

JLab news on TMD observables

Silvia Pisano Laboratori Nazionali di Frascati INFN

Bound state internal dynamics and hadronization mechanism LNI

To access tranverse structure of the nucleon we rely on Semi-Inclusive DIS (SIDIS):

 N/q
 U
 L
 T

 U
 f_1 Image: state st

Through *Factorization* $\rightarrow \sigma^{ep \rightarrow ehX} = \sum_{q} DF \otimes \sigma^{eq \rightarrow eq} \otimes FF$

Fragmentation Functions

q/H	U	L	т
U	D ₁		H_1^{\perp}
L		G _{1L}	H_{1L}^{\perp}
т	H_1^{\perp}	G_{1T}	$\boldsymbol{H_1}, \boldsymbol{\mathrm{H}}_{1T}^{\perp}$

FF describe the transition from the partonic to the hadronic d.o.f.

The three experimental Halls@JLab

The CEBAF provides longitudinally-polarized electrons to 3 experimental Halls, characterized by different and complementary characteristics.

Depending on the degrees of freedom active in the process, various TMD&&FF can be accessed:

 $\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$ Unpolarized $\left\{ F_{\rm UU,T} + \epsilon F_{\rm UU,L} \right\}$ arget $+\sqrt{2\epsilon (1+\epsilon)} \cos (\phi) F_{\mathrm{UU}}^{\cos (\phi)} + \epsilon \cos (2\phi) F_{\mathrm{UU}}^{\cos (2\phi)} \right] \mathbf{I}$ + $\lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin(\phi) F_{\rm LU}^{\sin(\phi)} \right]$ + $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\mathrm{UL}}^{\sin (2\phi)} \right]$ Longitudinally ool. target + $S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\text{LL}} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi) F_{\text{LL}}^{\cos (\phi)} \right]$ + $S_T \qquad \left[\sin \left(\phi - \phi_S \right) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin \left(\phi - \phi_S \right)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin \left(\phi - \phi_S \right)} \right) \right]$ $+\epsilon \sin{(\phi + \phi_S)} F_{\mathrm{UT}}^{\sin{(\phi + \phi_S)}} + \epsilon \sin{(3\phi - \phi_S)} F_{\mathrm{UT}}^{\sin{(3\phi - \phi_S)}}$ $+\sqrt{2\epsilon(1+\epsilon)}\sin(\phi_S)F_{\rm UT}^{\sin(\phi_S)}$ Tranversely pol. target $+\sqrt{2\epsilon (1+\epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)}$ + $S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos{(\phi - \phi_S)} F_{\text{LT}}^{\cos{(\phi - \phi_S)}} \right]$ $+\sqrt{2\epsilon (1-\epsilon)}\cos{(\phi_S)}F_{\rm LT}^{\cos{(\phi_S)}}$ $+\sqrt{2\epsilon(1-\epsilon)}\cos(2\phi-\phi_S)F_{\mathrm{LT}}^{\cos(2\phi-\phi_S)}$

18 structure functions appear in
the cross-section $F_{ij,K} \propto DF \otimes FF$ JLab TMD program explored the
different terms:1. Unpolarized contributions
(Hall-B, Hall-C)2. Longitudinally-polarized

contributions (Hall-B)3. Transversely-polarized contributions (Hall-A)

SIDIS measurements@Hall A

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

Hall-A accessed the **transversely-polarized part** of the single-hadron SIDIS cross-section.

