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• Single inclusive hadron production  in hadronic                               
collisions largest/ oldest observed  TSSAs  

• From theory view notoriously challenging from partonic picture                                   
twist-3 power suppressed hard scale  (vs.  SIDIS, Drell Yan & e+e-)

•Why?          
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Modern Era Transverse SSA’s at √s = 62.4 & 200 GeV at RHIC

PRL101, 042001 (2008)

Transverse SPIN Observables SSA (TSSA) p↑ p → πX
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• Single Spin Asymmetry AN = σ↑(xF ,p⊥)−σ↑(xF ,−p⊥)
σ↑(xF ,p⊥)+σ↑(xF ,−p⊥)

≡ ∆σ

• Rotational invariance σ↓(xF , p⊥) = σ↑(xF ,−p⊥)
⇒ Left-Right Asymmetry

# Parity Conserving interactions: SSAs “Transverse” Scattering plane
=⇒ ∆σ ∼ iST · (P × P π

T )

• Correlation in Transverse Momentum PT & Transverse SPIN ST

patterns of polarization signs. The unfilled 9 bunches are
sequential and correspond to the abort gap needed to eject
the stored beams. Pb was measured every 3 h during RHIC
stores by a polarimeter that detected recoil carbon ions
produced in elastic scattering of protons from carbon rib-
bon targets inserted into the beams. The effective AN of this
polarimeter was determined from p" þ p" elastic scattering
from a polarized gas jet target [24] thereby determining
Pb ¼ 55:0# 2:6% (56:0# 2:6%) for the Blue (Yellow)
beam in the 2006 run [25].

The FPD comprises four modules, each containing a
matrix of lead glass (PbGl) cells of dimension 3:8 cm$
3:8 cm$ 18 radiation lengths. Pairs of modules were
positioned symmetrically left (L) and right (R) of the
beam line in both directions, at a distance of %750 cm
from the interaction point [21]. The modules facing the
Yellow (Blue) beam are square matrices of 7$ 7 (6$ 6)
PbGl cells. Data from all FPD cells were encoded for each
bunch crossing, but only recorded when the summed en-
ergy from any module crossed a preset threshold.

Neutral pions are reconstructed via the decay !0 ! "".
The offline event analysis included conversion of the data
to energy for each cell, formation of clusters and recon-
struction of photons using a fit with the function that
parametrizes the average transverse profile of electromag-
netic showers. Collision events were identified by requiring
a coincidence between the east and west STAR beam-beam
counters, as used for cross section measurements [26].
Events were selected when two reconstructed photons
were contained in a fiducial volume, whose boundary
excludes a region of width 1=2 cell at the module edges.
Detector calibration was determined from the !0 peak
position in diphoton invariant mass (M"") distributions.

The estimated calibration accuracy is 2%. The analysis was
validated by checking against full PYTHIA/GEANT simula-
tions [27]. The reconstructed !0 energy resolution is given
by #E!=E! & 0:16=

ffiffiffiffiffiffiffi
E!

p
.

Because of the limited acceptance there is a strong
correlation between xF and pT for reconstructed !0

(Fig. 1). Spin effects in the xF-pT plane are studied by
positioning the calorimeters at different transverse dis-
tances from the beam, maintaining L=R symmetry for pairs
of modules. Figure 1 shows loci from h$i ¼ 3:3, 3.7, and
4.0. There is overlap between the loci, providing cross-
checks between the measurements. Because the measure-
ments were made at a colliding beam facility, both xF > 0
and xF < 0 results are obtained concurrently.
Events with 0:08<M"" < 0:19 GeV=c2 were counted

separately by spin state from one or the other beam, with
no condition on the spin state of the second beam, in the xF
bins shown in Fig. 1. For each run i, AN;i for each bin was
then determined by forming a cross ratio

AN;i ¼
1

Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p ' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p ; (1)

whereNLðRÞ"ð#Þ;i is the number of events in the L (R) module
when the beam polarization was up (down). Equation (1)
cancels spin dependent luminosity differences through
second order. Statistical errors were approximated by
!AN;i ¼ ½Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";i þ NL#;i þ NR";i þ NR#;i

p +'1, valid for
small asymmetries. All measurements of Pb for a store
were averaged and applied to get AN;i for each bin. The
run-averaged AN #!AN values are shown in Fig. 2.

FIG. 1 (color online). Correlation between pion longitudinal
momentum scaled by

ffiffiffi
s

p
=2 (xF) and transverse momentum (pT)

for all events. Bins in xF used in Figs. 2 and 4 are indicated by
the vertical lines. There is a strong correlation between xF and
pT at a single pseudorapidity (h$i).

FIG. 2 (color online). Analyzing powers in xF bins (see Fig. 1)
at two different h$i. Statistical errors are indicated for each
point. Systematic errors are given by the shaded band, excluding
normalization uncertainty. The calculations are described in the
text. The inset shows examples of the spin-sorted invariant mass
distributions. The vertical lines mark the !0 mass.
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flight walls.
With no spin rotator magnets outside the BRAHMS interaction region,

all proton-proton collisions at BRAHMS are transversely polarized in the
vertical direction.

4. Results

A number of results are now available from transversely polarized data
taken by the BRAHMS and PHENIX experiments at center-of-mass ener-
gies of 200 and 62.4 GeV. The transverse single-spin asymmetries discussed
below are all left-right asymmetries, which can be calculated by

ALeft
N =

1

P

N↑ − RN↓

N↑ + RN↓

where ALeft
N

indicates the asymmetry calculated to the left of the polar-
ized beam, P is the beam polarization, N↑ (N↓) is the particle yield from
bunches polarized up (down), and R = L

↑

L↓ is the relative luminosity be-
tween up- and down-polarized bunches. Both beams at RHIC are polarized;
in the calculation of single-spin asymmetries, the polarization of one beam
is considered while averaging over the polarization states of the other.
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Fig. 2. Charged pion asymmetries measured at 200 and 62.4 GeV by the BRAHMS
experiment and at 19.4 GeV by the E704 experiment, shown for overlapping kinematic
ranges (see text).

In the early 1990’s large transverse single-spin asymmetries in forward
pion production were observed by the E704 experiment at Fermilab at a
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estimated using pion multiplicity data [39] and a Lund string
model-based calculation of the pion absorption probability
[40]. An upper limit of 3.5% on the size of the FSI effect
was used to estimate the uncertainty infp, shown in Table I,
and included in the Fit systematic uncertainty. The neutron
SSAs due to spin-dependent FSI were estimated to be well
below 1% across the entire x range with a simple Glauber
rescattering model.

The resulting neutron Collinsor Sivers moments calcu-
lated using Eq. (2), with fp from our data and proton
Collins or Sivers moments from Refs. [41–43], are shown
in Fig. 2. Corrections from the proton Collins or Sivers
moments are less than 0.012. Our Collins moments are
compared with the phenomenological fit [42], a light-
cone quark model calculation [44,45] and quark-diquark
model [46,47] calculations. The phenomenological fit and
the model calculations, which assume Soffer’s bound [20],
predict rather small Collins asymmetries which are mostly
consistent with our data. However, the!þ Collins moment
at x ¼ 0:34 is suggestive of a noticeably more negative
value at the 2" level. Our data favor negative !þ Sivers
moments, while the !# moments are close to zero. Such
behavior independently supports a negative d quark Sivers
function within the parton model picture, which has been
suggested by predictions of the phenomenological fit
[41,43] to HERMES and COMPASS data, a light-cone
quark model calculation [48,49], and an axial diquark
model calculation [50].

In summary, we have reported the first measurement of
the SSA in charged pion electroproduction on a trans-
versely polarized 3He target in the DIS region. Our data
provide the best current measurement of the neutron Sivers
moments in the valence region (x > 0:1), and the best
neutron Collins moments for x > 0:2, which will further
improve the extraction of d quark distributions in these

regions. This experiment has demonstrated the power of
polarized 3He as an effective polarized neutron target, and
has laid the foundation for future high-precision measure-
ments of TMDs with a large acceptance detector SoLID
following the JLab 12 GeVupgrade [51] and at an electron-
ion collider [52]. These future SIDIS data taken over a
broad range of Q2 will also allow an accurate determina-
tion of higher-twist contribution [53,54].
We acknowledge the outstanding support of the JLab

Hall A technical staff and the Accelerator Division in
accomplishing this experiment. This work was supported
in part by the U. S. National Science Foundation, and by
DOE contract number DE-AC05-06OR23177, under
which the Jefferson Science Associates (JSA) operates
the Thomas Jefferson National Accelerator Facility.
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estimated using pion multiplicity data [39] and a Lund string
model-based calculation of the pion absorption probability
[40]. An upper limit of 3.5% on the size of the FSI effect
was used to estimate the uncertainty infp, shown in Table I,
and included in the Fit systematic uncertainty. The neutron
SSAs due to spin-dependent FSI were estimated to be well
below 1% across the entire x range with a simple Glauber
rescattering model.

The resulting neutron Collinsor Sivers moments calcu-
lated using Eq. (2), with fp from our data and proton
Collins or Sivers moments from Refs. [41–43], are shown
in Fig. 2. Corrections from the proton Collins or Sivers
moments are less than 0.012. Our Collins moments are
compared with the phenomenological fit [42], a light-
cone quark model calculation [44,45] and quark-diquark
model [46,47] calculations. The phenomenological fit and
the model calculations, which assume Soffer’s bound [20],
predict rather small Collins asymmetries which are mostly
consistent with our data. However, the!þ Collins moment
at x ¼ 0:34 is suggestive of a noticeably more negative
value at the 2" level. Our data favor negative !þ Sivers
moments, while the !# moments are close to zero. Such
behavior independently supports a negative d quark Sivers
function within the parton model picture, which has been
suggested by predictions of the phenomenological fit
[41,43] to HERMES and COMPASS data, a light-cone
quark model calculation [48,49], and an axial diquark
model calculation [50].

In summary, we have reported the first measurement of
the SSA in charged pion electroproduction on a trans-
versely polarized 3He target in the DIS region. Our data
provide the best current measurement of the neutron Sivers
moments in the valence region (x > 0:1), and the best
neutron Collins moments for x > 0:2, which will further
improve the extraction of d quark distributions in these

regions. This experiment has demonstrated the power of
polarized 3He as an effective polarized neutron target, and
has laid the foundation for future high-precision measure-
ments of TMDs with a large acceptance detector SoLID
following the JLab 12 GeVupgrade [51] and at an electron-
ion collider [52]. These future SIDIS data taken over a
broad range of Q2 will also allow an accurate determina-
tion of higher-twist contribution [53,54].
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estimated using pion multiplicity data [39] and a Lund string
model-based calculation of the pion absorption probability
[40]. An upper limit of 3.5% on the size of the FSI effect
was used to estimate the uncertainty infp, shown in Table I,
and included in the Fit systematic uncertainty. The neutron
SSAs due to spin-dependent FSI were estimated to be well
below 1% across the entire x range with a simple Glauber
rescattering model.

The resulting neutron Collinsor Sivers moments calcu-
lated using Eq. (2), with fp from our data and proton
Collins or Sivers moments from Refs. [41–43], are shown
in Fig. 2. Corrections from the proton Collins or Sivers
moments are less than 0.012. Our Collins moments are
compared with the phenomenological fit [42], a light-
cone quark model calculation [44,45] and quark-diquark
model [46,47] calculations. The phenomenological fit and
the model calculations, which assume Soffer’s bound [20],
predict rather small Collins asymmetries which are mostly
consistent with our data. However, the!þ Collins moment
at x ¼ 0:34 is suggestive of a noticeably more negative
value at the 2" level. Our data favor negative !þ Sivers
moments, while the !# moments are close to zero. Such
behavior independently supports a negative d quark Sivers
function within the parton model picture, which has been
suggested by predictions of the phenomenological fit
[41,43] to HERMES and COMPASS data, a light-cone
quark model calculation [48,49], and an axial diquark
model calculation [50].

In summary, we have reported the first measurement of
the SSA in charged pion electroproduction on a trans-
versely polarized 3He target in the DIS region. Our data
provide the best current measurement of the neutron Sivers
moments in the valence region (x > 0:1), and the best
neutron Collins moments for x > 0:2, which will further
improve the extraction of d quark distributions in these

regions. This experiment has demonstrated the power of
polarized 3He as an effective polarized neutron target, and
has laid the foundation for future high-precision measure-
ments of TMDs with a large acceptance detector SoLID
following the JLab 12 GeVupgrade [51] and at an electron-
ion collider [52]. These future SIDIS data taken over a
broad range of Q2 will also allow an accurate determina-
tion of higher-twist contribution [53,54].
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estimated using pion multiplicity data [39] and a Lund string
model-based calculation of the pion absorption probability
[40]. An upper limit of 3.5% on the size of the FSI effect
was used to estimate the uncertainty infp, shown in Table I,
and included in the Fit systematic uncertainty. The neutron
SSAs due to spin-dependent FSI were estimated to be well
below 1% across the entire x range with a simple Glauber
rescattering model.

The resulting neutron Collinsor Sivers moments calcu-
lated using Eq. (2), with fp from our data and proton
Collins or Sivers moments from Refs. [41–43], are shown
in Fig. 2. Corrections from the proton Collins or Sivers
moments are less than 0.012. Our Collins moments are
compared with the phenomenological fit [42], a light-
cone quark model calculation [44,45] and quark-diquark
model [46,47] calculations. The phenomenological fit and
the model calculations, which assume Soffer’s bound [20],
predict rather small Collins asymmetries which are mostly
consistent with our data. However, the!þ Collins moment
at x ¼ 0:34 is suggestive of a noticeably more negative
value at the 2" level. Our data favor negative !þ Sivers
moments, while the !# moments are close to zero. Such
behavior independently supports a negative d quark Sivers
function within the parton model picture, which has been
suggested by predictions of the phenomenological fit
[41,43] to HERMES and COMPASS data, a light-cone
quark model calculation [48,49], and an axial diquark
model calculation [50].

In summary, we have reported the first measurement of
the SSA in charged pion electroproduction on a trans-
versely polarized 3He target in the DIS region. Our data
provide the best current measurement of the neutron Sivers
moments in the valence region (x > 0:1), and the best
neutron Collins moments for x > 0:2, which will further
improve the extraction of d quark distributions in these

regions. This experiment has demonstrated the power of
polarized 3He as an effective polarized neutron target, and
has laid the foundation for future high-precision measure-
ments of TMDs with a large acceptance detector SoLID
following the JLab 12 GeVupgrade [51] and at an electron-
ion collider [52]. These future SIDIS data taken over a
broad range of Q2 will also allow an accurate determina-
tion of higher-twist contribution [53,54].
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estimated using pion multiplicity data [39] and a Lund string
model-based calculation of the pion absorption probability
[40]. An upper limit of 3.5% on the size of the FSI effect
was used to estimate the uncertainty infp, shown in Table I,
and included in the Fit systematic uncertainty. The neutron
SSAs due to spin-dependent FSI were estimated to be well
below 1% across the entire x range with a simple Glauber
rescattering model.

The resulting neutron Collinsor Sivers moments calcu-
lated using Eq. (2), with fp from our data and proton
Collins or Sivers moments from Refs. [41–43], are shown
in Fig. 2. Corrections from the proton Collins or Sivers
moments are less than 0.012. Our Collins moments are
compared with the phenomenological fit [42], a light-
cone quark model calculation [44,45] and quark-diquark
model [46,47] calculations. The phenomenological fit and
the model calculations, which assume Soffer’s bound [20],
predict rather small Collins asymmetries which are mostly
consistent with our data. However, the!þ Collins moment
at x ¼ 0:34 is suggestive of a noticeably more negative
value at the 2" level. Our data favor negative !þ Sivers
moments, while the !# moments are close to zero. Such
behavior independently supports a negative d quark Sivers
function within the parton model picture, which has been
suggested by predictions of the phenomenological fit
[41,43] to HERMES and COMPASS data, a light-cone
quark model calculation [48,49], and an axial diquark
model calculation [50].

