) \gamma^{+} \psi\left(\xi^{-}\right)|P\rangle, ~}
$$

[Qiu \& Sterman, PRL 67 (I99I) 2264]
One has to be careful when considering integrals over all transverse momenta Convergence issue and does not automatically yield collinear pdfs

Weighted asymmetries

Actual extraction of TMDs

A problem common to all TMD asymmetries: TMDs appear in convolution integrals For example, the expression for the Sivers asymmetry in SIDIS:

$$
\begin{gathered}
\frac{d \sigma\left(e p^{\uparrow} \rightarrow e^{\prime} \pi X\right)}{d^{2} \boldsymbol{q}_{T}} \propto \frac{\left|\boldsymbol{S}_{T}\right|}{Q_{T}} \sin \left(\phi_{\pi}^{e}-\phi_{S}^{e}\right) \mathcal{F}\left[\frac{\boldsymbol{q}_{T} \cdot \boldsymbol{p}_{T}}{M} f_{1 T}^{\perp} D_{1}\right] \\
\mathcal{F}[w f D] \equiv \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \delta^{2}\left(\boldsymbol{p}_{T}+\boldsymbol{q}_{T}-\boldsymbol{k}_{T}\right) w\left(\boldsymbol{p}_{T}, \boldsymbol{q}_{T}, \boldsymbol{k}_{T}\right) f\left(x, \boldsymbol{p}_{T}^{2}\right) D\left(z, z^{2} \boldsymbol{k}_{T}^{2}\right)
\end{gathered}
$$

One solution (in this particular case) would be to measure "jet SIDIS":

$$
\frac{d \sigma\left(e p^{\uparrow} \rightarrow e^{\prime} \text { jet } X\right)}{d^{2} \boldsymbol{q}_{T}} \propto\left|\boldsymbol{S}_{T}\right| \sin \left(\phi_{\mathrm{jet}}^{e}-\phi_{S}^{e}\right) \frac{Q_{T}}{M} f_{1 T}^{\perp}\left(x, Q_{T}^{2}\right), \quad Q_{T}^{2}=\left|\boldsymbol{P}_{\perp}^{\mathrm{jet}}\right|^{2}
$$

One can probe the k_{T}-dependence of the Sivers function directly in this way
One can probe the k_{T}-broadening of the Sivers asymmetry with increasing Q^{2}
A more general solution is to consider weighted asymmetries

Weighted asymmetries

Cross sections integrated \& weighted with a power of observed transverse momentum

$$
\langle W\rangle \equiv \int d z d^{2} \boldsymbol{P}_{h \perp} W \frac{d \sigma^{\left[e p \rightarrow e^{\prime} h X\right]}}{d x d y d z d \phi_{h}^{e} d\left|\boldsymbol{P}_{h \perp}\right|^{2}}
$$

$A_{U T}^{\frac{\left|P_{h \perp \perp}\right|}{z M}} \sin \left(\phi_{h}-\phi_{S}\right)(x, z, y)$

$$
\begin{aligned}
& =2 \frac{\int d\left|P_{h \perp}\right|\left|P_{h \perp}\right| d \phi_{h} d \phi_{S} \frac{\left|P_{h \perp}\right|}{z M} \sin \left(\phi_{h}-\phi_{S}\right)\left(d \sigma^{\uparrow}-d \sigma^{\downarrow}\right)}{\int d\left|P_{h \perp}\right|\left|P_{h \perp}\right| d \phi_{h} d \phi_{S}\left(d \sigma^{\uparrow}+d \sigma^{\downarrow}\right)} \\
& =-2 \frac{\sum_{a} e_{a}^{2} H_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(Q^{2}, \mu^{2}\right) f_{1 T}^{\perp(1) a}\left(x ; \mu^{2}, \zeta\right) D_{1}^{(0) a}\left(z ; \mu^{2}, \hat{\zeta}\right)}{\sum_{a} e_{a}^{2} H_{U U, T}\left(Q^{2}, \mu^{2}\right) f_{1}^{(0) a}\left(x ; \mu^{2}, \zeta\right) D_{1}^{(0) a}\left(z ; \mu^{2}, \hat{\zeta}\right)}
\end{aligned}
$$

Contains a weighted Sivers function:

$$
f_{1 T}^{\perp(1)}(x) \equiv \int d^{2} k_{T} \frac{k_{T}^{2}}{2 M^{2}} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right)
$$

Such transverse moments appear in different asymmetries in exactly the same form

Why (Bessel) weight?