+
$$S_T$$
 $\left[\sin (\phi - \phi_S) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin (\phi - \phi_S)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin (\phi - \phi_S)} \right) \right.$
+ $\epsilon \sin (\phi + \phi_S) F_{\mathrm{UT}}^{\sin (\phi + \phi_S)} + \epsilon \sin (3\phi - \phi_S) F_{\mathrm{UT}}^{\sin (3\phi - \phi_S)} \right.$
+ $\sqrt{2\epsilon (1 + \epsilon)} \sin (\phi_S) F_{\mathrm{UT}}^{\sin (\phi_S)} \left.$
+ $\sqrt{2\epsilon (1 + \epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)} \right]$

1. X. Qian at al., PRL 107:072003(2011), extraction of Collins and Sivers moments on a tranversely-polarized ³He target - π^{\pm} SIDIS $\rightarrow F_{UT}^{sin \varphi - \varphi_S}$, $F_{UT}^{sin \varphi + \varphi_S}$

+
$$S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos(\phi - \phi_S) F_{LT}^{\cos(\phi - \phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi_S) F_{LT}^{\cos(\phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos(2\phi - \phi_S) F_{LT}^{\cos(2\phi - \phi_S)} \right]$$

1. Huang at al., PRL 108:052001(2012), First "direct measurement" on effective n target at Jlab - π^{\pm} SIDIS $\rightarrow F_{LT}^{\cos \varphi - \varphi_S}$

SIDIS measurements@Hall A: Single-Spin Asymmetries

The reaction ${}^{3}He^{\uparrow}(\vec{e},e'\pi^{\pm})X$ was studied.

The final state particles were detected through the following equipment:

- BigBite@30° as electron arm
 - \succ 0.6 GeV² < P_e < 2.5 GeV²
- HRS_L@16° as hadron arm
 - $> P_h = 2.35 \, GeV$

The kinematic explored in this measurement covers the region $Q^2 > 1 \ GeV^2$, $W > 2.3 \ GeV$, $m_X > 1.6 \ GeV$.

The final set of data was divided in 4 x_B bins.

Thanks to E. Cisbani and J.P. Chen for the material shown in the next slides!

Hall A Single-Spin Asymmetries - results

Collins effect: $F_{UT}^{\sin \varphi + \varphi_S} \propto h_1 \otimes H_1^{\perp}$ Sivers effect: $F_{UT}^{\sin \varphi - \varphi_S} \propto f_{1T}^{\perp} \otimes D_1$

Neutron: $A_{^{3}He}{}^{C/S} = P_n(1 - f_p)A_n{}^{C/S} + P_pf_pA_p{}^{C/S}$

Neutron Collins moments are small \rightarrow non zero for the $\pi^+ @ x = 0.34$.

Data favor negative Sivers moments for π^+ , while for the π^- they are close to zero \rightarrow it supports negative *d*-quark Sivers function

With respect to the neutron results, on the proton it has been observed:

- non-zero Collins signal for π⁺, π⁻
 Opposit behaviour for Sivers: both HERMES and COMPASS data show a significantly positive Sivers moment for π⁺
 - Data on neutron \rightarrow negative d-quark Sivers function?

SIDIS measurements@Hall A: Double-Spin Asymmetry A_{LT}

The reaction ${}^{3}He^{\uparrow}(\vec{e}, e'\pi^{\pm})X$ was studied: $A_{LT} \approx A_{LT} \cos(\varphi_{h} - \varphi_{S}) \cos(\varphi_{h} - \varphi_{S}) \approx C[g_{1T}{}^{q}D_{1}].$

Huang at al., PRL 108:052001(2012)

 π^+ asymmetries are consistent with zero.

 π^- asymmetries are positive with a 2.8 σ significance.

Neutron:
$$A_{LT}^{\ n} = \frac{\left(A_{LT}^{\ 3He} - f_p A_{LT}^{\ p} P_p\right)}{(1 - f_p) P_n}$$

 π^+ asymmetries are consistent with zero.

 π^- asymmetries are consistent in sign with model predictions but favor a larger magnitude \rightarrow Different $P_{h\perp}$ dependence? Higher-twist effects?

The CLAS detector@Hall-B

The CLAS detector is provided with:

- Toroidal magnetic field (6 supercondicting coils)
- Drift chambers (argon/CO2 Gas, 35000 cells)
- Time-of-flight scintillators
- Electromagnetic calorimeters
- Cherenkov counters (e/π separation)

It is provided with different targets, allowing it to access various observables:

- Unpolarized liquid-hydrogen target
- 2. Longitudinally-polarized ³NH target

SIDIS measurements@Hall B: overview

CLAS accessed both the unpolarized and longitudinally-polarized term of the SIDIS cross-section.