In summary, we have reported the first measurement of
the SSA in charged pion electroproduction on a trans-
versely polarized 3He target in the DIS region. Our data
provide the best current measurement of the neutron Sivers
moments in the valence region (x > 0:1), and the best
neutron Collins moments for x > 0:2, which will further
improve the extraction of d quark distributions in these

regions. This experiment has demonstrated the power of
polarized 3He as an effective polarized neutron target, and
has laid the foundation for future high-precision measure-
ments of TMDs with a large acceptance detector SoLID
following the JLab 12 GeVupgrade [51] and at an electron-
ion collider [52]. These future SIDIS data taken over a
broad range of Q2 will also allow an accurate determina-
tion of higher-twist contribution [53,54].
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estimated using pion multiplicity data [39] and a Lund string
model-based calculation of the pion absorption probability
[40]. An upper limit of 3.5% on the size of the FSI effect
was used to estimate the uncertainty infp, shown in Table I,
and included in the Fit systematic uncertainty. The neutron
SSAs due to spin-dependent FSI were estimated to be well
below 1% across the entire x range with a simple Glauber
rescattering model.

The resulting neutron Collinsor Sivers moments calcu-
lated using Eq. (2), with fp from our data and proton
Collins or Sivers moments from Refs. [41–43], are shown
in Fig. 2. Corrections from the proton Collins or Sivers
moments are less than 0.012. Our Collins moments are
compared with the phenomenological fit [42], a light-
cone quark model calculation [44,45] and quark-diquark
model [46,47] calculations. The phenomenological fit and
the model calculations, which assume Soffer’s bound [20],
predict rather small Collins asymmetries which are mostly
consistent with our data. However, the!þ Collins moment
at x ¼ 0:34 is suggestive of a noticeably more negative
value at the 2" level. Our data favor negative !þ Sivers
moments, while the !# moments are close to zero. Such
behavior independently supports a negative d quark Sivers
function within the parton model picture, which has been
suggested by predictions of the phenomenological fit
[41,43] to HERMES and COMPASS data, a light-cone
quark model calculation [48,49], and an axial diquark
model calculation [50].

In summary, we have reported the first measurement of
the SSA in charged pion electroproduction on a trans-
versely polarized 3He target in the DIS region. Our data
provide the best current measurement of the neutron Sivers
moments in the valence region (x > 0:1), and the best
neutron Collins moments for x > 0:2, which will further
improve the extraction of d quark distributions in these

regions. This experiment has demonstrated the power of
polarized 3He as an effective polarized neutron target, and
has laid the foundation for future high-precision measure-
ments of TMDs with a large acceptance detector SoLID
following the JLab 12 GeVupgrade [51] and at an electron-
ion collider [52]. These future SIDIS data taken over a
broad range of Q2 will also allow an accurate determina-
tion of higher-twist contribution [53,54].
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estimated using pion multiplicity data [39] and a Lund string
model-based calculation of the pion absorption probability
[40]. An upper limit of 3.5% on the size of the FSI effect
was used to estimate the uncertainty infp, shown in Table I,
and included in the Fit systematic uncertainty. The neutron
SSAs due to spin-dependent FSI were estimated to be well
below 1% across the entire x range with a simple Glauber
rescattering model.

The resulting neutron Collinsor Sivers moments calcu-
lated using Eq. (2), with fp from our data and proton
Collins or Sivers moments from Refs. [41–43], are shown
in Fig. 2. Corrections from the proton Collins or Sivers
moments are less than 0.012. Our Collins moments are
compared with the phenomenological fit [42], a light-
cone quark model calculation [44,45] and quark-diquark
model [46,47] calculations. The phenomenological fit and
the model calculations, which assume Soffer’s bound [20],
predict rather small Collins asymmetries which are mostly
consistent with our data. However, the!þ Collins moment
at x ¼ 0:34 is suggestive of a noticeably more negative
value at the 2" level. Our data favor negative !þ Sivers
moments, while the !# moments are close to zero. Such
behavior independently supports a negative d quark Sivers
function within the parton model picture, which has been
suggested by predictions of the phenomenological fit
[41,43] to HERMES and COMPASS data, a light-cone
quark model calculation [48,49], and an axial diquark
model calculation [50].

In summary, we have reported the first measurement of
the SSA in charged pion electroproduction on a trans-
versely polarized 3He target in the DIS region. Our data
provide the best current measurement of the neutron Sivers
moments in the valence region (x > 0:1), and the best
neutron Collins moments for x > 0:2, which will further
improve the extraction of d quark distributions in these

regions. This experiment has demonstrated the power of
polarized 3He as an effective polarized neutron target, and
has laid the foundation for future high-precision measure-
ments of TMDs with a large acceptance detector SoLID
following the JLab 12 GeVupgrade [51] and at an electron-
ion collider [52]. These future SIDIS data taken over a
broad range of Q2 will also allow an accurate determina-
tion of higher-twist contribution [53,54].
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estimated using pion multiplicity data [39] and a Lund string
model-based calculation of the pion absorption probability
[40]. An upper limit of 3.5% on the size of the FSI effect
was used to estimate the uncertainty infp, shown in Table I,
and included in the Fit systematic uncertainty. The neutron
SSAs due to spin-dependent FSI were estimated to be well
below 1% across the entire x range with a simple Glauber
rescattering model.

The resulting neutron Collinsor Sivers moments calcu-
lated using Eq. (2), with fp from our data and proton
Collins or Sivers moments from Refs. [41–43], are shown
in Fig. 2. Corrections from the proton Collins or Sivers
moments are less than 0.012. Our Collins moments are
compared with the phenomenological fit [42], a light-
cone quark model calculation [44,45] and quark-diquark
model [46,47] calculations. The phenomenological fit and
the model calculations, which assume Soffer’s bound [20],
predict rather small Collins asymmetries which are mostly
consistent with our data. However, the!þ Collins moment
at x ¼ 0:34 is suggestive of a noticeably more negative
value at the 2" level. Our data favor negative !þ Sivers
moments, while the !# moments are close to zero. Such
behavior independently supports a negative d quark Sivers
function within the parton model picture, which has been
suggested by predictions of the phenomenological fit
[41,43] to HERMES and COMPASS data, a light-cone
quark model calculation [48,49], and an axial diquark
model calculation [50].

In summary, we have reported the first measurement of
the SSA in charged pion electroproduction on a trans-
versely polarized 3He target in the DIS region. Our data
provide the best current measurement of the neutron Sivers
moments in the valence region (x > 0:1), and the best
neutron Collins moments for x > 0:2, which will further
improve the extraction of d quark distributions in these

regions. This experiment has demonstrated the power of
polarized 3He as an effective polarized neutron target, and
has laid the foundation for future high-precision measure-
ments of TMDs with a large acceptance detector SoLID
following the JLab 12 GeVupgrade [51] and at an electron-
ion collider [52]. These future SIDIS data taken over a
broad range of Q2 will also allow an accurate determina-
tion of higher-twist contribution [53,54].
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Source of T-Odd Contributions to TSSA and AA in SIDIS

• “T-odd” distribution-fragmentation functions enter transverse
momentum dependent correlators at leading twist Boer, Mulders: PRD 1998
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N.B. at least 2 methods generate non-trivial TSSA 

• Depends on momentum of probe                 and momentum 
of  produced hadron         relative to hadronic scale 

•                          two scales-twist 2 TMDs                

•                          twist 3 factorization-ETQSs
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• Two scale factorization in terms  TMDs twist 2    

• Realization that FSI and ISI btwn struck parton and target 
remnant provide necessary phases that lead to non-vanishing 
TSSAs

• One large scale factorization in terms twist 3 
approach

• Phases from interference of two-parton & three-parton 
scattering amplitudes

• Connection btwn two approaches overlap 
region for DY and SIDIS Unified picture 
Ji,Qiu,Vogelsang,Yuan PRL 2006 ...

pT � kT <<
�

Q2

Q � PT >> �qcd

�QCD << qT << Q

Crucial role of “phases” and  Trans polz effects in QCD



• Connection w/ twist 2 “TMD” approach    

• Operator level ETQS fnct 1st moment of Sivers            

Comments Importance of TMDs in studying 
partonic content of the nucleon 

+   “UV” ...

Boer, LG, Musch, Prokudin  JHEP-2011--arXiv:1107.529      
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Sensitivity to pT ∼ k⊥ << Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and
momenta in initial state hadron

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting
quark and transverse momentum of final state hadron

∆σep↑→eπX ∼ ∆D⊥ ⊗ δf ⊗ σ̂Born ⇒ isT · (P × p⊥) → H⊥
1 (x, p⊥)

9
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Factorization  Parton Model-predicts existence of T-odd 
PDFs and TSSAs--Boer-Mulders PRD 1998
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Figure 1. Kinematics of the SIDIS process, compare Refs. [8, 22].

consider x moments of TMD PDFs and introduce a method to study Fourier transformed

moments in lattice QCD and compare with experiment. Our conclusions are presented in

Section 7.

2 The SIDIS cross section in Fourier space at tree level

2.1 Elements of the SIDIS cross section

The lepton-hadron cross section of SIDIS !(l)+N(P, S) → !(l)+h(Ph)+X can be expressed

[4, 8, 20, 21] in the notation of Ref. [8] as

dσ

dx
B

dy dψ dzh dφh |P h⊥| d|P h⊥|
=

α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

)
LµνW µν , (2.1)

where we assume one photon exchange. Lµν and W µν are the leptonic and hadronic tensors

respectively, and the vector P h⊥ is the transverse momentum of the produced hadron in

a frame where the virtual photon and the target are collinear, e.g. in the target rest frame

or γ∗P center of mass frame. It makes an azimuthal angle φh with the lepton scattering

plane defined by the momenta of the incoming and the final leptons l and l′ (see Figure 1).

We define q ≡ l− l′, and q2 = −Q2 is the virtuality of the photon. ψ is the azimuthal angle

of l′ around the lepton beam axis relative to S⊥, in DIS kinematics dψ ≈ dφS [21]. The

subscript “⊥” denotes transverse projection in the target rest frame while the subscript “T ”

denotes transverse projection in the light-cone frame. We use definitions for the kinematic

variables and the ratio of of longitudinal and transverse photon flux ε as in Ref. [8],

x
B

=
Q2

2P · q
, y =

P · q
P · l

, zh =
P ·Ph

P · q
, γ =

2Mx

Q
, ε =

1 − y − 1
4 γ2y2

1 − y + 1
2 y2 + 1

4 γ2y2
, (2.2)

where M is the mass of the target nucleon. We employ the standard light-cone decompo-

sition of four-vectors ωµ = ω+nµ
+ + ω−nµ

− + ωµ
T . In the γ∗P center of mass frame with the

proton three-momentum pointing in positive z-direction, the nucleon carries no transverse

momentum, PT = 0, and x ≡ p+/P+ denotes the momentum fraction carried by the quark

(parton) of momentum p. Further definitions of kinematic variables and details on the

leptonic and hadronic tensor are given in Appendix A and Ref. [8].

– 4 –



T-Odd Effects From Color Gauge Inv. Factorized QCD-Wilson Line

• Leading twist Gauge Invariant Distribution and Fragmentation Functions

Boer, Mulders: NPB 2000, Ji et al PLB: 2002, NPB 2003, Boer et al NPB 2003

. . .

. . .

k

p

P

K

Φ

∆

. . .

Φ

∆

etc . . .

• Sub-class of interactions of colinear & transverse gluons re-summed to render
physical process color gauge invariant

• Wilson line emerges from resummation of gluon ISI and FSI btw. active quark and
hadron remnants → U [C]

[ξ,∞]
= Pexp(−ig

R ∞
ξ dη · A)

• The path [C] is fixed by hard subprocess within hadronic process.

14

Gauge link for TMDs
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Gauge link determined re-summing leading gluon interactions btwn soft and hard 
       Efremov,Radyushkin Theor. Math. Phys. 1981,Belitsky, Ji, Yuan NPB 2003,
       Boer, Bomhof, Mulders Pijlman, et al.  2003 - 2008- NPB, PLB, PRD 

• The path [C] is fixed by hard subprocess within hadronic process.

Φ[U[C]](x, pT ) =
∫

dξ−d2ξT

2(2π)3
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• See Ch. 3 Ph.D Thesis C. Bomhof

36 chapter 3: gauge links
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Figure 3.1: Examples of diagrams with an additional gluonic interaction be-
tween the soft and the hard functions.

new aspects in small steps at a time. In the first section we will treat SIDIS and Drell-
Yan scattering, two of the simplest processes, as they only involve initial or final state
interactions. Then we will consider a particular contribution to prompt photon production
as an example of a process where more gluonic interactions are possible. In section 3.3
a prescription will be given to more easily predict the structure of the gauge link for
arbitrary hard functions. Using this prescription we will calculate the Wilson lines that
occur in direct photon production and dijet production in proton-proton scattering, since
these are the processes that will be studied in more detail in the next chapter. To conclude
this chapter we will try to argue the validity of the prescription in section 3.4.

3.1 Electroweak Processes: SIDIS and Drell-Yan
In section 2.4 we have hypothesized that if the momenta of the incoming and outgoing
hadrons in semi-inclusive deep inelastic scattering are well-separated it is reasonable to
assume that the observed hadron in the final state has materialized from the soft radiation
emitted by the current quark (i.e. the active quark). In that case the quark contribution to
the hadron tensor can be written in terms of quark correlators Φ(p) and quark fragmenta-
tion correlators ∆(k) connected to each other through hard functions H(p,k):

Wµν =
1

2M

∫
d4pd4k δ4(p+q−k) Tr

[
Φ(p) H†µ(p,k)∆(k) Hν (p,k)

]
, (3.1)

where we have suppressed the summation over quark flavors. Comparing to expres-
sion (2.31) it is seen that at tree-level the hard function is just an electromagnetic vertex
Hµ(p,k)= ieqγµ (the proton charge factors e have been extracted and appear in the struc-
ture constant α in the cross section (2.30)). In the parton model contribution the quark
distribution and fragmentation correlators are given by expressions (2.28) and (2.32). Ob-
viously, this is not a physically meaningful expression, since the correlators are not gauge
invariant. However, in the diagrammatic approach an expression that involves the properly
gauge invariant correlators can be obtained by resumming all collinear gluon interactions
between the soft and the hard factors [57], such as those in Figure 3.1. The result will be
the same as the expression in (3.1) and with the same hard function Hµ(p,k)= ieqγµ as in

Minimal Requirement for PARTON MDL Factorization

Wµ�(q, P, S, Ph) =
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! Existence of the Sivers function relies on the interaction between the 

active parton and the remnant of the hadron (process-dependent)

! SIDIS: final-state interaction

! Drell-Yan: initial-state interaction
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“Generalized Universality” Fund. Prediction of  QCD Factorization
T-Odd Effects From Color Gauge Inv. via Wilson Line

• Leading twist Gauge Invariant Distribution Functions
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A. The SIDIS cross section and asymmetries

The lepton-hadron cross section can be expressed in a model-independent way by a set of structure functions
[3, 6, 14, 15], which in the notation of Ref. [6] is:
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where in DIS kinematics d⌃ ⌅ d⇧S and variables are defined as

xB =
Q2

2P · q , y =
P · q
P · l , zh =

P ·Ph

P · q , ⇥ =
2Mx

Q
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1� y + 1
2 y

2 + 1
4 ⇥

2y2
. (2)

For our purposes, we may assume x ⌅ xB , z ⌅ zh and ⇥ ⌅ 0. Individual structure functions can be projected from
the cross section using, e.g., spin asymmetries, which we introduce generically as

AF
XY ⇤ 2

↵
d⇧h d⇧S F(⇧h,⇧S)

�
d⌅⇥ � d⌅⇤⇥

↵
d⇧hd⇧S (d⌅⇥ + d⌅⇤)

, (3)