Convolution expressions of TMDs that appear in different processes in different ways Weighting projects out "portable" functions
[Kotzinian, Mulders, PLB 406 (1997) 373; DB, Mulders, PRD 57 (1998) 5780]
Conventional weighting with powers of transverse momentum assumes that:

- integral converges
- integral over TMD expression (without large Q_{T} " Y term") is fine

To by-pass these tricky issues, both due to the perturbative tail of the asymmetries, one can consider a modified weighting: Bessel weighting
[DB, Gamberg, Musch, Prokudin, JHEP IO (201 I) 02I]

Conventional weight for Sivers asymmetry: $\quad \mathcal{W} \equiv\left|P_{h \perp}\right| / z M \sin \left(\phi_{h}-\phi_{S}\right)$
Bessel weighting: $\quad\left|P_{h \perp}\right|^{n} \rightarrow J_{n}\left(\left|P_{h \perp}\right| \mathcal{B}_{T}\right) n!\left(\frac{2}{\mathcal{B}_{T}}\right)^{n}$
In the limit $\mathcal{B}_{T} \rightarrow 0$ conventional weights are retrieved
First studies for Bessel-weighted ALL from CLAS (arXiv: I 307.3500 \rightarrow Mher Aghasyan's talk)

Why Bessel weight?

If \mathcal{B}_{T} is not too small, the TMD region should dominate
Allows to suppress Y term contribution \& allows calculation of TMDs on the lattice!
(\rightarrow Michael Engelhardt's talk)
Weighted asymmetries for \mathcal{B}_{T} in the TMD region have reduced scale dependence
(\rightarrow Leonard Gamberg's talk)

Why Bessel weight?

If \mathcal{B}_{T} is not too small, the TMD region should dominate Allows to suppress Y term contribution \& allows calculation of TMDs on the lattice! (\rightarrow Michael Engelhardt's talk)
Weighted asymmetries for \mathcal{B}_{T} in the TMD region have reduced scale dependence (\rightarrow Leonard Gamberg's talk)
In the limit $\mathcal{B}_{T} \rightarrow 0$ of conventional weights, Y term becomes very important and divergences may arise

Bessel-weighted Sivers asymmetry

$$
\begin{aligned}
& A_{U T}^{\frac{2 J_{1}\left(\left|P_{h \perp}\right| \mathcal{B}_{T}\right)}{z_{h} M \mathcal{B}} T} \sin \left(\phi_{h}-\phi_{S}\right) \\
& \left.\mathcal{B}_{T}\right) \\
& \quad=2 \frac{\int d\left|P_{h \perp}\right|\left|P_{h \perp}\right| d \phi_{h} d \phi_{S} \frac{2 J_{1}\left(\left|P_{h \perp}\right| \mathcal{B}_{T}\right)}{z_{h} M \mathcal{B}_{T}} \sin \left(\phi_{h}-\phi_{S}\right)\left(d \sigma^{\uparrow}-d \sigma^{\downarrow}\right)}{\int d\left|P_{h \perp}\right|\left|P_{h \perp}\right| d \phi_{h} d \phi_{S} J_{0}\left(\left|P_{h \perp}\right| \mathcal{B}_{T}\right)\left(d \sigma^{\uparrow}+d \sigma^{\downarrow}\right)} \\
& \quad=-2 \frac{\sum_{a} e_{a}^{2} H_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(Q^{2}, \mu^{2}\right) \tilde{f}_{1 T}^{\perp(1) a}\left(x, z^{2} \mathcal{B}_{T}^{2} ; \mu^{2}, \zeta\right) \tilde{D}_{1}^{(0) a}\left(z, \mathcal{B}_{T}^{2} ; \mu^{2}, \hat{\zeta}\right)}{\sum_{a} e_{a}^{2} H_{U U, T}\left(Q^{2}, \mu^{2}\right) \tilde{f}_{1}^{(0) a}\left(x, z^{2} \mathcal{B}_{T}^{2} ; \mu^{2}, \zeta\right) \tilde{D}_{1}^{(0) a}\left(z, \mathcal{B}_{T}^{2} ; \mu^{2}, \hat{\zeta}\right)}
\end{aligned}
$$