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\begin{cases} \begin{bmatrix} F_{UU,T} + \epsilon F_{UU,L} \\ + \sqrt{2\epsilon (1+\epsilon)} \cos (\phi) F_{UU}^{\cos (\phi)} + \epsilon \cos (2\phi) F_{UU}^{\cos (2\phi)} \end{bmatrix} \\ + \lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{LU}^{\sin (\phi)} \right] \end{cases}$$

+ $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin(\phi) F_{\mathrm{UL}}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{\mathrm{UL}}^{\sin(2\phi)} \right]$

+ $S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\rm LL}^{\cos(\phi)} \right]$

1. M. Osipenko *et al.*, **PRD 80, 032004 (2009)**,
$$\pi^+$$
 SIDIS $\rightarrow F_{UU}^{\cos(\varphi)}, F_{UU}^{\cos(2\varphi)}$

- 2. M. Aghasyan *et al.*, **Phys. Lett. B 704, 397** (2011), π^0 SIDIS $\rightarrow F_{LU}^{\sin \varphi}$
- 3. W. Gohn *et al.*, **paper in progress**, $\pi^{0,\pm}$ SIDIS $\rightarrow F_{LU}^{\sin \varphi}$

1. H. Avakian *et al.*, **PRD 80**, **032004**
(2009),
$$\pi^{0,\pm}$$
 SIDIS $\rightarrow F_{UL}^{\sin 2\varphi}$, $A_{LL}^{?}$

2. Experiment E05-113, analyses ongoing: $\pi^{0,\pm}$ SIDIS $\rightarrow F_{LU}$, F_{UL} , F_{LL}

 A_{LU} is proportional to the structure function

$$F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xe H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xg^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} \right) \right]$$

- 1. e(x) is the *chiral-odd*, **twist-3** PDF Jaffe and Ji, Nucl.Phys.B357, 527 (1992)
- 2. h_1^{\perp} is the **leading-order** Boer-Mulders TMD D. Boer, P.J. Mulders, Phys. Rev. D57 (1998) 5780, hep-ph/9711485
- 3. g^{\perp} is the **twist-3**, *T-odd* PDF A. Bacchetta, P.J. Mulders, and F. Pijlman, Phys.Lett.B595, 309 (2004), hep-ph/0405154
- 4. H_1^{\perp} is the naive *T*-odd Collins fragmentation function J.C. Collins, Nucl.Phys.B396, 161 (1993), hep-ph/9208213
- 5. \tilde{E} and \tilde{G}^{\perp} are **twist-3** fragmentation functions.

It is extracted by impinging a longitudinally-polarized electron beam on a unpolarized liquid-hydrogen target ($P_e \sim 75\%$).

 \rightarrow Entire structure function is twist-3, so in commonly used Wandzura-Wilczek approximation entire asymmetry = 0!

Unpolarized liquid ²H Liquid-hydrogen target H_2 Beam energy: 5.5 GeV Luminosity: 21 fb^{-1}

Beam-Spin Asymmetry: 1-D dependence

Analysis by W. Gohn. Thanks to him for the material in the next slides!

Beam-Spin Asymmetry: $A_{LU}^{sin \varphi}$ 2-D dependence

- A_{LU}^{sin φ} in 2-dimensional binning vs x_B and P_T (5 bins each)
- Integrated over $Q^2 > 1 \ GeV^2$ and 0.4 < z < 0.7
- Error bars represent statistical errors.
- Shaded region denotes systematic error.

Comparison to models & previous experiment

HERMES, A. Airapatian et al., Phys. Lett. B648, 164 (2007), hep-ex/0612059

Comparison with previous measurements (evolution-weighted).