Here the labels X,Y represent the polarization, “un” (U), longitudinally (L) and transversely (T ) of the beam and
target, respectively. The angles ⇧S and ⇧h specify the directions of the hadron spin polarization and the transverse
hadron momentum, respectively, relative to the lepton scattering plane. The cross sections d⌅⇥ and d⌅⇤ correspond
to opposite spin polarization of the incident lepton / target hadron. ⌥TODO: be a bit more specific? � The weighting
function F is a sine (or cosine) of a linear combination of the polarization angles, e.g., F(⇧h,⇧S) = sin(⇧h�⇧S). The
combination d⌅⇥ � d⌅⇤ in the numerator projects out the structure functions FF

XY in Eq. 1, while the combination
d⌅⇥ + d⌅⇤ in the denominator corresponds to the unpolarized structure function FUU,T :

d⌅⇥ + d⌅⇤ =
�2

sx2
By

2

�
1 + (1� y)2

⇥
FUU,T . (4)

Weighted asymmetries are introduced in a similar way:

AW
XY = 2
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�
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, (5)

where the weighting function W now can also contain di�erent powers of |P h⌅|, e.g., W(|P h⌅|,⇧h,⇧S) =
|P h�|
zM sin(⇧h � ⇧S), see Ref. [5].
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Source of T-Odd Contributions to TSSA and AA in SIDIS

• “T-odd” distribution-fragmentation functions enter transverse
momentum dependent correlators at leading twist Boer, Mulders: PRD 1998
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Using the equation of motion for the quark field, the following relations can be established

between the functions appearing in the above correlator and the functions in the quark-

quark correlator (3.38):
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h
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1 . (3.79)

4. Results for structure functions

Inserting the parameterizations of the different correlators in the expression (3.9) of the

hadronic tensor and using the equation-of-motion constraints just discussed, one can calcu-

late the leptoproduction cross section for semi-inclusive DIS and project out the different

structure functions appearing in eq. (2.7). To have a compact notation for the results, we

introduce the unit vector ĥ = P h⊥/|P h⊥| and the notation
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(4.1)

where w(pT ,kT ) is an arbitrary function and the summation runs over quarks and anti-

quarks. The expressions for the structure functions appearing in eq. (2.7) are
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Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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Semi-inclusive Deep Inelastic Scattering

Semi-inclusive hadron production in deep inelastic scattering (SIDIS) provides a power-
ful probe of the transverse momentum dependent (TMD) quark distributions of nucleons.
Common kinematic variables have been described in the DIS section (see the Sidebar on
page 19). In SIDIS, the kinematics of the final state hadrons can be specified as follows
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Figure 2.11: Semi-inclusive hadron production
in DIS processes: e+N ! e0 + h+X, in the
target rest frame. P

hT

and S? are the trans-
verse components of P

h

and S with respect to
the virtual photon momentum q = k � k

0.

�h, �s Azimuthal angles of the final state
hadron and the transverse polarization
vector of the nucleon with respect to
the lepton plane.

PhT Transverse momentum of the final state
hadron with respect to the virtual pho-
ton in the center-of-mass of the virtual
photon and the nucleon.
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· P/q · P gives the momentum frac-
tion of the final state hadron with re-
spect to the virtual photon.
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1
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The di↵erential SIDIS cross section can be written as a convolution of the transverse
momentum dependent quark distributions f(x, k

T

), fragmentation functions D(z, p
T

), and
a factor for a quark or antiquark to scatter o↵ the photon. At the leading power of 1/Q,
we can probe eight di↵erent TMD quark distributions as listed in Fig. 2.12. These distri-
butions represent various correlations between the transverse momentum of the quark k

T

,
the nucleon momentum P , the nucleon spin S, and the quark spin s
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.
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Using the equation of motion for the quark field, the following relations can be established
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ĥ ·pT

M

(

xf⊥D1 +
Mh

M
h⊥

1
H̃

z

)]

, (4.4)

F cos 2φh

UU = C
[

−
2
(
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ĥ ·kT

Mh

(

xeH⊥
1 +

Mh

M
f1

G̃⊥

z

)

+
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ĥ ·kT

) (
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ĥ ·pT

M

(

xg⊥D1 +
Mh

M
h⊥

1
Ẽ

z

)]

, (4.6)

F sin φh

UL =
2M

Q
C
[

−
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in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.
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Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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can be studied experimentally by analyzing angular modulations in the differential cross

section, so called spin and azimuthal asymmetries. These modulations are a function of

the azimuthal angles of the final state hadron momentum about the virtual photon direc-

tion, as well as that of the target polarization (see e.g., ref. [8] for a review). TMD PDFs

enter the SIDIS cross section in momentum space convoluted with transverse momentum

dependent fragmentation functions (TMD FFs). However, after a two-dimensional Fourier

transform of the cross section with respect to the transverse hadron momentum P h⊥, these

convolutions become simple products of functions in Fourier bT -space. The usefulness of

Fourier-Bessel transforms in studying the factorization as well as the scale dependence of

transverse momentum dependent cross section has been known for some time [9–15]. In

this paper we exhibit the structure of the cross section in bT -space and demonstrate how

this representation results in model independent observables which are generalizations of

the conventional weighted asymmetries [6, 7]. Further we explore the impact that these

observables have in studying the scale dependence of the SIDIS cross section at small to

moderate transverse momentum where the TMD framework is designed to give a good

description of the cross section. In particular we study how the so called soft factor cancels

from these observables. The soft factor [14–19] is an essential element of the cross section

that emerges in the proofs of TMD factorization [11, 13–15]. It accounts for the collective

effect of soft momentum gluons not associated with either the distribution or fragmentation

part of the process and it is shown to be universal in hard processes [17]. Depending on

the factorization framework, it appears explicitly in the structure functions and thus in the

factorized cross section (see refs. [14, 18]), or it is completely absorbed in the definition

of TMD PDFs and TMD FFs (see refs. [15, 19]). At tree level (zeroth order in αS) the

soft factor is unity, which explains its absence in the factorization formalism considered for

example in ref. [8]. However, for a correct description of the energy scale dependence of

the cross sections and asymmetries involving TMD PDFs, it is essential to include the soft

factor. Yet, it is possible to consider observables where the soft factor is indeed absent or

cancels out, these are precisely the weighted asymmetries.

1.1 Overview on weighted asymmetries

The concept of transverse momentum weighted single spin asymmetries (SSA) was proposed

some time ago in refs. [6, 7]. Using the technique of weighting enables one to disentangle

in a model independent way the cross sections and asymmetries in terms of the transverse

(momentum) moments of TMD PDFs. A comprehensive list of such weights was derived

in ref. [7] for semi-inclusive deep inelastic scattering (SIDIS). A prominent example is the

weighted Sivers asymmetry, obtained from the differential cross section dσ according to

Aw1 sin(φh−φS)
UT,T = (1.1)

2

∫
d|P h⊥| |P h⊥|dφh dφS w1(|P h⊥|) sin(φh − φS)

{
dσ(φh,φS) − dσ(φh,φS + π)

}
∫

d|P h⊥| dφh |P h⊥|dφS w0(|P h⊥|)
{
dσ(φh,φS) + dσ(φh,φS + π)

} ,

where the integrations are performed over the observed transverse hadron momentum

|P h⊥|, the hadron azimuthal angle φh and the spin direction φS of the transversely polar-

ized target, and the weights are w1 = |P h⊥|/zM , w0 = 1. At tree level and leading twist
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The state |P, S〉 represents a nucleon with four-momentum P and spin polarization vector

S, and quark fields are located at position “0” and “b” in coordinate space. The gauge link

U [Cb] ensures gauge invariance of the correlator [23, 25]. It corresponds to a path in b space

which is determined by the color flow in the hard sub-process [26, 27]. We will discuss the

details of the definition of the correlator and the role of the gauge link U [Cb] in section 4.

Analogous expressions define the fragmentation correlator ∆ij(z,pT ) (see e.g. [8]).

2.2 Representation in Fourier space

In this section, we rewrite the SIDIS cross section and its transverse momentum dependent

components in coordinate bT space, similar as previously done in ref. [28]. Here however,

we take advantage of the rotational invariance of TMD PDFs and FFs.

First we use the representation of the δ-function

δ(2)(zpT + KT − P h⊥) =

∫
d2bT

(2π)2
eibT (zpT +KT −Ph⊥) , (2.6)

along with the following definitions,

W µν(P h⊥) ≡
∫

d2bT

(2π)2
e−ibT ·Ph⊥ W̃ µν(bT ) , (2.7)

Φ̃ij(x, zbT ) ≡
∫

d2pT eizbT ·pT Φij(x,pT )

=

∫
db−

(2π)
eixP+b− 〈P, S|ψ̄j(0)U [Cb]ψi(b)|P, S〉

∣∣∣∣
b+=0

, (2.8)

∆̃ij(z, bT ) ≡
∫

d2KT eibT ·KT ∆ij(z,KT ) , (2.9)

to re-write the leading term in the hadronic tensor, eq. (2.3), in Fourier space

2MW̃ µν =
∑

a

e2
a Tr

(
Φ̃(x, zbT )γµ∆̃(z, bT )γν

)
. (2.10)

The advantage of the bT space representation is clear: the hadronic tensor is no longer

a convolution of pT and KT dependent functions but a simple product of bT -dependent

functions. This motivates us to re-write the entire cross section in terms of the Fourier

transform

dσ

dx
B

dy dψ dzh dφh |P h⊥|d|P h⊥|
=

∫
d2bT

(2π)2
e−ibT ·Ph⊥

{
α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

)
LµνW̃ µν

}
.

(2.11)

Next, we decompose the correlators Φ̃ and ∆̃ into TMD PDFs and FFs in Fourier space.

Using the trace notation (see also eqs. (A.8) and (A.9) in the appendix)

Φ̃[Γ] ≡
1

2
Tr(Φ̃Γ) , (2.12)
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d2pT eizbT ·pT Φij(x,pT )

=

∫
db−

(2π)
eixP+b− 〈P, S|ψ̄j(0)U [Cb]ψi(b)|P, S〉

∣∣∣∣
b+=0

, (2.8)

∆̃ij(z, bT ) ≡
∫

d2KT eibT ·KT ∆ij(z,KT ) , (2.9)

to re-write the leading term in the hadronic tensor, eq. (2.3), in Fourier space

2MW̃ µν =
∑

a

e2
a Tr

(
Φ̃(x, zbT )γµ∆̃(z, bT )γν

)
. (2.10)

The advantage of the bT space representation is clear: the hadronic tensor is no longer

a convolution of pT and KT dependent functions but a simple product of bT -dependent

functions. This motivates us to re-write the entire cross section in terms of the Fourier

transform

dσ

dx
B

dy dψ dzh dφh |P h⊥|d|P h⊥|
=

∫
d2bT

(2π)2
e−ibT ·Ph⊥

{
α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

)
LµνW̃ µν

}
.

(2.11)

Next, we decompose the correlators Φ̃ and ∆̃ into TMD PDFs and FFs in Fourier space.

Using the trace notation (see also eqs. (A.8) and (A.9) in the appendix)

Φ̃[Γ] ≡
1

2
Tr(Φ̃Γ) , (2.12)
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Using the equation of motion for the quark field, the following relations can be established

between the functions appearing in the above correlator and the functions in the quark-

quark correlator (3.38):

E

z
=

Ẽ

z
+

m

Mh
D1, (3.76)

D⊥

z
=

D̃⊥

z
+ D1, (3.77)

G⊥

z
=

G̃⊥

z
+

m

Mh
H⊥

1 , (3.78)

H

z
=

H̃

z
+

k2
T

M2
h

H⊥
1 . (3.79)

4. Results for structure functions

Inserting the parameterizations of the different correlators in the expression (3.9) of the

hadronic tensor and using the equation-of-motion constraints just discussed, one can calcu-

late the leptoproduction cross section for semi-inclusive DIS and project out the different

structure functions appearing in eq. (2.7). To have a compact notation for the results, we

introduce the unit vector ĥ = P h⊥/|P h⊥| and the notation

C
[

wf D
]

= x
∑

a

e2
a

∫

d2pT d2kT δ(2)
(

pT − kT − P h⊥/z
)

w(pT ,kT ) fa(x, p2
T )Da(z, k2

T ),

(4.1)

where w(pT ,kT ) is an arbitrary function and the summation runs over quarks and anti-

quarks. The expressions for the structure functions appearing in eq. (2.7) are

FUU,T = C
[

f1D1
]

, (4.2)

FUU,L = 0, (4.3)

F cos φh

UU =
2M

Q
C
[

−
ĥ ·kT

Mh

(

xhH⊥
1 +

Mh

M
f1

D̃⊥

z

)

−
ĥ ·pT

M

(

xf⊥D1 +
Mh

M
h⊥

1
H̃

z

)]

, (4.4)

F cos 2φh

UU = C
[

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

MMh
h⊥

1 H⊥
1

]

, (4.5)

F sin φh

LU =
2M

Q
C
[

−
ĥ ·kT

Mh

(

xeH⊥
1 +

Mh

M
f1

G̃⊥

z

)

+
ĥ ·pT

M

(

xg⊥D1 +
Mh

M
h⊥

1
Ẽ

z

)]

, (4.6)

F sin φh

UL =
2M

Q
C
[

−
ĥ ·kT

Mh

(

xhLH⊥
1 +

Mh

M
g1L

G̃⊥

z

)

+
ĥ ·pT

M

(

xf⊥
L D1 −

Mh

M
h⊥

1L

H̃

z

)]

, (4.7)

F sin 2φh

UL = C
[

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

MMh
h⊥

1LH⊥
1

]

, (4.8)

FLL = C
[

g1LD1
]

, (4.9)
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transforms according to

TΦ

(
Φ̃(b, w)

)
=

∫
d4p eTΦ(−i) p·b TΦ (Φ(p,w))

=

∫
d4q eTΦ(−i)T −1

p (q)·b Φ (q,Tw(w))

=

∫
d4q eTΦ(−i) q·Tp(b) Φ (q,Tw(w))

= Φ̃

(
TΦ(i)

i
Tp(b),Tw(w)

)
. (C.7)

For example, Φ̃ transforms under hermitian conjugation as

(†) :
[
Φ̃[Γ]

unsub(b, P, S; v)
]∗

= Φ̃[γ0Γ†γ0]
unsub (−b, P, S; v) . (C.8)

Let f(p,w) be any of the structures preceding the invariant amplitudes in the param-

eterization of Φ. The structure f(p,w) is a homogeneous function of some degree

n in p, i.e., f(αp,w) = αnf(p,w) for any number α. For example, the structure

f(p,w) = 1
M(v·P )(p·S)εµναβPνpαvβ preceding B(+)

9 in eq. (4.3) has degree n = 2. If we

define f̃(b, w) ≡ f(−iM2b, w), then

TΦ

(
f̃(b, w)

)
=TΦ(−iM2)n TΦ (f(b, w))=f

(
TΦ(−iM2)Tp(b),Tw(w)

)
= f̃

(
TΦ(i)

i
b, w

)
. (C.9)

This shows that f̃ transforms like Φ̃ in eq. (C.7). We conclude that the parameterization

of Φ̃ can be found by the substitution p → −iM2b in the structures parameterizing Φ, and

we arrive at eq. (4.4). The amplitudes Ã(+)
i and B̃(+)

i introduced this way are no longer

constrained to be real valued functions. Instead, hermitian conjugation eq. (C.8) yields the

relation
[
Ã(+)

i (b2, b·P, v·b/(v·P ), ζ−2, µ2)
]∗

= Ã(+)
i (b2,−b·P,−v·b/(v·P ), ζ−2, µ2) . (C.10)

D Structure functions in terms of Fourier transformed TMD PDFs and

FFs

The structure functions of ref. [8] can be expressed in terms of Fourier-transformed TMD

PDFs and FFs as

FUU,T =x
B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |J0(|bT | |P h⊥|) f̃a
1 (x, z2b2

