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Introduction



Azimuthal asymmetries

e p → e� hX

Semi-inclusive DIS is a multi-scale process: M (hadronic), Q (large), and Ph⊥ (or QT)
|Ph⊥| could be anywhere from small to large
 
Scattering does not happen in one plane generally → out-of-plane angles

Many azimuthal asymmetries in semi-inclusive DIS have been observed by 
HERMES, COMPASS, and JLab experiments 



Azimuthal asymmetries are most naturally described in terms of 
transverse momentum distributions (TMDs)
[Ralston, Soper '79; Sivers '90; Collins '93; Kotzinian '95; Mulders, Tangerman '95; DB, Mulders '98]

Transverse momentum dependence can be correlated with spin dependence: 
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Azimuthal asymmetries can test the TMD framework, based on TMD factorization
[Collins & Soper '81; Ji, Ma & Yuan '04 & '05; Collins '11]

Transverse Momentum of Quarks



Details in book by J.C. Collins 
Summarized in arXiv:1107.4123

TMD factorization

Schematic form of (new) TMD factorization [Collins 2011]:

dσ = H × convolution of AB + high-qT correction (Y ) + power-suppressed

A & B are TMD pdfs or FFs

Convolution in terms of A and B best 
deconvoluted by Fourier transform

TMD factorization applies to SIDIS, but also e+e- → h1 h2 X and Drell-Yan (DY)



TMD factorization expressions
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Fourier transforms of A and B are functions of the momentum fraction x, 
the transverse coordinate bT, a rapidity ζ , and the renormalization scale μ
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Y term

Including partonic transverse momentum is more than just f1(x) → f1(x,kT2) 

kT-odd functions may arise, that vanish upon integration over all kT
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For unpolarized hadrons with momentum P and partons with k ≈ xP + kT:
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The leading twist TMDs:

There are lots of TMDs (including TMD fragmentation functions), 
but in this talk only 2 will be discussed: the leading twist T-odd ones
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=/D. Sivers (’89/’90): kT × ST

Sivers effect 
Also new hadron spin dependent terms arise, such as the Sivers function
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Sivers function
The leading twist TMDs:

There are lots of TMDs (including TMD fragmentation functions), 
but in this talk only 2 will be discussed: the leading twist T-odd ones

Boer-Mulders function
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Evolution of Sivers function

Aybat & Rogers, PRD 83 (2011) 114042
Aybat, Collins, Qiu, Rogers, PRD 85 (2012) 034043

Factorization dictates the evolution: 
TMDs and their asymmetries become broader and smaller with increasing energy

Power law tail
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2
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TMDs and collinear pdfs
Large transverse momentum (perturbative) tail of TMD determined by collinear pdf 

Tail of Sivers function determined by the collinear twist-3 Qiu-Sterman function 

[Ji, Qiu, Vogelsang, Yuan, PRL 97 (2006) 082002; PLB 638 (2006) 178;
Koike, Vogelsang, Yuan, PLB 659 (2008) 878]
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[Qiu & Sterman, PRL 67 (1991) 2264]

One has to be careful when considering integrals over all transverse momenta
Convergence issue and does not automatically yield collinear pdfs



Weighted asymmetries



Actual extraction of TMDs

One solution (in this particular case) would be to measure ``jet SIDIS":

One can probe the kT-dependence of the Sivers function directly in this way
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One can probe the kT-broadening of the Sivers asymmetry with increasing Q2

A more general solution is to consider weighted asymmetries
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A problem common to all TMD asymmetries:  TMDs appear in convolution integrals
For example, the expression for the Sivers asymmetry in SIDIS:
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Weighted asymmetries
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Contains a weighted Sivers function:

Such transverse moments appear in different asymmetries in exactly the same form
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Cross sections integrated & weighted with a power of observed transverse momentum



Why (Bessel) weight?

Conventional weight for Sivers asymmetry: W ≡ |Ph⊥|/zM sin(φh − φS)

Bessel weighting: |Ph⊥|n → Jn(|Ph⊥|BT )n!