- 1. It is the first $\pi^{-} A_{LU}$ measured by CLAS.
- 2. First measurement with sufficient precision to determine the sign of $A_{LU}^{\sin \varphi}$

Each model curve shows the convolution of one TMD with one fragmentation function. The curves shown display $e(x) \otimes H_1^{\perp}$ or $g_1(x) \otimes D_1$

SIDIS@Hall-B: Asymmetries on longitudinally-polarized ³NH

New experiment in 2009 with a **longitudinally-polarized** ³NH target & the CEBAF **longitudinally-polarized** electron beam

 \rightarrow single (A_{LU} , A_{UL}) and double-spin asymmetries (A_{LL}) can be extracted

□ Single Spin Asymmetry (SSA)

Analysis by S. Koirala & S. Jawalkar

$$A_{UL} = \frac{1}{fP_t} \frac{N^+ - N^-}{N^+ + N^-} \propto A_{UL}^{\sin \varphi} \sin \varphi + A_{UL}^{\sin 2\varphi} \sin 2\varphi$$

- 1. $A_{UL}^{\sin 2\varphi}$: it is the only term arising at LEADING ORDER, and it involves the coupling $h_{1L}^{\perp} \otimes H_1^{\perp}$. The only available measurements by Hermes* is consistent with zero.
- 2. $A_{UL}^{\sin \varphi}$: expected to be dominated from higher-twist contributions

Double-Spin Asymmetry (DSA)

$$A_{LL} = \frac{1}{fD'(y)P_{B}P_{t}} \frac{N^{+} - N^{-}}{N^{+} + N^{-}} \propto \frac{g_{1} \otimes D_{1}}{f_{1} \otimes D_{1}}$$

 g_1 is well known in the collinear case \rightarrow its p_T dependence only recently explored

Longitudinally-polarized ${}^{3}NH$ Hydrogen target NH_{3} Beam energy: 5.967Luminosity: 50.7 fb^{-1} $P^{\uparrow} = 82\%, P^{\downarrow} = 75\%$

Thanks to S. Koirala for the material in the next slides!

Beam-Spin Asymmetry on longitudinally-polarized ³NH

Red: π^+ Blue: π^- Green: π^0

Target-Spin Asymmetry on longitudinally-polarized ³NH

Red: π^+ Blue: π^- Green: π^0

Double-Spin Asymmetry on longitudinally-polarized ³NH

Red: π^+ Blue: π^- Green: π^0

Longitudinally-polarized contribution $\rightarrow A_1 x$ -dependence

$$A_{LL} = \frac{1}{fD'(y)P_BP_t} \frac{N^+ - N^-}{N^+ + N^-} \propto \frac{g_1 \otimes D_1}{f_1 \otimes D_1}$$

- \Box *f* is the dilution factor
- \Box D'(y) is a depolarization factor
- \Box P_B is the beam polarization
- \Box P_T is the target polarization
- $\square N^{\pm} \text{ the luminosity integrated}$ yields
- Very precise data in the high-x region
- □ Consistent with HERMES data in the low-x region \rightarrow weak Q^2 dependence of A_1
- Data consistent with calculation using leading-order GRSV* PDFs

*M. Gluck, E. Reya, M. Stratmann, W. Vogelsang, Phys. Rev. D 53(1996) 4775.

Conclusions

- Correlations among parton tranverse momentum & spin is essential to relate the nucleon structure to its elementary degrees of freedom.
- Azimuthal asymmetries extracted so far suggest that such correlations may be important.
- In the 6 GeV era, Hall-A & Hall-B experiments performed important measurements related to the **unpolarized** and to the **longitudinal/transverse** part of the crosssection, providing information for the structure function behaviour in the **valence region.**
- > The relatively-low Q^2 region explored at JLab will allow to explore higher-twist effects, expected to play an appreciable role in the JLab kinematics.
- > In the 12 GeV era, the high-luminosity and high precision of the measurements will allow multidimensional analysis of the moments, especially in the **high-x (valence)** region and high p_T region (*i.e.* at the transition between perturbative and non-perturbative regime)