Bessel-weighted asymmetries involves generalized transverse moments:

$$
\begin{aligned}
\tilde{f}^{(n)}\left(x, \boldsymbol{b}_{T}^{2}\right) & =\frac{2 \pi n!}{\left(M^{2}\right)^{n}} \int d\left|\boldsymbol{p}_{T}\right|\left|\boldsymbol{p}_{T}\right|\left(\frac{\left|\boldsymbol{p}_{T}\right|}{\left|\boldsymbol{b}_{T}\right|}\right)^{n} J_{n}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{p}_{T}\right|\right) f\left(x, \boldsymbol{p}_{T}^{2}\right) \\
\tilde{D}^{(n)}\left(z, \boldsymbol{b}_{T}^{2}\right) & =\frac{2 \pi n!}{\left(z^{2} M_{h}^{2}\right)^{n}} \int d\left|\boldsymbol{K}_{T}\right|\left|\boldsymbol{K}_{T}\right|\left(\frac{\left|\boldsymbol{K}_{T}\right|}{\left|\boldsymbol{b}_{T}\right|}\right)^{n} J_{n}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{K}_{T}\right|\right) D\left(z, \boldsymbol{K}_{T}^{2}\right)
\end{aligned}
$$

In the limit $\mathcal{B}_{T} \rightarrow 0$ conventional weighted expression and moments are retrieved

Bessel-weighted Sivers asymmetry

$$
\begin{aligned}
& A_{U T}^{\frac{2 J_{1}\left(\mid P_{h \perp} \perp \mathcal{B}_{T}\right)}{z_{h} M \mathcal{B}_{T}}} \sin \left(\phi_{h}-\phi_{S}\right) \\
& \left(\mathcal{B}_{T}\right) \\
& \quad=2 \frac{\int d\left|P_{h \perp}\right|\left|P_{h \perp}\right| d \phi_{h} d \phi_{S} \frac{2 J_{1}\left(\left|P_{h \perp}\right| \mathcal{B}_{T}\right)}{z_{h} M \mathcal{B}_{T}} \sin \left(\phi_{h}-\phi_{S}\right)\left(d \sigma^{\uparrow}-d \sigma^{\downarrow}\right)}{\int d\left|P_{h \perp}\right|\left|P_{h \perp}\right| d \phi_{h} d \phi_{S} J_{0}\left(\left|P_{h \perp}\right| \mathcal{B}_{T}\right)\left(d \sigma^{\uparrow}+d \sigma^{\downarrow}\right)} \\
& \quad=-2 \frac{\sum_{a} e_{a}^{2} H_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(Q^{2}, \mu^{2}\right) \tilde{f}_{1 T}^{\perp(1) a}\left(x, z^{2} \mathcal{B}_{T}^{2} ; \mu^{2}, \zeta\right) \tilde{D}_{1}^{(0) a}\left(z, \mathcal{B}_{T}^{2} ; \mu^{2}, \hat{\zeta}\right)}{\sum_{a} e_{a}^{2} H_{U U, T}\left(Q^{2}, \mu^{2}\right) \tilde{f}_{1}^{(0) a}\left(x, z^{2} \mathcal{B}_{T}^{2} ; \mu^{2}, \zeta\right) \tilde{D}_{1}^{(0) a}\left(z, \mathcal{B}_{T}^{2} ; \mu^{2}, \hat{\zeta}\right)}
\end{aligned}
$$