T ) D̃a
1(z, b2

T ) , (D.1)

F sin(φh−φS)
UT,T =−x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mz f̃⊥a(1)
1T (x, z2b2

T ) D̃a
1(z, b2

T ), (D.2)

FLL =x
B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |J0(|bT | |P h⊥|) g̃a
1L(x, z2b2

T ) D̃a
1(z, b2

T ) , (D.3)

F cos(φh−φs)
LT =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mz g̃⊥a(1)
1T (x, z2b2

T ) D̃a
1(z, b2

T ) , (D.4)
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F cos φh

LL =
2M

Q
C
[

ĥ ·kT

Mh

(

xeLH⊥
1 −

Mh

M
g1L

D̃⊥

z

)

−
ĥ ·pT

M

(

xg⊥L D1 +
Mh

M
h⊥

1L

Ẽ

z

)]

, (4.10)

F sin(φh−φS)
UT,T = C

[

−
ĥ ·pT

M
f⊥
1TD1

]

, (4.11)

F sin(φh−φS)
UT,L = 0, (4.12)

F sin(φh+φS)
UT = C

[

−
ĥ ·kT

Mh
h1H

⊥
1

]

, (4.13)

F sin(3φh−φS)
UT = C

[

2
(

ĥ ·pT

) (

pT ·kT

)

+ p2
T

(

ĥ ·kT

)

− 4 (ĥ ·pT )2 (ĥ ·kT )

2M2Mh
h⊥

1T H⊥
1

]

, (4.14)

F sinφS

UT =
2M

Q
C
{(

xfTD1 −
Mh

M
h1

H̃

z

)

−
kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh

M
g1T

G̃⊥

z

)

−
(

xh⊥
T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.15)

F sin(2φh−φS)
UT =

2M

Q
C
{

2 (ĥ ·pT )2 − p2
T

2M2

(

xf⊥
T D1 −

Mh

M
h⊥

1T

H̃

z

)

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh

M
g1T

G̃⊥

z

)

+

(

xh⊥
T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.16)

F cos(φh−φS)
LT = C

[

ĥ ·pT

M
g1T D1

]

, (4.17)

F cos φS

LT =
2M

Q
C
{

−
(

xgT D1 +
Mh

M
h1

Ẽ

z

)

+
kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

+

(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

, (4.18)

F cos(2φh−φS)
LT =

2M

Q
C
{

−
2 (ĥ ·pT )2 − p2

T

2M2

(

xg⊥T D1 +
Mh

M
h⊥

1T

Ẽ

z

)

+
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

−
(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

. (4.19)

Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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F sin(φh+φS)
UT =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mhz h̃a
1(x, z2b2

T ) H̃⊥a(1)
1 (z, b2

T ) , (D.5)

F cos(2φh)
UU =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |3J2(|bT | |P h⊥|)MMhz2 h̃⊥a(1)
1 (x, z2b2

T ) H̃⊥a(1)
1 (z, b2

T ) ,

(D.6)

F sin(2φh)
UL =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |3 J2(|bT | |P h⊥|)MMhz2 h̃⊥a(1)
1L (x, z2b2

T ) H̃⊥a(1)
1 (z, b2

T ) ,

(D.7)

F sin(3φh−φS)
UT =xB

∑

a

e2
a

∫
d|bT |
(2π)

|bT |4 J3(|bT | |P h⊥|)
M2Mhz3

4
h̃⊥a(2)

1T (x, z2b2
T ) H̃⊥a(1)

1 (z, b2
T ) .

(D.8)

E Cancellation of the soft factor in the Sivers asymmetry

Making use of the closure relation of the Bessel function
∫ ∞

0
d|P h⊥| |P h⊥|Jn(|P h⊥| |bT |)Jn(|P h⊥| BT ) =

1

BT
δ(|bT |− BT ) , (E.1)

we obtain for the expression in eq. (5.6)

∫
d|P h⊥| |P h⊥| dφh dφS J0(|P h⊥|BT )

∫
d|bT |
(2π)

|bT |J0(|bT ||P h⊥|)FUU,T (E.2)

=x
B

∑

a

e2
a HUU,T (Q2, µ2, ρ)

∫
d|P h⊥| |P h⊥|

∫
dφh

∫
dφS J0(|P h⊥|BT )

×
∫

d|bT |
(2π)

|bT |J0(|P h⊥| |bT |)f̃
(0)a
1 (x, z2b2

T ;µ2, ζ, ρ) S̃(+)(b2
T ;µ2, ρ) D̃(0)a

1 (z, b2
T ;µ, ζ̂, ρ)

=2πx
B

∑

a

e2
a HUU,T (Q2, µ2, ρ) f̃ (0)a

1 (x, z2B2
T ;µ2, ζ, ρ)S̃(+)(B2

T ;µ2, ρ)D̃(0)a
1 (z,B2

T ;µ, ζ̂, ρ)

Next, we consider the following expression in the numerator of the asymmetry, eq. (5.7),

∫
d|P h⊥||P h⊥|

∫
dφh

∫
dφS

2J1(|P h⊥|BT )

zMBT
sin2(φh − φS)

×
∫

d|bT |
(2π)

|bT |2J1(|bT | |P h⊥|)F
sin(φh−φS)
UT,T

=

∫
d|P h⊥| |P h⊥|

∫
dφh

∫
dφS

2J1(|P h⊥|BT )

zMBT
sin2(φh − φS) (E.3)

×xB

∑

a

e2
a Hsin(φh−φS)

UT,T (Q2, µ2, ρ)

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)

×Mzf̃⊥(1)a
1T (x, z2b2

T , µ2, ζ, ρ) S̃(+)(b2
T , µ2, ρ) D̃(0)a

1 (z, b2
T , µ2, ζ̂, ρ)

= 2πx
B

∑

a

e2
a Hsin(φh−φS)

UT,T (Q2, µ2, ρ)f̃⊥(1)a
1T (x, z2B2

T , µ2, ζ, ρ)

×S̃(+)(B2
T , µ2, ρ)D̃(0)a

1 (z,B2
T , µ2, ζ̂/z, ρ),
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F cos φh

LL =
2M

Q
C
[

ĥ ·kT

Mh

(

xeLH⊥
1 −

Mh

M
g1L

D̃⊥

z

)

−
ĥ ·pT

M

(

xg⊥L D1 +
Mh

M
h⊥

1L

Ẽ

z

)]

, (4.10)

F sin(φh−φS)
UT,T = C

[

−
ĥ ·pT

M
f⊥
1TD1

]

, (4.11)

F sin(φh−φS)
UT,L = 0, (4.12)

F sin(φh+φS)
UT = C

[

−
ĥ ·kT

Mh
h1H

⊥
1

]

, (4.13)

F sin(3φh−φS)
UT = C

[

2
(

ĥ ·pT

) (

pT ·kT

)

+ p2
T

(

ĥ ·kT

)

− 4 (ĥ ·pT )2 (ĥ ·kT )

2M2Mh
h⊥

1T H⊥
1

]

, (4.14)

F sinφS

UT =
2M

Q
C
{(

xfTD1 −
Mh

M
h1

H̃

z

)

−
kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh

M
g1T

G̃⊥

z

)

−
(

xh⊥
T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.15)

F sin(2φh−φS)
UT =

2M

Q
C
{

2 (ĥ ·pT )2 − p2
T

2M2

(

xf⊥
T D1 −

Mh

M
h⊥

1T

H̃

z

)

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh

M
g1T

G̃⊥

z

)

+

(

xh⊥
T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.16)

F cos(φh−φS)
LT = C

[

ĥ ·pT

M
g1T D1

]

, (4.17)

F cos φS

LT =
2M

Q
C
{

−
(

xgT D1 +
Mh

M
h1

Ẽ

z

)

+
kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

+

(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

, (4.18)

F cos(2φh−φS)
LT =

2M

Q
C
{

−
2 (ĥ ·pT )2 − p2

T

2M2

(

xg⊥T D1 +
Mh

M
h⊥

1T

Ẽ

z

)

+
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

−
(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

. (4.19)

Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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★ CS has simpler S/T interpretation--multipole 
expansion in terms of               conjugate to

J
H
E
P
1
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(
2
0
1
1
)
0
2
1

The functions f̃ , D̃, f̃ (n) and D̃(n) are real valued and f̃ (0) = f̃ , D̃(0) = D̃. Taking the

“asymptotic limit” |bT | → 0 on the right hand side of eqs. (2.19), we formally obtain the

conventional moments of the TMD PDFs and TMD FFs, f (n)(x) and D(n)(z) respectively,

f̃ (n)(x, 0) =

∫
d2pT

(
p2

T

2M2

)n

f(x,p2
T ) ≡ f (n)(x) ,

D̃(n)(z, 0) =

∫
d2KT

(
K2

T

2z2M2
h

)n

D(x,K2
T ) ≡ D(n)(z). (2.20)

Thus we find that the derivatives in bT -space are directly related to moments of TMD

PDFs and FFs. Finally we re-write the SIDIS cross section of ref. [8] in the γ∗P center

of mass frame with the proton three-momentum pointing in the negative z-direction (so

called Trento conventions [22]), as

dσ

dxB dy dφS dzh dφh |P h⊥|d|P h⊥|
=

α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

) ∫
d|bT |
(2π)

|bT |
{

J0(|bT ||P h⊥|)FUU,T + εJ0(|bT ||P h⊥|)FUU,L

+
√

2 ε(1 + ε) cosφh J1(|bT ||P h⊥|)Fcos φh
UU + ε cos(2φh)J2(|bT ||P h⊥|)F

cos(2φh)
UU

+ λe

√
2 ε(1 − ε) sin φh J1(|bT ||P h⊥|)F sin φh

LU

+ S‖

[√
2 ε(1 + ε) sin φh J1(|bT ||P h⊥|)F sin φh

UL + ε sin(2φh)J2(|bT ||P h⊥|)F sin 2φh
UL

]

+ S‖λe

[√
1 − ε2 J0(|bT ||P h⊥|)FLL +

√
2 ε(1 − ε) cos φh J1(|bT ||P h⊥|)Fcos φh

LL

]

+ |S⊥|
[
sin(φh − φS)J1(|bT ||P h⊥|)

(
F sin(φh−φS)

UT,T + εF sin(φh−φS)
UT,L

)

+ ε sin(φh + φS)J1(|bT ||P h⊥|)F
sin(φh+φS)
UT

+ ε sin(3φh − φS)J3(|bT ||P h⊥|)F
sin(3φh−φS)
UT

+
√

2 ε(1 + ε) sin φS J0(|bT ||P h⊥|)F sin φS

UT

+
√

2 ε(1 + ε) sin(2φh − φS)J2(|bT ||P h⊥|)F
sin(2φh−φS)
UT

]

+ |S⊥|λe

[√
1 − ε2 cos(φh − φS)J1(|bT ||P h⊥|)F

cos(φh−φS)
LT

+
√

2 ε(1 − ε) cos φS J0(|bT ||P h⊥|)Fcos φS

LT

+
√

2 ε(1 − ε) cos(2φh − φS)J2(|bT ||P h⊥|)F
cos(2φh−φS)
LT

]}
(2.21)

The structure of the cross section is what one gets from a multipole expansion in bT -

space followed by a Fourier transform, see appendix B. Each of the structure functions

F ···
XY,Z in bT -space corresponds to the Hankel (or Fourier-Bessel) transform of the corre-

sponding structure function F ···
XY,Z in the usual momentum space representation of the cross

section. The combinations sin(nφh + . . .)Jn(|bT ||P h⊥|) and cos(nφh + . . .)Jn(|bT ||P h⊥|)
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act as basis functions of the combined transform to (|P h⊥|,φh)-space. Due to the fact

that the multipole expansion of the physical cross section terminates, only a finite number

of terms appear in the cross section, with J3 being the Bessel function of highest order.

The structures F ···
XY,Z are functions of |bT |, x and z, but no longer depend on the angular

variables. Introducing a short-hand notation for products

P[f̃ (n)D̃(m)] ≡ x
B

∑

a

e2
a (zM |bT |)n (zMh|bT |)m f̃a(n)(x, z2b2

T ) D̃a(m)(z, b2
T ) , (2.22)

the leading twist tree level analysis in eqs. (2.10), (2.13) and (2.15) reveals that the Fourier

transformed structures in the cross section are simple products of TMD PDFs and TMD

FFs

FUU,T = P[f̃ (0)
1 D̃(0)

1 ] , (2.23)

F sin(φh−φS)
UT,T = −P[f̃⊥(1)

1T D̃(0)
1 ] , (2.24)

FLL = P[g̃(0)
1L D̃(0)

1 ] , (2.25)

Fcos(φh−φs)
LT = P[g̃(1)

1T D̃(0)
1 ] , (2.26)

F sin(φh+φS)
UT = P[h̃(0)

1 H̃⊥(1)
1 ] , (2.27)

Fcos(2φh)
UU = P[h̃⊥(1)

1 H̃⊥(1)
1 ] , (2.28)

F sin(2φh)
UL = P[h̃⊥(1)

1L H̃⊥(1)
1 ] , (2.29)

F sin(3φh−φS)
UT =

1

4
P[h̃⊥(2)

1T H̃⊥(1)
1 ]. (2.30)

For completeness, we also list the above results in terms of the momentum-space struc-

ture functions F ···
XY,Z of ref. [8] in appendix D. Note that TMD evolution equations are

typically derived in bT -space and are thus obtained in terms of the same (derivatives of)

Fourier transformed TMD PDFs and TMD FFs that appear in the equations above, see,

e.g., ref. [28], where a similar representation of the structure functions in Fourier space has

been employed.

3 Beyond tree level

The formalism becomes more involved once diagrams beyond leading order in αs are taken

into account. Various strategies have been proposed to address extra divergences that

appear at the one loop level and higher order [15–19, 30–34]. The development of these

frameworks for transverse momentum dependent factorization and the establishing of the

corresponding factorization theorems is an active field of research (see e.g., refs. [15, 35]).

The proposed strategies require the introduction of new variables that act as regularization

scales, and most importantly as it pertains to the content of this paper, the so called soft

factors coming from soft-gluon radiation. As stated in the introduction, depending on the

framework, the soft factors appear explicitly in the structure functions [14, 18], or are

absorbed into the definition of TMD PDFs and TMD FFs (see e.g., refs. [15, 19]). We will

present general arguments that soft factors cancel in weighted asymmetries, independent
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Correlator w/ explicit spin orbit correlations
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and restricting ourselves to leading twist projections, we obtain the following structures

for Φ̃

Φ̃[γ+](x, bT ) = f̃1(x, b2
T ) − i ερσ

T bTρSTσ Mf̃⊥(1)
1T (x, b2

T ) ,

Φ̃[γ+γ5](x, bT ) = SL g̃1L(x, b2
T ) + i bT ·ST M g̃(1)

1T (x, b2
T ) ,

Φ̃[iσα+γ5](x, bT ) = Sα
T h̃1(x, b2

T ) + i SL bα
T M h̃⊥(1)

1L (x, b2
T )

+
1

2

(
bα
T bρ

T +
1

2
b2

T gαρ
T

)
M2 STρh̃

⊥(2)
1T (x, b2

T )

−i εαρ
T bTρMh̃⊥(1)

1 (x, b2
T ) , (2.13)

where α = 1, 2 and ρ = 1, 2. Similarly, we obtain the following structures for ∆̃

∆̃[γ−](z, bT ) = D̃1(z, b2
T ) − i ερσ

T bTρShTσ zMhD̃⊥(1)
1T (x, b2

T ) ,

∆̃[γ−γ5](z, bT ) = ShL G̃1L(z, b2
T ) − i bT ·ShT zMh G̃(1)

1T (z, b2
T ) ,

∆̃[iσα−γ5](z, bT ) = Sα
hT H̃1(z, b2

T ) − i ShL bαzMh H̃⊥(1)
1L (z, b2

T )

+
1

2

(
bα
T bρ

T +
1

2
b2

T gαρ
T

)
z2M2

h ShTρH̃
⊥(2)
1T (z, b2

T ) (2.14)

−i εαρ
T bTρzMhH̃⊥(1)

1 (z, b2
T ) . (2.15)

For future applications, we have written down the latter decomposition for the more general

case of a spin-1
2 hadron; the expression for a spinless hadron is obtained by setting Sh = 0.