backup

Single-hadron SIDIS cross section

$$\begin{split} \frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} &= \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)\\ \left\{\begin{array}{c} \left[F_{\mathrm{UU},\mathrm{T}}+\epsilon F_{\mathrm{UU},\mathrm{L}}\right.\\ &+\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right]\right.\\ &+ \lambda_{l}\left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{LU}}^{\sin\left(\phi\right)}\right]\\ &+ S_{L}\left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)}+\epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)}\right]\\ &+ S_{L}\lambda_{l}\left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}}+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\cos\left(\phi\right)}\right]\\ &+ S_{T}\left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT},\mathrm{T}}^{\sin\left(\phi-\phi_{S}\right)}+\epsilon\sin\left(3\phi-\phi_{S}\right)\right)\right.\\ &+ \epsilon\sin\left(\phi+\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)}+\epsilon\sin\left(3\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_{S}\right)}\\ &+\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(2\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(2\phi-\phi_{S}\right)}\right]\\ &+ S_{T}\lambda_{l}\left[\sqrt{1-\epsilon^{2}}\cos\left(\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)}\\ &+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(2\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(2\phi-\phi_{S}\right)}\right]\right\} \end{split}$$

Example of fit on the ³NH data

Hall A Single-Spin Asymmetries - kaons

An extraction for SSAs in the kaon case has been performed $\rightarrow 1 x_B$ bin

- Dependence could be related to different widths for TMD for different quark flavours & polarizations, resulting from different orbital motion of quarks polarized || or anti-|| to the proton spin
- Compared with predictions from Torino group[#] → different values for the ratio

$$R = \frac{k_{\perp} width \ of \ g_1}{k_{\perp} width \ of \ f_1}$$

Longitudinally-polarized contribution \rightarrow SSA

- \square Clear sin 2 φ modulation for π^{\pm}
- \Box Collins function suppressed for π^0 ?
- Small modulation in agreement with HERMES results → cancellation among favored and unfavored Collins observed by HERMES & Belle

- 1. h_{1L}^{\perp} from χQSM (yellow bands)
- *2.* H_1^{\perp} Collins from HERMES & Belle data
- 3. Good agreement for π^+
- 4. Opposite sign for π^-

eg1-dvcs kinematics

 $x_{B}(0.12, 0.48), Q^{2}(1.0 GeV^{2}, 4.8 GeV^{2})$ x_B(0.12, 0.48), W(2GeV, 3.2GeV) 5 60 160 3.4 E 4.5 F 140 3.2 E - 50 Ē 4 3 E 120 3.5 Ē $Q^2 [(GeV)^2]$ W [GeV] 2.8 E 40 100 3 Ē 2.6 E ; 2 5 1 2.5 80 30 2.4 E 60 2.2 20 1.5 2 40 10 1.8 F 20 0.5 1.6 E 0 E 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 XB XB x_B(0.12, 0.48), Mx(1.4GeV, 2.8GeV) x_B(0.12, 0.48), z(0.4, 0.7) 3 1 = 0.9 E 250 50 2.5 0.8 E 200 0.7 E 40 Mx [GeV] 0.6 E 2 150 30 Ν 0.5 F 1.5 0.4 100 20 0.3 E 0.2 E 50 10 0.1 0.5 E 0 0 0 0.3 0.5 0.1 0.3 0.4 0.5 0.6 0.1 0.2 0.4 0.6 0.2 X_B XB

CLAS@Jefferson Lab

The *Cebaf Large-Acceptance Spectrometer* (CLAS) is installed in the Hall-B of the Thomas Jefferson National Accelerator Facility (Newport News, VA, USA).