This is the result of Bessel-weighting the TMD expression (\mathcal{B}_{T} not small) For small \mathcal{B}_{T} the Y terms need to be considered, but give same type contribution They should not be added though (would be double counting)
Bacchetta, DB, Diehl, Mulders, JHEP 0808 (2008) 023
Low-QT Sivers asymmetry expression matches onto high-QT Qiu-Sterman asymmetry! Ji, Qiu,Vogelsang,Yuan, PRL 97 (2006) 082002; PLB 638 (2006) I78;
Koike,Vogelsang,Yuan, PLB 659 (2008) 878
In this case the Y term in the numerator falls off faster than in the denominator Their ratio is twist-3, when weighted their contribution is not suppressed

Sivers shift

The average transverse momentum shift orthogonal to a given transverse polarization:

$$
\begin{aligned}
\left\langle p_{y}(x)\right\rangle_{T U} & =\left.\frac{\int d^{2} p_{T} p_{y} \Phi^{\left[\gamma^{+}\right]}\left(x, p_{T}, P, S, \mu^{2}, \zeta\right)}{\int d^{2} p_{T} \Phi^{\left[\gamma^{+}\right]}\left(x, p_{T}, P, S, \mu^{2}, \zeta\right)}\right|_{S^{ \pm}=0, S_{T}=(1,0)} \\
& =M \frac{f_{1 T}^{\perp(1)}\left(x ; \mu^{2}, \zeta\right)}{f_{1}^{(0)}\left(x ; \mu^{2}, \zeta\right)}
\end{aligned}
$$

And its Bessel-weighted analogue:

$$
\begin{aligned}
\left\langle p_{y}(x)\right\rangle_{T U}^{\mathcal{B}_{T}} & =\left.\frac{\int d\left|p_{T}\right|\left|p_{T}\right| \int d \phi_{p} \frac{2 J_{1}\left(\left|p_{T}\right| \mathcal{B}_{T}\right)}{\mathcal{T}_{T}} \sin \left(\phi_{p}-\phi_{S}\right) \Phi^{\left[\gamma^{+}\right]}\left(x, p_{T}, P, S, \mu^{2}, \zeta\right)}{\left.\int d\left|p_{T}\right|\left|p_{T}\right| \int d \phi_{p} J_{0}\left(\left|p_{T}\right| \mathcal{B}_{T}\right)\right) \Phi \Phi^{\left[\gamma^{+}\right]}\left(x, p_{T}, P, S, \mu^{2}, \zeta\right)}\right|_{\left|S_{T}\right|=1} \\
& =M \frac{\tilde{f}_{1 T}^{\perp(1)}\left(x, \mathcal{B}_{T} ; \mu^{2}, \zeta\right)}{\tilde{f}_{1}^{(0)}\left(x, \mathcal{B}_{T} ; \mu^{2}, \zeta\right)}
\end{aligned}
$$

For nonzero \mathcal{B}_{T} this involves well-defined (finite) quantities, with Wilson lines that are off the lightcone (spacelike)

After taking Mellin moments and Bessel transverse moments of the Sivers function, one has a well-defined quantity $\left\langle_{k_{T}} \times S_{T}\right\rangle\left(n, \mathcal{B}_{T}\right)$, that can be evaluated on the lattice

Sivers function on the lattice

The first ‘first-principle’ demonstration in QCD that the Sivers function is nonzero It clearly corroborates the sign change relation!

$$
f_{1 T}^{\perp[\text { SIDIS }]}=-f_{1 T}^{\perp[\mathrm{DY}]}
$$

compatible with fits and models:
up Sivers ($\mathrm{f}_{1 \mathrm{~T}^{\perp}}$) of SIDIS <0 and down Sivers of SIDIS >0 and smaller