The above decompositions can be deduced from the existing expressions for Φ and ∆ in

momentum space [5, 29], or starting from the symmetry properties of the correlators Φ̃

and ∆̃ and a parameterization in terms of Lorentz-invariant amplitudes, see also section 4

and appendix C. The functions f̃1(x, b2
T ), g̃1L(x, b2

T ), . . . are the Fourier transforms of

the usual TMD PDFs f1(x,p2
T ), g1L(x,p2

T ), . . .. For a generic TMD PDF called f and a

generic TMD FF called D, this Fourier transform is given by

f̃(x, b2
T )≡

∫
d2pT eibT ·pT f(x,p2

T )

= 2π

∫
d|pT ||pT | J0(|bT ||pT |) f(x,p2

T ) , (2.16)

D̃(z, b2
T ) ≡

∫
d2KT eibT ·KT D(z,K2

T )=2π

∫
d|KT ||KT |J0(|bT ||KT |)D(z,K2

T ) . (2.17)

Additionally, in eqs. (2.13) and (2.15) not only Fourier transformed TMD PDFs and TMD

FFs, but also their b2
T -derivatives appear, which we denote as

f̃ (n)(x, b2
T ) ≡ n!

(
−

2

M2
∂b2

T

)n

f̃(x, b2
T )

=
2π n!

(M2)n

∫
d|pT ||pT |

(
|pT |
|bT |

)n

Jn(|bT ||pT |) f(x,p2
T ) , (2.18)

D̃(n)(z, b2
T ) ≡ n!

(
−

2

z2M2
h

∂b2
T

)n

D̃(z, b2
T )

=
2π n!

(z2M2
h)n

∫
d|KT ||KT |

(
|KT |
|bT |

)n

Jn(|bT ||KT |) D(z,K2
T ) . (2.19)
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TMDs in “config” space--Bessel MOMENTS D. Boer’s talk

f̃(x, b2
T ) �

�
d2pT eibT ·pT f(x,p2

T )

= 2�

�
d|pT ||pT | J0(|bT ||pT |) fa(x,p2

T ) ,

f̃ (n)(x, b2
T ) � n!

�
� 2

M2
�b2

T

�n

f̃(x, b2
T )

=
2� n!
(M2)n

�
d|pT ||pT |

�
|pT |
|bT |

�n

Jn(|bT ||pT |) f(x,p2
T ) ,

f̃ (n)(x, 0) =
�

d2pT

�
p2

T

2M2

�n

f(x,p2
T ) � f (n)(x)

b)  n.b. connection to        moments

 a) F.T.  SIDIS cross section w/ following Bessel  moments

pT
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•Extra divergences at one loop and higher
•Extra variables needed to regulate 
      light-cone, soft & collinear divergences 
•Modifies convolution integral introduction of soft & Sudakov factor
•Will show cancels in Bessel weighted asymmetries
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Further Beyond “tree level” factorization



Comments on Soft factor

• Collective effect soft gluons not associated with distribution frag 
function-factorizes into a matrix of Wilson lines in QCD vacuum

• Subtracts soft divergences from TMD pdf and FF

• Considered to be universal in hard processes                                
(Collins Soper 81, .... , Collins & Metz PRL 04, Ji, Ma, Yuan PRD 05)

• At tree level (zeroth order       ) unity-parton model

• Absent tree level pheno analyses of experimental data                   
(e.g. Anselmino et al PRD 05 & 07, Efremov et al PRD 07) 
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Momentum space convolution 
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weighted asymmetry does not yield direct information on h⇤(1)
1 and H⇤(1)

1 . But since this contribution is calculable
in perturbation theory it can in principle be subtracted (modulo power suppressed contributions). Here we will not
go further into this aspect, but refer to Ref. [24] for more details on which weighted asymmetries are a⇤ected in a
similar way, based on calculations of the perturbative tails of TMDs and on power counting.

As a final topic in this section we briefly address what is known about the energy scale dependence of the weighted
asymmetries. The current knowledge on this is limited to the one-loop level. Choosing the factorization scale µ = Q
removes the Q dependence from the hard scattering function H that is a function of lnQ2/µ2. This will lead to a Q

dependence in the transverse moments of the TMDs only. The scale dependence of f (0)
1 (x;Q2) is known, assuming

a proper definition of the TMD can be used, such that the zeroth moment corresponds to the collinear function

f1(x;Q2) after the regularization is removed. The same applies to D(0)
1 (z;Q2). For the first moment of the Sivers

function one can exploit that it is directly related to the Qiu-Sterman function TF (x, x) [28] as shown in Ref. [29].
The evolution equation of the Qiu-Sterman function has recently been obtained [30–33] allowing for evolution of the
weighted Sivers asymmetry. The evolution of TF (x, x) is not autonomous, since it depends not just on TF (x, x) itself.
This is still true in the large-Nc limit, but in the large-x limit it does become autonomous [33, 34]. It indicates that

f⇤(1)
1T (x) evolves logarithmically with Q2 just like f1(x), only falling o⇤ faster at a given x value as Q2 increases. For

other transverse moments, such as h⇤(1)
1 , the evolution is not yet known, but is expected to follow a similar pattern

as f⇤(1)
1T .

III. SOFT FACTOR CANCELLATION ON THE LEVEL OF MATRIX ELEMENTS

A. TMDs from quark-quark correlations in the nucleon

In our study of weighted asymmetries in the previous sections, we obtain ratios of moments of TMDs and fragmen-
tation functions that are free of the soft factor that appears in the convolution Eq. (8). To derive this result, it is not
necessary to specify the explicit definition of TMDs, fragmentation functions and the soft factor in terms of matrix
elements.

In this section, we now analyze a ratio of moments of TMDs directly on the level of matrix elements. Depending
on the formalism, soft factors can also appear inside the definition of TMDs and fragmentation functions themselves.
Again, we will find cancellation of these soft factors in the ratio. As in the previous section, we stick to the JMY
framework [18, 22] for definiteness. For any four vector w, we introduce light cone coordinates w = (w�, w+,wT )
as in JMY and two lightlike directions n = (1, 0, 0), n̄ = (0, 1, 0). Straight Wilson lines starting at infinity and
running along a direction given by the four-vector v to an endpoint a are denoted Lv(⌃; a) as in JMY. The general
quark-quark correlator defining TMDs has the form

⇥+[�]
q (x,pT , P, S, µ

2, x�, ⌅) =

⇤
db�

(2⇤)
e�ixb�P+

⇤
d2bT
(2⇤)2

eipT ·bT

⇤ 1

2
�P, S| q̄(b)L†

v(⌃; b) � Lv(⌃; 0)q(0) |P, S 
� ⌥⌃  

⌅⇥[�]
q (b, P, S; v, µ2)

⇥
⌅S+(bT , µ

2, ⌅)
���
b+ = 0

, (30)

where � is a Dirac matrix and the state |P, S represents a nucleon with four-momentum P and spin polarization
vector S. The direction v = (v�, v+, 0) is chosen timelike, slightly o⇤ the lightcone direction n. This direction is
specified in a Lorentz-invariant way by the parameter �, defined by � = (2P ·v)2/v2 [check], which represents a rapidity
cuto⇤ parameter [16], and by the condition that b · v = 0. Another timelike direction ṽ = (ṽ�, ṽ+, 0) controlled by an

analogous parameter �̂ enters the Wilson lines of the fragmentation functions and is chosen slightly o⇤ the lightcone
direction n̄. The soft factor S̃+(bT , µ2, ⌅) is formed from vacuum expectation values of Wilson lines involving both

directions v and ṽ, and thus depends on the relative orientation of these directions, specified by ⌅ ⌅
⇧

v�ṽ+/v+ṽ�.

Note that ⌅ is a function of the Lorentz-invariant expression (v·ṽ)2/v2ṽ2. The superscript “+” on ⇥
+[�]
q and ⌅S+

indicates a choice of link directions appropriate for SIDIS, i.e. v ⇧ n, or, more precisely, v·P > 0. As mentioned,
the soft factor is considered to be universal in hard processes [8], therefore, strictly speaking a superscript “+” is

not needed. In the formalism of JMY, the soft factor S̃+(bT , µ2, ⌅) appearing in the denominator of the integrand
is the Fourier transform (21) of the same soft factor as the one in the convolution integral Eq. (8). Moreover, the

matrix element JMY give for S̃+(bT , ⌅, µ) is invariant under rotations of the bT -vector (provided b · v = 0). Since
for TMDs we always consider the case b+ = 0, we have b2T = �b2, so that we can write the soft factor as a function
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v�ṽ+/v+ṽ�.
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v�ṽ+/v+ṽ�.

Note that ⌅ is a function of the Lorentz-invariant expression (v·ṽ)2/v2ṽ2. The superscript “+” on ⇥
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Note that ⌅ is a function of the Lorentz-invariant expression (v·ṽ)2/v2ṽ2. The superscript “+” on ⇥
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Crucial  property of Soft Factor-SIDIS 
Soft factor formed from vacuum expt. value of Wilson lines involving both 

 thus depends on relative orientation of directions � =
�

v�ṽ+/v+ṽ�

Since for TMDS we always consider the case              we haveb+ = 0
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q
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b2
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S̃(b2, µ2, ⇢) = 1 +
↵sCF

2⇡
(2� ⇢2) ln

✓
µ2⇢2
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◆
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P
d�

dxB dy d�S dzh d�h d|P h�|2
� �2

xBQ2

�
d|bT |
(2�)

|bT | S̃(b2
T )

�
. . .

+J0(|bT ||P h�|)P[f̃1 D̃1]

+ |S�| sin(�h � �S) J1(|bT ||P h�|) P[f̃�(1)
1T D̃1]

+� cos(2�h) J2(|bT ||P h�|)P[h̃�(1)
1 H̃�(1)

1 ]

+ . . . 15 more structure functions

  Products in terms of   “     moments “bT

�Soft factor is
• spin blind
• flavor blind
• factors in
• Universal
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of the specific factorization framework; however for definiteness we work with the JMY

framework [14, 18], which is based on the ideas of Collins, Soper, and Sterman for the

factorization of e+e− and Drell Yan scattering [13, 30]. Again we consider the structure

function giving rise to the Sivers asymmetry,

F sin(φh−φS)
UT,T = Hsin(φh−φS)

UT,T (Q2, µ2, ρ) S̃(+)(b2
T , µ2, ρ) P[f̃ (1)

1T D̃(0)
1 ] + Ỹ sin(φh−φS)

UT,T (Q2, b2
T ) .

(3.1)

The first term in the following referred to as the “TMD expression”, dominates in the

region where |P h⊥| is small, |P h⊥|/z ≈ QT " Q. The second term is necessary to properly

describe the structure function for large transverse momentum, where QT ∼ Q, and where

fixed order perturbation theory and collinear factorization apply. Here Hsin(φh−φS)
UT,T is the

hard part, and S̃(+) is a soft factor appearing explicitly in the structure function within

the JMY formalism. It is the same in all the structure functions F ···
XY,Z , see ref. [28]. All

other structure functions of eqs. (2.23)–(2.30) need to be modified analogous to eq. (3.1).

The term Ỹ sin(φh−φS)
UT,T (Q2, b2

T ) represents contributions that are relevant only in the

region of large transverse momentum |P h⊥| [19, 36]. Qualitatively, this corresponds to the

very small bT region, z|bT | ! 1/Q. Since our aim is to study TMD PDFs, we want to

focus on the region |P h⊥|/z " Q where we expect them to give the dominant contribution

if z|bT | $ 1/Q. Nevertheless, since we are considering weighted integrals of structure

functions, the integrals do include the region of very large |P h⊥|. As a result, the Ỹ term

in eq. (3.1) is non-zero even if z|bT | $ 1/Q. We note that the Ỹ term is expected to be

particularly important in the case of a “mismatch” between the tail of the TMD term and

the |P h⊥|-behavior obtained from the collinear formalism in the regime of intermediate

|P h⊥|, i.e., M " QT " Q. Matches and mismatches between the collinear and TMD

formalism have been discussed in detail in ref. [37]. An important example for the case

of a mismatch is the cos(2φh) asymmetry. One possibility to avoid the discussion of the

Ỹ -term is to explicitly cut off the |P h⊥| integrals at some upper value ΛTMD. This cutoff

introduces an error in our extracted TMD expression, for which we give an estimate in

appendix G.3. Another option is to simply ignore the Ỹ term. This amounts to keeping

the TMD term in the large |P h⊥| region, i.e., to include the large-|P h⊥|-tail generated

by the TMD term, which would otherwise be corrected by the Y term. In appendix G.3,

we show that in the z|bT | $ 1/Q region of interest this produces an error that falls off

at least as a fractional inverse power with increasing |bT |. It should be mentioned that

this estimate of the behavior of the error applies to the Bessel weighting which we discuss

below. By contrast, no such error estimate exists for conventional weighting with powers

of |P h⊥| since such integrals are divergent. Better error estimates, or equivalently, a better

determination of the TMD region in BT , can be obtained by an explicit treatment of the

Ỹ term, which we will leave for future analyses.

In summary, we find that weighted integrals based on the TMD expression alone are

valid only in a limited range of BT . Finally, beyond tree level, the product notation

P[fD] defined in eq. (2.22) has to be updated to include further dependences on the

renormalization and cutoff parameters µ2, ρ, ζ and ζ̂ appearing in the JMY formalism
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discussed in more detail below:1

P[f̃ (n)D̃(m)] ≡ xB

∑

a

e2
a(zM |bT |)n(zMh|bT |)mf̃a(n)(x, z2b2

T , µ2, ζ, ρ)D̃a(m)(z, b2
T , µ2, ζ̂, ρ) .

(3.2)

4 TMD PDFs at the level of matrix elements

Apart from introducing the parameters ζ, ζ̂ and ρ the purpose of this section is to review

the formalism of Lorentz-invariant amplitudes underlying the decomposition of Φ̃ eq. (2.13).

In the framework of JMY, the TMD correlator Φ itself involves a soft factor S(+) as already

encountered above, i.e., eqs. (2.5) and (2.8) need to be modified. In the following, we label

the unmodified correlators with the subscript “unsub”:

Φ[Γ]
unsub(p, P, S; v, µ)=

∫
d4b

(2π)4
eip·b 1

2
〈P, S| ψ̄(0)

U [Cb]︷ ︸︸ ︷
U [0,∞v]U [∞v, b] Γψ(b) |P, S〉

︸ ︷︷ ︸
Φ̃[Γ]

unsub(b, P, S; v, µ)

. (4.1)

The gauge link U [Cb] is essentially given by two parallel straight Wilson lines running out

to infinity in the direction given by the four-vector v and back again. The definition of a

straight Wilson line between two points a and b is

U [a, b] ≡ P exp

(
−ig

∫ b

a
dξµ Aµ(ξ)

)
, (4.2)

where Aµ(ξ) = T cAc
µ(ξ), c = 1 . . . 8 is the (matrix valued) gauge field. A transverse link

connecting these parallel Wilson lines at infinity can be omitted in the covariant gauge

used by JMY. In case of SIDIS, the direction v = [v−, v+, 0] is slightly off the light-cone

direction n−, while for the Drell-Yan process v is slightly off the light cone direction −n−.