�
2

BT

�n

In the limit BT → 0 conventional weights are retrieved

Conventional weighting with powers of transverse momentum assumes that: 
- integral converges
- integral over TMD expression (without large QT “Y term”) is fine 

To by-pass these tricky issues, both due to the perturbative tail of the asymmetries, 
one can consider a modified weighting: Bessel weighting 
[DB, Gamberg, Musch, Prokudin, JHEP 10 (2011) 021]

First studies for Bessel-weighted ALL from CLAS (arXiv:1307.3500→Mher Aghasyan’s talk)

Convolution expressions of TMDs that appear in different processes in different ways 
Weighting projects out “portable” functions 
 

[Kotzinian, Mulders, PLB 406 (1997) 373; DB, Mulders, PRD 57 (1998) 5780]
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Why Bessel weight?

(→Michael Engelhardt’s talk) 
Weighted asymmetries for BT in the TMD region have reduced scale dependence

(→ Leonard Gamberg’s talk)
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Why Bessel weight?

(→Michael Engelhardt’s talk) 

In the limit BT → 0 of conventional weights,  Y term becomes very important 
and divergences may arise 
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Weighted asymmetries for BT in the TMD region have reduced scale dependence
(→ Leonard Gamberg’s talk)
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In the limit BT → 0 conventional weighted expression and moments are retrieved

Bessel-weighted Sivers asymmetry



Bessel-weighted Sivers asymmetry
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This is the result of Bessel-weighting the TMD expression (BT not small)
For small BT  the Y terms need to be considered, but give same type contribution
They should not be added though (would be double counting)

Low-QT Sivers asymmetry expression matches onto high-QT Qiu-Sterman asymmetry!
Ji, Qiu, Vogelsang, Yuan, PRL 97 (2006) 082002; PLB 638 (2006) 178;
Koike, Vogelsang, Yuan, PLB 659 (2008) 878

In this case the Y term in the numerator falls off faster than in the denominator 
Their ratio is twist-3, when weighted their contribution is not suppressed 

Bacchetta, DB, Diehl, Mulders, JHEP 0808 (2008) 023



Sivers shift
The average transverse momentum shift orthogonal to a given transverse polarization:

And its Bessel-weighted analogue:

For nonzero BT  this involves well-defined (finite) quantities, with Wilson lines 
that are off the lightcone (spacelike)

After taking Mellin moments and Bessel transverse moments of the Sivers function, 
one has a well-defined quantity <kT x ST>(n,BT), that can be evaluated on the lattice
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Sivers function on the lattice

SIDIS�� DY
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The first `first-principle’ demonstration in QCD that the Sivers function is nonzero
It clearly corroborates the sign change relation!

f⊥[SIDIS]
1T = −f⊥[DY]

1T to be tested
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‘?’ because of rapidity dependence of r.h.s., identification meaningful when viewed 
as part of the full cross section expression, just like for:

Qiu-Sterman function
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Nevertheless, a very interesting limit to consider, since Qiu-Sterman function itself is 
intrinsically non-local along the lightcone and cannot be evaluated on the lattice

But first Bessel-moment of Sivers function can be evaluated (for given rapidity)

[DB, Mulders & Pijlman, NPB 667 (2003) 201]

The limit BT → 0 tells us something about the Qiu-Sterman function
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cos(2φ) asymmetry



Quark polarization inside unpolarized hadrons

DB & Mulders (’98)

cos 2φ asymmetry in unpolarized DY
(π D(W)→μ+μ-X) is incompatible 
with NNLO collinear pQCD

[Collins '79; Brandenburg, Nachtmann 
& Mirkes '93; Mirkes & Ohnemus '95]
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It generates azimuthal asymmetries in unpolarized collisions, like cos 2φ in DY
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Naturally explained within TMD framework 
[DB '99]

It allows for transversely polarized quarks inside an unpolarized hadron:
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Compatible with SIDIS h1⊥u,d both negative and | h1⊥u | quite a bit larger than | h1⊥d |
(comes possibly in addition to u-quark dominance due to the electric charge)

Taking Mellin moments and Bessel transverse moments of the BM function, yields a 
well-defined quantity <kT x sT>(n,BT), that can be evaluated on the lattice