Qiu-Sterman function

The limit $\mathcal{B}_{T} \rightarrow 0$ tells us something about the Qiu-Sterman function

$$
f_{1 T}^{\perp(1)}(x) \equiv \int d^{2} k_{T} \frac{k_{T}^{2}}{2 M^{2}} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \propto T_{F}(x, x)
$$

[DB, Mulders \& Pijlman, NPB 667 (2003) 201]

$$
\lim _{b_{T} \rightarrow 0} \tilde{f}_{1 T}^{(1)[+]}\left(x, b_{T}^{2} ; \mu, \zeta\right) \stackrel{?}{=} \frac{T_{F}(x, x ; \mu)}{2 M}
$$

'?' because of rapidity dependence of r.h.s., identification meaningful when viewed as part of the full cross section expression, just like for:

$$
\lim _{b_{T} \rightarrow 0} \tilde{f}_{1}^{(0)}\left(x, b_{T}^{2} ; \mu, \zeta\right) \stackrel{?}{=} f_{1}(x ; \mu)
$$

Nevertheless, a very interesting limit to consider, since Qiu-Sterman function itself is intrinsically non-local along the lightcone and cannot be evaluated on the lattice

$$
T_{F}(x, x)^{A^{+}=0} \propto \text { F.T. }\langle P| \bar{\psi}(0) \int d \eta^{-} F^{+\alpha}\left(\eta^{-}\right) \gamma^{+} \psi\left(\xi^{-}\right)|P\rangle
$$

But first Bessel-moment of Sivers function can be evaluated (for given rapidity)

Qiu-Sterman function

The limit $\mathcal{B}_{T} \rightarrow 0$ tells us something about the Qiu-Sterman function

$$
f_{1 T}^{\perp(1)}(x) \equiv \int d^{2} k_{T} \frac{k_{T}^{2}}{2 M^{2}} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \propto T_{F}(x, x)
$$

[DB, Mulders \& Pijlman, NPB 667 (2003) 201]

$$
\lim _{b_{T} \rightarrow 0} \tilde{f}_{1 T}^{(1)[+]}\left(x, b_{T}^{2} ; \mu, \zeta\right) \stackrel{?}{=} \frac{T_{F}(x, x ; \mu)}{2 M}
$$

'?' because of rapidity dependence of r.h.s., identification meaningful when viewed as part of the full cross section expression, just like for:

$$
\lim _{b_{T} \rightarrow 0} \tilde{f}_{1}^{(0)}\left(x, b_{T}^{2} ; \mu, \zeta\right) \stackrel{?}{=} f_{1}(x ; \mu)
$$

Nevertheless, a very interesting limit to consider, since Qiu-Sterman function itself is intrinsically non-local along the lightcone and cannot be evaluated on the lattice

$$
T_{F}(x, x) A^{A^{+}=0} \text { F.T. }\langle P| \bar{\psi}(0) d \eta^{-} F^{+\alpha}\left(\eta^{-}\right) \gamma^{+} \psi\left(\xi^{-}\right)|P\rangle
$$

But first Bessel-moment of Sivers function can be evaluated (for given rapidity)

$\cos (2 \phi)$ asymmetry

Quark polarization inside unpolarized hadrons

$\cos 2 \varphi$ asymmetry in unpolarized DY ($\pi D(W) \rightarrow \mu^{+} \mu^{-} X$) is incompatible with NNLO collinear pQCD
[Collins '79; Brandenburg, Nachtmann \& Mirkes '93; Mirkes \& Ohnemus '95]

Naturally explained within TMD framework [DB '99]

It allows for transversely polarized quarks inside an unpolarized hadron:

It generates azimuthal asymmetries in unpolarized collisions, like $\cos 2 \varphi$ in DY