The CEBAF:

- provides a continous electron beam with a duty factor ~ 100%;
- with a beam energy up to 6 GeV;
- has a good energy resolution $\left(\frac{\sigma_E}{F} \sim 10^{-5}\right);$
- and the beam has a polarization ~ 85%

The CLAS detector is provided with:

- Toroidal magnetic field (6 supercondicting coils)
- Drift chambers (argon/CO2 Gas, 35000 cells)
- Time-of-flight scintillators
- Electromagnetic calorimeters
- **Cherenkov counters (e/\pi separation)**

SIDIS dilution factor

TMDs in the CLAS12 era

In the 12 GeV era, CLAS12 will be able – combining measurements with unpolarized, tranversely- and longitudinally-polarized targets - to put important constraints on all chiral-odd, leading-twist TMDs in the σ range

- > $1 < Q^2 < 8 \, GeV^2$ > 0.05 < x < 0.6
- $\triangleright P_{h\perp} < 1.5 \ GeV$

The Q-dependence will allow to **isolate higher-twist effects**, while the extended $p_{h\perp}$ range will open the exploration of the **transition from non-perturbative to perturbative region**.

The RICH subdetector will allow measurements involving kaons

- ✓ Their measurement is challenged by the almost one order of magnitude larger pion flux
- ✓ Very little is known about the spin-orbit correlations related to the **strange quark**
- Indication of non-trivial role of the sea quarks in the nucleon, and of the fragmetation mechanism in the presence of a strange quark
- ✓ Kaons my provide enhanced sensitivity to higher-twist effects.

A high-luminosity, large-acceptance experiment, also provided with an efficient hadron identification, will be able to explore the relevant kinematical dependence essential to interprete the results

CLAS12 physics program

Proposal	Contact Person	Physics	Energy (GeV)	PAC days	Parallel Running	Run Group	Comment
PR-09-103	Gothe, Mokeev	N*at high Q²	11	60	200		
E12-06-119a	Sabatie	DVCS pol. beam	11	80	80 120	120	
E12-06-112	Avakian	ep→eπ+∿0X	11	60			
E12-06-108	Stoler	DVMP in π ⁰ ,η prod L/T separation	11	80			
			8.8 6.6	20 20	20 20		
E12-06-119b	Sabatie	DVCS pol. target	11	120	120	175	Assume polarized experiment s run 50% of time w/ reversed field
E12-06-109	Kuhn	Long. Spin Str.	11	82	50 5		
E12-07-107	Avakian	TMD SSA	11	103			
PR-09-007(b)	Hafidi	Partonic SIDIS	11	103	Ŭ		
PR-09-009	Avakian	Spin-Orbit Corr.	11	103			
E12-06-106	Hafidi	Color Trans. $ ho^o$	11	40	40	40	
E12-06-117	Brooks	Quark Hadronizat.	11	60	60	60	
E12-06-113	Bültman	Neutron Str. Fn.	11	40	40	40	cond. appr.
E12-07-104	Gilfoyle	Neutron mag. FF	11	56	56	14.7	007/008 need 26d reversed field
PR-09-007(a)	Hafidi	Partonic SIDIS	11	56	82	82	
PR-09-008	Contalbrigo	Boer-Muldersw/ Kaons	11	56	26		
Total				1139		517	

Collins&Sivers@CLAS12

Transverse terms@CLAS12

Т

 h_1^{\perp}

 h_{1L}^{\perp}

h₁, h_{1T}^{\perp}

Boer-Mulders effect

amplitudes are positive in low-z and high p_T^2 regions and show a strong kinematic dependence predicted amplitudes are very small and agree with data only in high-z and low p_T^2 regions

HERMES data

A. Airapetian et al., Phys. Lett. B 693,

11 (2010).

C.f.C. Schill (2011), DIS 2011 Conference.

Sivers&Collins on ³He@Hall-A

Both Collins and Sivers moments are below 5%.

The Collins moments are mostly consistent with zero, except for the π^+ Collins moment at x = 0.35 (2.3 σ deviation).

 π^+ Sivers moments favor negative values, while π^- ones are consistent with zero.

title