[Musch, Hägler, Engelhardt, Negele & Schäfer, PRD 85 (2012) 094510]
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up and down same sign: Pobylitsa, hep-ph/0301236
both negative in SIDIS: Burkardt & Hannafious, PLB 658 (2008) 130 



cos 2φ in SIDIS 

The cos 2φ asymmetry has different high and low QT contributions

At low QT: ~ h1⊥ H1⊥, with M2/QT2 suppressed high-QT tail 
At high QT: ~ f1 D1, which is QT2/Q2 suppressed at low QT 

The two contributions both need to be included, which is not double counting

At low Q2 the twist-4 Cahn effect (~M2/Q2) also enters

Bacchetta, DB, Diehl, Mulders, JHEP 0808 (2008) 0230
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The cos 2φ asymmetry as function of QT has different high and low QT contributions

At low QT: ~ h1⊥ H1⊥ 
At high QT: ~ f1 D1, i.e. dominated by the perturbative contribution 

Weighted cos 2φ asymmetry 
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For TMD part of the 
cos 2φ asymmetry 
the appropriate weighting 
would be with QT2:

Unfortunately sensitive mainly to the high QT part of the asymmetry (Y-terms)
Teaches us little about TMD part

Solutions: use Lam-Tung relation to largely cancel Y or calculate and subtract Y or
do Bessel weighting with sufficiently large BT in order to suppress Y
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Bacchetta, DB, Diehl, Mulders, JHEP 0808 (2008) 023



Average transverse momentum
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Higher transverse moments in general diverge due to power law tail

Aybat & Rogers, PRD 83 (2011) 114042

Average pT can be defined by Gaussian fit 

Defining the average pT

�p2T �
2M2

= f (1)
1 (x)



�p2T �
2M2

= f (1)
1 (x)

→ f̃ (1)
1 (x, b2T ) =

2π

M2

�
d|pT |

|pT |2

|bT |
J1(|bT ||pT |) f1(x,p2

T )

With respect to cutting off the perturbative tail any regularization will do, but 
Bessel weighting is natural from the perspective of deconvoluting and:

f̃ (n)(x, b2T ) = n!

�
− 2

M2
∂b2

T

�n

f̃(x, b2T )

Defining the average pT

It can be shown that for U=+ (SIDIS) and U=− (DY) the answer is the same, but not 

for TMD-factorizing processes with more complicated links (e p→e’ jet jet X?)

In all cases there will be contributions from double gluonic pole matrix elements 

Buffing, Mukherjee, Mulders, PRD 83 (2011) 114042

It suggests a lattice study of the gauge link dependence of f̃ (1)[U ]
1 (x, b2T )



pT broadening involves a pT2 weighting, which theoretically yields divergent 
quantities, hence usually it is defined as a (finite) difference: ∆p2T ≡ �p2T �A − �p2T �p

An alternative is to consider Bessel weighting: 

pT-broadening

R∆ ≡ f̃ (1)q/A
1 (x, b2T )

f̃ (1)q/p
1 (x, b2T )

b2
T→0−→ 1

f̃ (1)q/A
1 (x, b2T )− f̃ (1)q/p

1 (x, b2T )
b2
T→0−→ ∆p2T ≡ �p2T �A − �p2T �p

Converges very slowly, but ΔpT2 also converges very slowly to ‘true’ value as function 
of (experimental or theoretical) cut-off on pT

A well-defined ratio can also be formed, 
but as bT gets smaller the interesting 
information about the A versus p 
difference is lost, (∞+Δ)/∞:

A study of the link (in)dependence of pT-broadening would be interesting

f̃ (1)q/A[U ]
1 (x, b2T )− f̃ (1)q/p[U ]

1 (x, b2T )
b2
T→0−→ ∆p2T

[U ] ≡ �p2T �
[U ]
A − �p2T �[U ]

p



Conclusions



• Bessel-weighted asymmetries are well-defined and emphasize TMD region

• Y-term of an asymmetry can be decreasing or increasing, in the latter case 
  best first subtracted or cancelled (like in the cos 2φ example)

• Bessel-weighted TMDs, including T-odd ones, are calculable on the lattice, 
  can even tell us about size and shape of Qiu-Sterman function

• The limit BT → 0 should be taken with care, divergences and 
  operator mixing can arise

• Average pT and pT-broadening can be redefined in a useful manner (lattice)

In general, Bessel-weighting offers a more ʻstableʼ look at TMDs

Conclusions