Lattice calculation

Taking Mellin moments and Bessel transverse moments of the BM function, yields a well-defined quantity $\left\langle\mathrm{k}_{\mathrm{T}} \mathrm{X} \mathrm{s}_{T}>\left(\mathrm{n}, \mathcal{B}_{T}\right)\right.$, that can be evaluated on the lattice [Musch, Hägler, Engelhardt, Negele \& Schäfer, PRD 85 (2012) 0945IO]

Compatible with SIDIS $h 1^{\perp u, d}$ both negative and $\left|h_{\left.\right|^{\perp u}}\right|$ quite a bit larger than $\left|h_{1^{\perp d}}\right|$ (comes possibly in addition to u-quark dominance due to the electric charge)
up and down same sign: Pobylitsa, hep-ph/030| 236
both negative in SIDIS: Burkardt \& Hannafious, PLB 658 (2008) I30

$\cos 2 \phi$ in SIDIS

The $\cos 2 \varphi$ asymmetry has different high and low Q_{T} contributions
At low $Q_{T}: \sim h_{I^{\perp}} H_{I^{\perp}}$, with $M^{2} / Q_{T^{2}}$ suppressed high- Q_{T} tail At high $Q_{T}: \sim f_{1} D_{1}$, which is $Q_{T}{ }^{2} / Q^{2}$ suppressed at low Q_{T}

The two contributions both need to be included, which is not double counting

Nontrivial since a ratio of sums becomes approximately a sum of ratios

Bacchetta, DB, Diehl, Mulders, JHEP 0808 (2008) 023

At low Q^{2} the twist-4 Cahn effect $\left(\sim M^{2} / Q^{2}\right)$ also enters

Weighted $\cos 2 \phi$ asymmetry

The $\cos 2 \varphi$ asymmetry as function of $\mathrm{Q}_{\text {T }}$ has different high and low $\mathrm{Q}_{\text {T contributions }}$
At low $\mathrm{Q}_{\mathrm{T}}: \sim h_{1}{ }^{\perp} \mathrm{H}_{1}{ }^{\perp}$
At high $Q_{T}: \sim f_{l} D_{1}$, i.e. dominated by the perturbative contribution

For TMD part of the $\cos 2 \varphi$ asymmetry the appropriate weighting would be with Q^{2} :

$$
\int d^{2} \boldsymbol{q}_{T} \boldsymbol{q}_{T}^{2} \frac{d \sigma}{d^{2} \boldsymbol{q}_{T}} \rightarrow h_{1}^{\perp(1)} H_{1}^{\perp(1)}
$$

Unfortunately sensitive mainly to the high Q_{T} part of the asymmetry (Y-terms) Teaches us little about TMD part

Bacchetta, DB, Diehl, Mulders, JHEP 0808 (2008) 023
Solutions: use Lam-Tung relation to largely cancel Y or calculate and subtract Y or do Bessel weighting with sufficiently large \mathcal{B}_{T} in order to suppress Y

Average transverse momentum

Defining the average p_{T}

Higher transverse moments in general diverge due to power law tail

Average PT can be defined by Gaussian fit

Defining the average p_{T}

$$
\begin{aligned}
\frac{\left\langle p_{T}^{2}\right\rangle}{2 M^{2}} & =f_{1}^{(1)}(x) \\
& \rightarrow \tilde{f}_{1}^{(1)}\left(x, \boldsymbol{b}_{T}^{2}\right)=\frac{2 \pi}{M^{2}} \int d\left|\boldsymbol{p}_{T}\right| \frac{\left|\boldsymbol{p}_{T}\right|^{2}}{\left|\boldsymbol{b}_{T}\right|} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{p}_{T}\right|\right) f_{1}\left(x, \boldsymbol{p}_{T}^{2}\right)
\end{aligned}
$$