The shift away from the light cone is time-like in the JMY framework and specified in a

Lorentz-invariant way by the parameter ζ, defined by ζ2 = (2P · v)2/v2. The parameter ζ

represents a rapidity cutoff parameter [30]. The above correlator can be parameterized in

terms of real-valued Lorentz-invariant amplitudes. Here we restrict ourselves to the case

Γ = γµ. Reference [29] lists the following structures

1

2
Φ[γµ]

unsub = Pµ A(+)
2 + pµ A(+)

3 +
1

M
εµναβPνpαSβ A(+)

12 +
M2

(v·P )
vµ B(+)

1

+
M

v·P
εµναβPνvαSβ B(+)

7 +
M

v·P
εµναβpνvαSβ B(+)

8

+
1

M(v·P )
(p·S)εµναβPνpαvβ B(+)

9 +
M

(v·P )2
(v·S)εµναβPνpαvβB(+)

10 . (4.3)

The amplitudes B(+)
i only appear when the dependence of the correlator on the direction v

is explicitly taken into account, and were not listed in earlier works [1, 5]. Since v represents

1The framework of, e.g., ref. [19], would require analogous modifications within this formalism.
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$

•  Cancela;on$in$the$integral$over$all$lt.$
$

•  What$if$we$don’t$integrate?$
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Factoriza;on$and$Lightcone$
Divergences$

•  Lightlike$Wilson$lines$
–  Infinite$rapidity$QCD$radia;on$in$the$wrong$direc;on.$
–  In$so]$factor/fragmenta;on$func;on$too.$$
$
$
$
$
$

•  Finite$rapidity$Wilson$lines$
–  Regulate$rapidity$of$extra$gluons.$
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Again .... Emergence of Soft Factor in CS
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Understanding the Definition:
• Start with only the hard part factorized:

• Separate soft part:

• Multiply by:

• Rearrange factors:

dσ = |H|2
F̃unsub1 (y1 − (−∞))× F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.

dσ = |H|2
Funsub1 (y1 − (−∞))

S̃(+∞,−∞)
×
F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.


S̃(+∞, ys) S̃(ys,−∞)


S̃(+∞, ys) S̃(ys,−∞)

dσ = |H|2

F unsub1 (y1 − (−∞))


S̃(+∞, ys)

S̃(+∞,−∞)S̃(ys,−∞)



×



F̃ unsub2 (+∞− y2)


S̃(ys,−∞)

S̃(+∞,−∞)S̃(+∞, ys)



Factoriza;on$and$Lightcone$
Divergences$

•  Lightlike$Wilson$lines$
–  Infinite$rapidity$QCD$radia;on$in$the$wrong$direc;on.$
–  In$so]$factor/fragmenta;on$func;on$too.$$
$
$
$
$
$

•  Finite$rapidity$Wilson$lines$
–  Regulate$rapidity$of$extra$gluons.$

35 

Defini<ons:#

Emergence of Soft Factor in CS

! PDFs are still mixed not real factorization ! 
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Understanding the Definition:
• Start with only the hard part factorized:

• Separate soft part:

• Multiply by:

• Rearrange factors:

dσ = |H|2
F̃unsub1 (y1 − (−∞))× F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.

dσ = |H|2
Funsub1 (y1 − (−∞))

S̃(+∞,−∞)
×
F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.


S̃(+∞, ys) S̃(ys,−∞)


S̃(+∞, ys) S̃(ys,−∞)

dσ = |H|2

F unsub1 (y1 − (−∞))


S̃(+∞, ys)

S̃(+∞,−∞)S̃(ys,−∞)



×



F̃ unsub2 (+∞− y2)


S̃(ys,−∞)

S̃(+∞,−∞)S̃(+∞, ys)



               This is done  to both
 
1) cancel LC divergences and 
2) separate “right & left” movers i.e. factorize
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Separately 
Well-defined
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CS + JCC factorization
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• Collins-Soper Equation:

–

• RG:

–

–

Evolution

∂ ln F̃ (x, bT , µ, ζ)

∂ ln
√
ζ

= K̃(bT ;µ)

dK̃

d lnµ
= −γK(g(µ))

d ln F̃ (x, bT ;µ, ζ)

d lnµ
= −γF (g(µ); ζ/µ2)

K̃(bT ;µ) =
1

2

∂

∂yn
ln
S̃(bT ; yn,−∞)
S̃(bT ; +∞, yn)

Perturbatively 
calculable, from 
definitions

Perturbatively 
calculable from 
definition at small b.

Factoriza;on$and$Lightcone$
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$
$
$
$
$

•  Finite$rapidity$Wilson$lines$
–  Regulate$rapidity$of$extra$gluons.$
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TMD Evolution...CSS + JCC 2011



Solve this & RGE equation to obtain Evolution kernal 
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along with ....  RGE

respectively. Using Eqs. (18)–(21), the energy evolution of
!F can be derived:

!Fðgð"Þ; #F="2Þ ¼ !Fðgð"Þ; 1Þ $ 1

2
!Kðgð"ÞÞ ln#F

"2 :

(22)

At small-bT , Eq. (12) can itself be calculated within a
collinear factorization formalism [3]. Namely, it separates
into a perturbatively calculable hard scattering coefficient
and an integrated PDF, convoluted over momentum
fraction:

~Ff=Pðx;bT ;"; #FÞ

¼
X

j

Z 1

x

dx̂

x̂
~Cf=jðx=x̂; bT ; #F;"; gð"ÞÞfj=Pðx̂;"Þ

þOðð!QCDbTÞaÞ: (23)

The functions fj=Pðx̂;"Þ are the ordinary integrated PDFs

and the ~Cf=jðx=x̂; bT ; #F;"; gð"ÞÞ are the hard coefficient
functions, which are provided to first order in Appendix A.
The last term denotes the error, which grows large when
bT * !$1

QCD.

At large bT , the perturbative treatment of the bT depen-
dence is no longer reliable. In momentum space, this
corresponds to the breakdown of the perturbative treatment
of the kT dependence at small kT . It is in this region that the
concept of TMD factorization, incorporating TMDs with
intrinsic nonperturbative transverse momentum, becomes
very important.

While the bT dependence at large bT cannot be calcu-
lated directly in pQCD, the scale dependence can still be
handled with the evolution equations (18)–(22). But a

prescription is needed for matching the large and small
bT behavior. The most common matching procedure was
developed in Ref. [66]. It replaces bT in the hard part of the
calculation by a function,

b &ðbTÞ '
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

q : (24)

This definition of b&ðbTÞ is constructed so that it is equal to
bT when bT is small, while smoothly approaching an upper
cutoff bmax when bT becomes too large. The value of bmax

is typically chosen to be of order(1 GeV$1 and should be
thought of as characterizing the boundary of the perturba-
tive region of the bT dependence.
In the calculation of the hard coefficient in Eq. (23), the

appropriate size for the scale " is determined by the size
of b&ðbTÞ. Hence, we define the scale,

"b ¼ C1

b&ðbTÞ
: (25)

The parameter C1 is chosen to optimize the perturbation
expansion. For all our calculations, we will use C1 ¼
2e$!E . At large bT in the final expression for the evolved
TMD PDF, the effect of the deviation between bT and b& in
~Ff=Pðx;bT;"; #FÞ and ~KðbT ;"Þ will be accounted for by
extra nonperturbative, but universal and scale-independent,
functions.
Applying the evolution equations in Eqs. (18)–(22),

using the collinear factorization treatment for small bT

from Eq. (23), and implementing the matching procedure
of Eq. (24) allows the TMD PDF to be written with
maximum perturbative input in terms of evolution from
fixed starting scales:

~F f=Pðx;bT ;"; #FÞ ¼
X

j

Z 1

x

dx̂

x̂
~Cf=jðx=x̂; b&;"2

b;"b; gð"bÞÞfj=Pðx̂;"bÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{A

) exp
#
ln

ffiffiffiffiffiffi
#F

p

"b

~Kðb&;"bÞ þ
Z "

"b

d"0

"0

$
!Fðgð"0Þ; 1Þ $ ln

ffiffiffiffiffiffi
#F

p

"0 !Kðgð"0ÞÞ
%&zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{B

) exp
#
gj=Pðx; bTÞ þ gKðbTÞ ln

ffiffiffiffiffiffi
#F

p
ffiffiffiffiffiffiffiffi
#F;0

p
&zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{C

; (26)

This is our master equation for fitting TMD PDFs while
incorporating evolution. For a much more detailed expla-
nation of the steps summarized above and leading to
Eq. (26), we again refer the reader to Ref. [25], especially
Chapters 10 and 13. The steps for evolving are very similar
to traditional applications of the CSS formalism, but now
they are applied to separate, individual TMDs. The scales
used in the evolution are chosen to minimize the size of

higher order corrections in the perturbatively calculable
parts. We have labeled three separate factors by ‘‘A,’’ ‘‘B,’’
and ‘‘C’’ to aid in the detailed discussion that will appear in
the next section. The ~Cf=jðx=x̂; b&;"2

b;"b; gð"bÞÞ,
~Kðb&;"bÞ, !Fðgð"0Þ; 1Þ, and !Kðgð"0ÞÞ functions are all
perturbatively calculable for all bT . They are provided to
order $s in Appendices A and B. On the first line,
fj=Pðx̂;"bÞ is the ordinary integrated PDF from collinear
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where the coefficients and operators are unaltered since
they are properties of the TMD number-density operator.
But the twist-2 operator on the right-hand side of (41) is the
ordinary number-density operator used to define an inte-
grated PDF, and its matrix element is independent of
transverse spin. Thus, the twist-2 operator, corresponding
to a 1=k2T falloff at large kT , provides no contribution to the
Sivers function in Eq. (41). The leading large-kT behavior
of the Sivers function is the 1=k3T term associated with the
twist-3 operators, the same operators that are used in the
Qiu-Sterman formalism [32].

IV. OBTAINING EVOLVED SIVERS FUNCTIONS

In this section, we discuss the steps for obtaining the
evolved Sivers function using already existing fits to the
nonperturbative parts.

A. Solution in terms of fixed-scale Sivers function

Previous fits [14,15] of the Sivers function used the
parton-model formula for the hadronic tensor. We now
show how these can be converted to use the correct QCD
formula.

The parton-model version of TMD factorization
amounts to applying the following approximations to the
true QCD formula (1):

(i) Replace the hard scattering by its lowest order.
(ii) Neglect the Y term.
(iii) Omit the evolution of the TMD PDFs.

If the renormalization scale ! is taken of order Q, higher-
order corrections to the hard scattering are purely pertur-
bative. One of the simplifications for TMD factorization is
that these are just an overall factor, dependent on Q only
through the running coupling "SðQÞ. This factor is the
same, independently of the hadron and the quark polariza-
tion, so it does not affect the ratio of the Sivers function to
the ordinary TMD PDF.

The Y term only affects large transverse momentum (of
order Q), whereas the data is dominantly at transverse
momenta in the nonperturbative region. So the neglect of
Y should be an adequate approximation with present data,
and is easily corrected in the future, with the aid of fits for
the Qiu-Sterman twist-3 function.

For a fixed value of Q, the TMD functions can be given
fixed values of ! and #F, ! ¼ Q and #F ¼ Q2, and the
QCD factorization formula is the same as the parton-model
formula, up to an overall K factor. This legitimizes the
fixed-scale fits. But as can be seen from Fig. 1, evolution
gives substantial changes in the TMD PDFs needed at
higher Q. These are easily obtained, in their transverse-
coordinate-space form, in terms of the parton-model fits at
a fixed scale. We derive the necessary result starting from
Eqs. (33), (34), and (30).

In these equations, the anomalous dimensions $F and
$K are perturbatively calculable, but the function ~K at

large values of bT is nonperturbative. We follow
Ref. [17] to separate the perturbative and nonperturbative
parts of ~K. First, we define

b $ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

q ; !b ¼
C1

b$
: (42)

Here C1 is a fixed numerical coefficient and bmax is chosen
to keep b$ in the perturbative region. In the fits to unpo-
larized Drell-Yan, the values chosen were bmax ¼
0:5 GeV&1 in [33], and bmax ¼ 1:5 GeV&1 in [34]. Next
we write

~KðbT;!Þ ¼ ~Kðb$;!bÞ &
Z !

!b

d!0

!0 $Kðgð!0ÞÞ & gKðbTÞ:

(43)

The first two terms are perturbative and include all the
evolution of ~K. The last term is nonperturbative but scale
independent. It represents the only nonperturbative infor-
mation needed to evolve the Sivers function from the scale
Q0 where it was initially fit. But this function is process
independent [21], so we can take its value from already
existing fits to unpolarized Drell-Yan [33,34] scattering at a
variety of energies.
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FIG. 1 (color online). The (negative of the) up quark Sivers
function at x ¼ 0:1 evolved fromQ ¼

ffiffiffiffiffiffiffi
2:4

p
GeV (solid maroon)

to Q ¼ 5 GeV (dashed blue) and Q ¼ 91:19 GeV (dot-dashed
red). The upper plot is found by evolving the Gaussian fits of the
Bochum group [14] and the lower plot is found by evolving the
Gaussian fits of the Torino group [15]. In the case of the Bochum
fits, the down quark Sivers function is just the negative of the up
quark one. For the Torino fits, the down quark Sivers function is
obtained by multiplying the up quark Sivers function by &1:35.
These functions acquire an overall reversal of sign if used in
Drell-Yan.
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where the coefficients and operators are unaltered since
they are properties of the TMD number-density operator.
But the twist-2 operator on the right-hand side of (41) is the
ordinary number-density operator used to define an inte-
grated PDF, and its matrix element is independent of
transverse spin. Thus, the twist-2 operator, corresponding
to a 1=k2T falloff at large kT , provides no contribution to the
Sivers function in Eq. (41). The leading large-kT behavior
of the Sivers function is the 1=k3T term associated with the
twist-3 operators, the same operators that are used in the
Qiu-Sterman formalism [32].

IV. OBTAINING EVOLVED SIVERS FUNCTIONS

In this section, we discuss the steps for obtaining the
evolved Sivers function using already existing fits to the
nonperturbative parts.

A. Solution in terms of fixed-scale Sivers function

Previous fits [14,15] of the Sivers function used the
parton-model formula for the hadronic tensor. We now
show how these can be converted to use the correct QCD
formula.

The parton-model version of TMD factorization
amounts to applying the following approximations to the
true QCD formula (1):

(i) Replace the hard scattering by its lowest order.
(ii) Neglect the Y term.
(iii) Omit the evolution of the TMD PDFs.

If the renormalization scale ! is taken of order Q, higher-
order corrections to the hard scattering are purely pertur-
bative. One of the simplifications for TMD factorization is
that these are just an overall factor, dependent on Q only
through the running coupling "SðQÞ. This factor is the
same, independently of the hadron and the quark polariza-
tion, so it does not affect the ratio of the Sivers function to
the ordinary TMD PDF.

The Y term only affects large transverse momentum (of
order Q), whereas the data is dominantly at transverse
momenta in the nonperturbative region. So the neglect of
Y should be an adequate approximation with present data,
and is easily corrected in the future, with the aid of fits for
the Qiu-Sterman twist-3 function.

For a fixed value of Q, the TMD functions can be given
fixed values of ! and #F, ! ¼ Q and #F ¼ Q2, and the
QCD factorization formula is the same as the parton-model
formula, up to an overall K factor. This legitimizes the
fixed-scale fits. But as can be seen from Fig. 1, evolution
gives substantial changes in the TMD PDFs needed at
higher Q. These are easily obtained, in their transverse-
coordinate-space form, in terms of the parton-model fits at
a fixed scale. We derive the necessary result starting from
Eqs. (33), (34), and (30).

In these equations, the anomalous dimensions $F and
$K are perturbatively calculable, but the function ~K at

large values of bT is nonperturbative. We follow
Ref. [17] to separate the perturbative and nonperturbative
parts of ~K. First, we define

b $ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

q ; !b ¼
C1

b$
: (42)

Here C1 is a fixed numerical coefficient and bmax is chosen
to keep b$ in the perturbative region. In the fits to unpo-
larized Drell-Yan, the values chosen were bmax ¼
0:5 GeV&1 in [33], and bmax ¼ 1:5 GeV&1 in [34]. Next
we write

~KðbT;!Þ ¼ ~Kðb$;!bÞ &
Z !

!b

d!0

!0 $Kðgð!0ÞÞ & gKðbTÞ:

(43)

The first two terms are perturbative and include all the
evolution of ~K. The last term is nonperturbative but scale
independent. It represents the only nonperturbative infor-
mation needed to evolve the Sivers function from the scale
Q0 where it was initially fit. But this function is process
independent [21], so we can take its value from already
existing fits to unpolarized Drell-Yan [33,34] scattering at a
variety of energies.
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function at x ¼ 0:1 evolved fromQ ¼
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to Q ¼ 5 GeV (dashed blue) and Q ¼ 91:19 GeV (dot-dashed
red). The upper plot is found by evolving the Gaussian fits of the
Bochum group [14] and the lower plot is found by evolving the
Gaussian fits of the Torino group [15]. In the case of the Bochum
fits, the down quark Sivers function is just the negative of the up
quark one. For the Torino fits, the down quark Sivers function is
obtained by multiplying the up quark Sivers function by &1:35.
These functions acquire an overall reversal of sign if used in
Drell-Yan.
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where the coefficients and operators are unaltered since
they are properties of the TMD number-density operator.
But the twist-2 operator on the right-hand side of (41) is the
ordinary number-density operator used to define an inte-
grated PDF, and its matrix element is independent of
transverse spin. Thus, the twist-2 operator, corresponding
to a 1=k2T falloff at large kT , provides no contribution to the
Sivers function in Eq. (41). The leading large-kT behavior
of the Sivers function is the 1=k3T term associated with the
twist-3 operators, the same operators that are used in the
Qiu-Sterman formalism [32].

IV. OBTAINING EVOLVED SIVERS FUNCTIONS

In this section, we discuss the steps for obtaining the
evolved Sivers function using already existing fits to the
nonperturbative parts.

A. Solution in terms of fixed-scale Sivers function

Previous fits [14,15] of the Sivers function used the
parton-model formula for the hadronic tensor. We now
show how these can be converted to use the correct QCD
formula.

The parton-model version of TMD factorization
amounts to applying the following approximations to the
true QCD formula (1):

(i) Replace the hard scattering by its lowest order.
(ii) Neglect the Y term.
(iii) Omit the evolution of the TMD PDFs.

If the renormalization scale ! is taken of order Q, higher-
order corrections to the hard scattering are purely pertur-
bative. One of the simplifications for TMD factorization is
that these are just an overall factor, dependent on Q only
through the running coupling "SðQÞ. This factor is the
same, independently of the hadron and the quark polariza-
tion, so it does not affect the ratio of the Sivers function to
the ordinary TMD PDF.

The Y term only affects large transverse momentum (of
order Q), whereas the data is dominantly at transverse
momenta in the nonperturbative region. So the neglect of
Y should be an adequate approximation with present data,
and is easily corrected in the future, with the aid of fits for
the Qiu-Sterman twist-3 function.

For a fixed value of Q, the TMD functions can be given
fixed values of ! and #F, ! ¼ Q and #F ¼ Q2, and the
QCD factorization formula is the same as the parton-model
formula, up to an overall K factor. This legitimizes the
fixed-scale fits. But as can be seen from Fig. 1, evolution
gives substantial changes in the TMD PDFs needed at
higher Q. These are easily obtained, in their transverse-
coordinate-space form, in terms of the parton-model fits at
a fixed scale. We derive the necessary result starting from
Eqs. (33), (34), and (30).

In these equations, the anomalous dimensions $F and
$K are perturbatively calculable, but the function ~K at

large values of bT is nonperturbative. We follow
Ref. [17] to separate the perturbative and nonperturbative
parts of ~K. First, we define

b $ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

q ; !b ¼
C1

b$
: (42)

Here C1 is a fixed numerical coefficient and bmax is chosen
to keep b$ in the perturbative region. In the fits to unpo-
larized Drell-Yan, the values chosen were bmax ¼
0:5 GeV&1 in [33], and bmax ¼ 1:5 GeV&1 in [34]. Next
we write

~KðbT;!Þ ¼ ~Kðb$;!bÞ &
Z !

!b

d!0

!0 $Kðgð!0ÞÞ & gKðbTÞ:

(43)

The first two terms are perturbative and include all the
evolution of ~K. The last term is nonperturbative but scale
independent. It represents the only nonperturbative infor-
mation needed to evolve the Sivers function from the scale
Q0 where it was initially fit. But this function is process
independent [21], so we can take its value from already
existing fits to unpolarized Drell-Yan [33,34] scattering at a
variety of energies.
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red). The upper plot is found by evolving the Gaussian fits of the
Bochum group [14] and the lower plot is found by evolving the
Gaussian fits of the Torino group [15]. In the case of the Bochum
fits, the down quark Sivers function is just the negative of the up
quark one. For the Torino fits, the down quark Sivers function is
obtained by multiplying the up quark Sivers function by &1:35.
These functions acquire an overall reversal of sign if used in
Drell-Yan.
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Large values of bT is nonperturbative. Follow CSSS to
 separate the perturbative and nonperturbative parts of K...

we define



& similar for fragmentation function

This gives the evolved function:

~F0?f
1T ðx; bT ;!; "FÞ

¼ ~F0?f
1T ðx; bT ;!0; Q

2
0Þ exp

!
ln

ffiffiffiffiffiffi
"F

p

Q0

~Kðb$;!bÞ

þ
Z !

!0

d!0

!0

#
#Fðgð!0Þ; 1Þ & ln

ffiffiffiffiffiffi
"F

p

!0 #Kðgð!0ÞÞ
$

þ
Z !b

!0

d!0

!0 ln

ffiffiffiffiffiffi
"F

p

Q0
#Kðgð!0ÞÞ & gKðbTÞ ln

ffiffiffiffiffiffi
"F

p

Q0

%
:

(44)

We can set !0 ¼ Q0 and then use Q0 ¼
ffiffiffiffiffiffiffiffiffi
2:4

p
GeV, which

is the appropriate scale for the fits in [14,15], which used
data from the HERMES experiment. For the prediction of
data at a higher energy, one should set!2 ¼ "F ¼ Q2. The
anomalous dimensions #F and #K are used in a region
where perturbative calculations are appropriate.

The Sivers function in transverse-momentum space is
then obtained from Eq. (44) by Fourier transformation, as
in Eq. (23).

The one-loop values of the relevant perturbative
quantities are listed in the Appendix.

The size of the Sivers asymmetry is also often parame-
trized by the function

Ff=P"ðx;kT; S;!; "FÞ & Ff=P"ðx;kT;&S;!; "FÞ

¼ !NFf=P"ðx; kT ;!; "FÞ
$ijk

i
TS

j
T

kT
; (45)

where

!NFf=P"ðx; kTÞ ¼ & 2kT
Mp

F?f
1T ðx; kT ;!; "FÞ: (46)

As can be seen from Figs. 1 and 2, TMD functions
broaden substantially as the scale increases. Thus, larger
values of transverse momentum become important, and
correspondingly we need the ~F factor at small bT .

B. Including the perturbative calculation
of Sivers function at small-bT

At low scales, the Sivers function is dominantly at low
values of kT , and correspondingly the range of bT that
matters concerns the larger values where both the starting

value ~F0?f
1T ðx; bT ;!0; Q

2
0Þ and the evolution kernel

~KðbT ;!Þ are in the nonperturbative region. After evolution
to a sufficiently large scale, the broadening of the kT
distribution makes smaller values of bT important, where
there is perturbative information. For both this case and the
treatment of the large-kT tail of the Sivers function we can
use the expansion (41) to write it in terms of the twist-3
Qiu-Sterman function.

Following the method used for the unpolarized TMD
PDF—see Refs. [17,21] and Eq. (31) of Ref. [22]—we
write

~F0?f
1T ðx; bT ;!; "FÞ

¼
X

j

MpbT
2

Z 1

x

dx̂1dx̂2
x̂1x̂2

~CSivers
f=j ðx̂1; x̂2; b$;!2

b;!b; gð!bÞÞ

' TFj=Pðx̂1; x̂2;!bÞ exp
!
ln

ffiffiffiffiffiffi
"F

p

!b

~Kðb$;!bÞ

þ
Z !

!b

d!0

!0

#
#Fðgð!0Þ; 1Þ & ln

ffiffiffiffiffiffi
"F

p

!0 #Kðgð!0ÞÞ
$%

' exp
!
&gSiversf=P ðx; bTÞ & gKðbTÞ ln

ffiffiffiffiffiffi
"F

p

Q0

%
: (47)

The first part describes the matching to a collinear treat-

ment relevant to small bT . There, ~F0?f
1T ðx; bT ;!; "FÞ is

expressed as a coefficient function ~Cf=jðx̂1; x̂2; b$;!2
b;

!b; gð!bÞÞ convoluted with a (twist-3) Qiu-Sterman func-
tion TFj=Pðx̂1; x̂2;!bÞ, where for the simplicity, we ne-
glected the terms proportional to the derivative of the
twist-3 Qiu-Sterman function. On the last three lines,
the first exponential comes from the perturbative part of
the evolution of the Sivers function; the use of b$ and !b

ensures that ~C, ~K, #F, and #K are in the perturbative
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f̃
(
x, b2; ζ,Q

)
= f̃

(
x, b2;Q2

0,Q0
)

exp

{

ln
(√

ζ

Q0

)(

K̃(b,µb) +
µb∫

Q0

dµ

µ
γK

(
g(µ)

)
)

+
Q∫

Q0

dµ

µ

[
γF

(
g(µ);1

)
− ln

(√
ζ

µ

)
γK

(
g(µ)

)]
}

. (16)

Similar equations can be obtained for the TMD fragmentation functions D, cf. [10]. This yields
the expressions:

f̃ a
1
(
x, b2; ζF ,µ

)
D̃a

1
(
z, b2; ζD,µ

)
= e−S(b,Q)f̃ a

1
(
x, b2;µ2

b,µb

)
D̃a

1
(
z, b2;µ2

b,µb

)
, (17)

with

S(b,Q) = − ln
(

Q2

µ2
b

)
K̃(b,µb) −

Q2∫

µ2
b

dµ2

µ2

[
γF

(
g(µ);1

)
− 1

2
ln

(
Q2

µ2

)
γK

(
g(µ)

)]
, (18)

and

f̃ a
1
(
x, b2; ζF ,µ

)
D̃a

1
(
z, b2; ζD,µ

)

= e−S(b,Q,Q0)f̃ a
1
(
x, b2;Q2

0,Q0
)
D̃a

1
(
z, b2;Q2

0,Q0
)
, (19)

with

S(b,Q,Q0) = − ln
(

Q2

Q2
0

)(

K̃(b,µb) +
µb∫

Q0

dµ

µ
γK

(
g(µ)

)
)

−
Q2∫

Q2
0

dµ2

µ2

[
γF

(
g(µ);1

)
− 1

2
ln

(
Q2

µ2

)
γK

(
g(µ)

)]
, (20)

where we have used that γD = γF to the order in αs considered here.

2.2. Perturbative Sudakov factor

The various quantities in the Sudakov factor to order αs are given by [7,10]:

K̃(b,µ) = −αs(µ)
CF

π
ln

(
µ2b2/C2

1
)
+ O

(
α2

s

)
, (21)

γK

(
g(µ)

)
= 2αs(µ)

CF

π
+ O

(
α2

s

)
, (22)

γF

(
g(µ), ζ/µ2) = αs(µ)

CF

π

(
3
2

− ln
(
ζ/µ2)

)
+ O

(
α2

s

)
. (23)

Here it should be noted that for a running αs , the choice of scale µ, and hence of the integration
range over µ in the Sudakov factor, matters much for the size of the errors here generically
denoted by O(α2

s ). Depending on the choice of factorized expression, including the choice of
using µb or Q0, the error in the final result for the asymmetry may vary considerably in size.
We emphasize that the fixed scale Q0 choice is not necessarily the optimal choice in all cases.

This gives the evolved function:

~F0?f
1T ðx; bT ;!; "FÞ
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(44)

We can set !0 ¼ Q0 and then use Q0 ¼
ffiffiffiffiffiffiffiffiffi
2:4

p
GeV, which

is the appropriate scale for the fits in [14,15], which used
data from the HERMES experiment. For the prediction of
data at a higher energy, one should set!2 ¼ "F ¼ Q2. The
anomalous dimensions #F and #K are used in a region
where perturbative calculations are appropriate.

The Sivers function in transverse-momentum space is
then obtained from Eq. (44) by Fourier transformation, as
in Eq. (23).

The one-loop values of the relevant perturbative
quantities are listed in the Appendix.

The size of the Sivers asymmetry is also often parame-
trized by the function

Ff=P"ðx;kT; S;!; "FÞ & Ff=P"ðx;kT;&S;!; "FÞ

¼ !NFf=P"ðx; kT ;!; "FÞ
$ijk

i
TS

j
T

kT
; (45)

where

!NFf=P"ðx; kTÞ ¼ & 2kT
Mp

F?f
1T ðx; kT ;!; "FÞ: (46)

As can be seen from Figs. 1 and 2, TMD functions
broaden substantially as the scale increases. Thus, larger
values of transverse momentum become important, and
correspondingly we need the ~F factor at small bT .

B. Including the perturbative calculation
of Sivers function at small-bT

At low scales, the Sivers function is dominantly at low
values of kT , and correspondingly the range of bT that
matters concerns the larger values where both the starting

value ~F0?f
1T ðx; bT ;!0; Q

2
0Þ and the evolution kernel

~KðbT ;!Þ are in the nonperturbative region. After evolution
to a sufficiently large scale, the broadening of the kT
distribution makes smaller values of bT important, where
there is perturbative information. For both this case and the
treatment of the large-kT tail of the Sivers function we can
use the expansion (41) to write it in terms of the twist-3
Qiu-Sterman function.

Following the method used for the unpolarized TMD
PDF—see Refs. [17,21] and Eq. (31) of Ref. [22]—we
write
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1T ðx; bT ;!; "FÞ

¼
X

j

MpbT
2

Z 1

x

dx̂1dx̂2
x̂1x̂2

~CSivers
f=j ðx̂1; x̂2; b$;!2

b;!b; gð!bÞÞ

' TFj=Pðx̂1; x̂2;!bÞ exp
!
ln

ffiffiffiffiffiffi
"F

p

!b

~Kðb$;!bÞ

þ
Z !