With respect to cutting off the perturbative tail any regularization will do, but Bessel weighting is natural from the perspective of deconvoluting and:

$$
\tilde{f}^{(n)}\left(x, \boldsymbol{b}_{T}^{2}\right)=n!\left(-\frac{2}{M^{2}} \partial_{\boldsymbol{b}_{T}^{2}}\right)^{n} \tilde{f}\left(x, \boldsymbol{b}_{T}^{2}\right)
$$

It suggests a lattice study of the gauge link dependence of $\tilde{f}_{1}^{(1)[\mathcal{U}]}\left(x, \boldsymbol{b}_{T}^{2}\right)$
It can be shown that for $U=+$ (SIDIS) and $U=-(D Y)$ the answer is the same, but not for TMD-factorizing processes with more complicated links (e p \rightarrow e' jet jet X ?)

In all cases there will be contributions from double gluonic pole matrix elements
Buffing, Mukherjee, Mulders, PRD 83 (20II) I I 4042

p_{T}-broadening

PT broadening involves a PT^{2} weighting, which theoretically yields divergent quantities, hence usually it is defined as a (finite) difference: $\Delta p_{T}^{2} \equiv\left\langle p_{T}^{2}\right\rangle_{A}-\left\langle p_{T}^{2}\right\rangle_{p}$

An alternative is to consider Bessel weighting:

$$
\tilde{f}_{1}^{(1) q / A}\left(x, \boldsymbol{b}_{T}^{2}\right)-\tilde{f}_{1}^{(1) q / p}\left(x, \boldsymbol{b}_{T}^{2}\right) \xrightarrow{\boldsymbol{b}_{T}^{2} \rightarrow 0} \Delta p_{T}^{2} \equiv\left\langle p_{T}^{2}\right\rangle_{A}-\left\langle p_{T}^{2}\right\rangle_{p}
$$

Converges very slowly, but $\Delta \mathrm{pr}^{2}$ also converges very slowly to 'true' value as function of (experimental or theoretical) cut-off on PT
A study of the link (in)dependence of pT-broadening would be interesting

$$
\tilde{f}_{1}^{(1) q / A[\mathcal{U}]}\left(x, \boldsymbol{b}_{T}^{2}\right)-\tilde{f}_{1}^{(1) q / p[\mathcal{U}]}\left(x, \boldsymbol{b}_{T}^{2}\right) \xrightarrow{\boldsymbol{b}_{T}^{2} \rightarrow 0} \Delta p_{T}^{2}[\mathcal{U}] \equiv\left\langle p_{T}^{2}\right\rangle_{A}^{[\mathcal{U}]}-\left\langle p_{T}^{2}\right\rangle_{p}^{[\mathcal{U}]}
$$

A well-defined ratio can also be formed, but as $b_{\text {т }}$ gets smaller the interesting information about the A versus p difference is lost, $(\infty+\Delta) / \infty$:

$$
R_{\Delta} \equiv \frac{\tilde{f}_{1}^{(1) q / A}\left(x, \boldsymbol{b}_{T}^{2}\right)}{\tilde{f}_{1}^{(1) q / p}\left(x, \boldsymbol{b}_{T}^{2}\right)} \stackrel{\boldsymbol{b}_{T}^{2} \rightarrow 0}{\longrightarrow} 1
$$

Conclusions

Conclusions

- Bessel-weighted asymmetries are well-defined and emphasize TMD region
- Y-term of an asymmetry can be decreasing or increasing, in the latter case best first subtracted or cancelled (like in the cos 2ϕ example)
- Bessel-weighted TMDs, including T-odd ones, are calculable on the lattice, can even tell us about size and shape of Qiu-Sterman function
- The limit $\mathcal{B}_{T} \rightarrow 0$ should be taken with care, divergences and operator mixing can arise
- Average $\mathrm{p}_{\boldsymbol{T}}$ and $\mathrm{p}_{\boldsymbol{T}}$-broadening can be redefined in a useful manner (lattice)

In general, Bessel-weighting offers a more 'stable' look at TMDs