!b

d!0

!0

#
#Fðgð!0Þ; 1Þ & ln

ffiffiffiffiffiffi
"F

p

!0 #Kðgð!0ÞÞ
$%

' exp
!
&gSiversf=P ðx; bTÞ & gKðbTÞ ln

ffiffiffiffiffiffi
"F

p

Q0

%
: (47)

The first part describes the matching to a collinear treat-

ment relevant to small bT . There, ~F0?f
1T ðx; bT ;!; "FÞ is

expressed as a coefficient function ~Cf=jðx̂1; x̂2; b$;!2
b;

!b; gð!bÞÞ convoluted with a (twist-3) Qiu-Sterman func-
tion TFj=Pðx̂1; x̂2;!bÞ, where for the simplicity, we ne-
glected the terms proportional to the derivative of the
twist-3 Qiu-Sterman function. On the last three lines,
the first exponential comes from the perturbative part of
the evolution of the Sivers function; the use of b$ and !b

ensures that ~C, ~K, #F, and #K are in the perturbative
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FIG. 2 (color online). The up quark Sivers function at Q ¼
5 GeV and Q ¼ 91:19 GeV (solid curves) and the correspond-
ing Gaussian fit for the low-kT region (dashed curves). Note that
the function plotted is the Sivers function multiplied by &2%k3T .
The upper panel is obtained by evolving the Gaussian fits of the
Bochum group [14] and the lower panel is obtained by evolving
the Gaussian fits of the Torino group [15]. Below each plot, the
ratio between a Gaussian fit and the evolved function including
the tail is also shown.
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along with the following definitions,
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) ⌘
Z

d2b
T

(2⇡)2
e�ibT ·P h? W̃µ⌫(b

T

) , (10)
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(z,K
T

) , (12)

to re-write the leading term in the hadronic tensor, Eq. (6), in Fourier space

2MW̃µ⌫ =
X

a

e2
a

Tr
⇣

�̃(x, zb
T

)�µ�̃(z, b
T

)�⌫
⌘

. (13)

The advantage of the b
T

space representation is clear: the hadronic tensor is no longer a convolution of p
T

and K
T

dependent functions but a simple product of b
T

-dependent functions. This motivates us to re-write the entire cross
section in terms of the Fourier transform

d�

dxB dy d dz
h
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Next, we decompose the correlators �̃ and �̃ into TMD PDFs and FFs in Fourier space. Using the trace notation
(see also Eqs. (A8) and (A9) in the appendix)

�̃[�] ⌘ 1

2
Tr(�̃�) , (15)

and restricting ourselves to leading twist projections, we obtain the following structures for �̃
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where ↵ = 1, 2 and ⇢ = 1, 2. Similarly, we obtain the following structures for �̃
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For future applications, we have written down the latter decomposition for the more general case of a spin- 1
2

hadron;
the expression for a spinless hadron is obtained by setting S

h

= 0. The above decompositions can be deduced
from the existing expressions for � and � in momentum space [5, 29], or starting from the symmetry properties of
the correlators �̃ and �̃ and a parameterization in terms of Lorentz-invariant amplitudes, see also Section IV and
Appendix C. The functions f̃

1

(x, b2
T

), g̃
1L

(x, b2
T

), . . . are the Fourier transforms of the usual TMD PDFs f
1

(x,p2

T

),
g
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), . . .. For a generic TMD PDF called f and a generic TMD FF called D, this Fourier transform is given by
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Note Correlator in b-space

unpolarized and Sivers evolve in same way  !!!
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considered here, it appears to be an appropriate choice, that moreover will allow us to compare the approaches
of APR and B09 more directly.
The TMDs also depend on ⇣F (D)

, which are defined as [11]:

⇣F = M2x2e2(yP�ys), ⇣D = M2

he
2(ys�yh)/z2, (11)

where yP (h) denotes the rapidity of the incoming proton and outgoing hadron and the dependence on the arbitrary
rapidity cut-o↵ ys cancels in the cross section, where only the product ⇣F ⇣D ⇡ Q4 enters.

The evolution of the TMD f̃ in both ⇣ and µ is known and given by the following Collins-Soper and Renor-
malization Group equations, respectively [9]:
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2

�K(g(µ)) ln(⇣/µ2). With these evolution
equations one can evolve the TMDs to the scale µb or Q

0

, i.e.

f̃(x, b; ⇣, Q) = f̃(x, b;µ2

b , µb) exp

⇢
ln

✓p
⇣

µb

◆
K̃(b, µb) +

Z Q

µb

dµ

µ

⇥
�F (g(µ); 1)� ln

✓p
⇣

µ

◆
�K(g(µ))

⇤�
, (14)

or

f̃(x, b2; ⇣, Q) = f̃(x, b2;Q2

0

, Q
0

) exp

⇢
ln

✓p
⇣

Q
0

◆
K̃(b,Q

0

) +

Z Q

Q0

dµ

µ

⇥
�F (g(µ); 1)� ln

✓p
⇣

µ

◆
�K(g(µ))

⇤�
. (15)

The latter expression is however not optimal1, since it does not take care of possible large logarithms in µb/Q0

.
It is more appropriate to use instead [12]:
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Similar equations can be obtained for the TMD fragmentation functions D, cf. [10]. This yields the expressions:
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where we have used that �D = �F to the order in ↵s considered here.

1

The author is grateful to John Collins and Ted Rogers for pointing this out.
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Further Cancellation of  Sudakov and hard CS

CS-81 formalism
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f̃(x, b) is the Fourier transform of f(x,kT ), hence one needs to deal with TMDs

No integrals over momentum fractions, those appear in the small-b limit only

Ũ is called the soft factor, H is the hard scattering part

e�S(b,Q) = Sudakov form factor
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FIG. 1: The up quark TMD PDF for Q =
√
2.4, 5.0 and 91.19 GeV and x = 0.09. The upper plot shows the result of using the

BLNY fit in Eq. (38) with bmax = 0.5 GeV−1 while the lower panel shows the BLNY fit obtained with bmax = 1.5 GeV−1. The
solid maroon, dashed blue, and red dot-dashed curves are for Q =

√

2.4, 5.0 and 91.19 GeV respectively (see online version for
color).
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Q = 91.19 GeV curves in Fig. 1. The dashed blue curve is the result of setting the A-factor in Eq. (26) equal to f(x, µb), and
the dash-dotted maroon curve is obtained by setting the B-factor in Eq. (26) equal to 1. (See online version for color.)
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FIG. 2: The left panel shows the unpolarized TMD PDF, �fu/p, evolved from the initial scale, Q2
0 = 1 GeV2, to Q2 = 2.4

GeV2, using TMD-evolution (red, solid line), DGLAP-evolution (blue, dashed line) and the analytical approximated
TMD-evolution (green dot-dashed line). The right panel shows the same functions at the scale Q2 = 20 GeV2. Notice
that, while there is hardly any di⇥erence between the DGLAP-evolved lines at Q2 = 2.4 and Q2 = 20 GeV2, the TMD
evolution induces a fast decrease in size of the TMD PDF functions at large Q2 and a simultaneous widening of its
Gaussian width. Here the analytical approximated evolution gives results in good agreement with the exact calculation
even at large Q2.
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FIG. 3: The left panel shows the ratio Sivers/PDF, �N �fu/p�/2�fu/p, evolved from the initial scale, Q2
0 = 1 GeV2,

to Q2 = 2.4 GeV2, using TMD-evolution (red, solid line), DGLAP-evolution (blue, dashed line) and the analytical
approximated TMD-evolution (green dot-dashed line). The right panel shows the same functions at the scale Q2 = 20
GeV2. Notice that, while there is almost no di⇥erence between the DGLAP-evolved lines at Q2 = 2.4 and Q2 = 20 GeV2,
the TMD evolution induces a fast decrease in size of the ratio Sivers/PDF functions with growing Q2 and a simultaneous
widening of its Gaussian width. It is interesting to point out that the analytical approximation, for the Sivers function,
visibly breaks down at large values of Q2.

To illustrate the features of this new TMD evolution, we compare it with the results obtained evolving only
the collinear part, fq/p(x, Q), of the unpolarized TMD PDF according to the usual DGLAP equations and
assuming the k� dependent term of this function to be una�ected by evolution. In the left panel of Fig. 2 we
show the k� behavior of the unpolarized TMD PDF �fu/p(x, k�, Q2), at the fixed value x = 0.1, evaluated at
the scale Q2 = 2.4 GeV2 (the average Q2 value for the HERMES experiment). In the right panel we show
the same function at a higher scale, Q2 = 20 GeV2 (which is the highest bin average Q2 detected in the
COMPASS experiment). In both cases the chosen initial scale is Q2

0 = 1 GeV2. The red, solid line corresponds
to the k� distribution of the TMD PDF found by using the TMD-evolution of Eq. (23) while the blue, dashed
line represents the result obtained by using DGLAP evolution equations. At the initial scale, Q2

0 = 1 GeV2,
solid and dashed curves coincide, by definition. However, while the DGLAP evolution is so slow that there
is hardly any di�erence between the DGLAP-evolved lines at Q2 = 2.4 GeV2 and Q2 = 20 GeV2, the TMD
evolution induces a fast decrease of the maximum values of the TMD PDF function with growing Q2, and a

�N �fq/p�(x, k�;Q)/2 �fq/p�(x, k�;Q)

is the TMD evolution visible in HERMES-

COMPASS data?

M.A., M. Boglione, S. Melis,  arXiv:1204.1239

Anselmino, Boglione, Melis arXiv 2012
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FIG. 4: The results obtained from our fit of the SIDIS Asin (�h��S)
UT Sivers asymmetries applying TMD evolution (red,

solid lines) are compared with the analogous results found by using DGLAP evolution equations (blue, dashed lines).
The green, dash-dotted lines correspond to the results obtained by using the approximated analytical TMD evolution
(see text for further details). The experimental data are from HERMES [11] (left panel) and COMPASS [12] (right
panel) Collaborations.

DGLAP fits is not equally distributed among all ⇥2s per data point; rather, it is heavily concentrated in three
particular cases, namely in the asymmetry for �+ production at HERMES and for h+ and h� production at
COMPASS o⇥ a proton target, especially when this asymmetry is observed as a function of the x-variable.

It is important to stress that, as x is directly proportional to Q2 through the kinematical relation Q2 =
x y s, the x behavior of the asymmetries is intimately connected to their Q2 evolution. While the HERMES
experimental bins cover a very modest range of Q2 values, from 1.3 GeV2 to 6.2 GeV2, COMPASS data raise
to a maximum Q2 of 20.5 GeV2, enabling to test more severely the TMD Q2 evolution in SIDIS.

These aspects are illustrated in Fig. 4, where the SIDIS Sivers asymmetries Asin(�h��S)
UT obtained in the three

fits are shown in the same plot. It is evident that the DGLAP evolution seems to be unable to describe the
correct x trend, i.e. the right Q2 behavior, while the TMD evolution (red solid line) follows much better the
large Q2 data points, corresponding to the last x-bins measured by COMPASS. The approximate analytical
TMD evolution (green dash-dotted line) works very well for low to moderate values of Q2 while it starts to
deviate from the exact behavior at large Q2 values.

In Figs. 5 we show, as an illustration of their qualities, our best fits (solid red lines) of the HERMES
experimental data [11] on the Sivers asymmetries for pion production. Those on the left panels are obtained
adopting the new TMD evolution, while those on the right use the simplified DGLAP evolution. Similar results
are shown, for the recent COMPASS data o⇥ a proton target [12] for charged hadron production, in Fig. 6.

The shaded area represents the statistical uncertainty of the fit parameters corresponding to a �⇥2 = 20 (i.e.
to 95.45% confidence level for 11 degrees of freedom, see Appendix A of Ref. [5] for further details). Notice
that, in general, the error bands corresponding to the TMD-evolution fit are thinner than those corresponding
to the DGLAP fit: this is caused by the fact that the TMD evolution implies a ratio Sivers/PDF which becomes
smaller with growing Q2, as shown in Fig. 3, constraining the free parameters much more tightly than in the
DGLAP-evolution fit, where the Sivers/PDF ratio remains roughly constant as Q2 raises from low to large
values.

In Fig. 7 we compare, for illustration purposes, the Sivers function – actually, its first moment, defined in
Ref. [5] – at the initial scale Q0 for u and d valence quarks, as obtained in our best fits with the TMD (left
panel) and the DGLAP (right panel) evolution, Table II. Notice that for this analysis we have chosen to separate
valence from sea quark contributions, while in Ref. [5] the u and d flavors included all contributions.

This result deserves some comments. The comparison shows that the extracted u and d valence contributions,
at the initial scale Q0 = 1 GeV, are definitely larger for the TMD evolution fit. This reflects the TMD evolution
property, according to which the Sivers functions are strongly suppressed with increasing Q2, which is not the

large xB ⇒ large Q2

TMD evolution fits better the large Q2 data, first 
indication in favour of TMD evolution; which 

implications for higher Q2 experiments?   

Anselmino, Boglione, Melis arXiv 2012

where the coefficients and operators are unaltered since
they are properties of the TMD number-density operator.
But the twist-2 operator on the right-hand side of (41) is the
ordinary number-density operator used to define an inte-
grated PDF, and its matrix element is independent of
transverse spin. Thus, the twist-2 operator, corresponding
to a 1=k2T falloff at large kT , provides no contribution to the
Sivers function in Eq. (41). The leading large-kT behavior
of the Sivers function is the 1=k3T term associated with the
twist-3 operators, the same operators that are used in the
Qiu-Sterman formalism [32].

IV. OBTAINING EVOLVED SIVERS FUNCTIONS

In this section, we discuss the steps for obtaining the
evolved Sivers function using already existing fits to the
nonperturbative parts.

A. Solution in terms of fixed-scale Sivers function

Previous fits [14,15] of the Sivers function used the
parton-model formula for the hadronic tensor. We now
show how these can be converted to use the correct QCD
formula.

The parton-model version of TMD factorization
amounts to applying the following approximations to the
true QCD formula (1):

(i) Replace the hard scattering by its lowest order.
(ii) Neglect the Y term.
(iii) Omit the evolution of the TMD PDFs.

If the renormalization scale ! is taken of order Q, higher-
order corrections to the hard scattering are purely pertur-
bative. One of the simplifications for TMD factorization is
that these are just an overall factor, dependent on Q only
through the running coupling "SðQÞ. This factor is the
same, independently of the hadron and the quark polariza-
tion, so it does not affect the ratio of the Sivers function to
the ordinary TMD PDF.

The Y term only affects large transverse momentum (of
order Q), whereas the data is dominantly at transverse
momenta in the nonperturbative region. So the neglect of
Y should be an adequate approximation with present data,
and is easily corrected in the future, with the aid of fits for
the Qiu-Sterman twist-3 function.

For a fixed value of Q, the TMD functions can be given
fixed values of ! and #F, ! ¼ Q and #F ¼ Q2, and the
QCD factorization formula is the same as the parton-model
formula, up to an overall K factor. This legitimizes the
fixed-scale fits. But as can be seen from Fig. 1, evolution
gives substantial changes in the TMD PDFs needed at
higher Q. These are easily obtained, in their transverse-
coordinate-space form, in terms of the parton-model fits at
a fixed scale. We derive the necessary result starting from
Eqs. (33), (34), and (30).

In these equations, the anomalous dimensions $F and
$K are perturbatively calculable, but the function ~K at

large values of bT is nonperturbative. We follow
Ref. [17] to separate the perturbative and nonperturbative
parts of ~K. First, we define

b $ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

q ; !b ¼
C1

b$
: (42)

Here C1 is a fixed numerical coefficient and bmax is chosen
to keep b$ in the perturbative region. In the fits to unpo-
larized Drell-Yan, the values chosen were bmax ¼
0:5 GeV&1 in [33], and bmax ¼ 1:5 GeV&1 in [34]. Next
we write

~KðbT;!Þ ¼ ~Kðb$;!bÞ &
Z !

!b

d!0

!0 $Kðgð!0ÞÞ & gKðbTÞ:

(43)

The first two terms are perturbative and include all the
evolution of ~K. The last term is nonperturbative but scale
independent. It represents the only nonperturbative infor-
mation needed to evolve the Sivers function from the scale
Q0 where it was initially fit. But this function is process
independent [21], so we can take its value from already
existing fits to unpolarized Drell-Yan [33,34] scattering at a
variety of energies.

60 2 4 8 10
kT (GeV)

1e-06

0.0001

0.01

1

-F
1T

 u
p 

 (
G

eV
-2

)

Q = 2.4 GeV
Q = 5 GeV
Q = 91.19 GeV

0 2 4 6 8 10
1e-06

0.0001

0.01

1

-F
1T

 u
p   (

G
eV

-2
)

Up Quark Sivers Function
x = 0.1 

Torino Fits

Bochum Fits

FIG. 1 (color online). The (negative of the) up quark Sivers
function at x ¼ 0:1 evolved fromQ ¼

ffiffiffiffiffiffiffi
2:4

p
GeV (solid maroon)

to Q ¼ 5 GeV (dashed blue) and Q ¼ 91:19 GeV (dot-dashed
red). The upper plot is found by evolving the Gaussian fits of the
Bochum group [14] and the lower plot is found by evolving the
Gaussian fits of the Torino group [15]. In the case of the Bochum
fits, the down quark Sivers function is just the negative of the up
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for integer powers m. Analogous expressions hold for the TMD FFs. Comparing the right

hand side of Eq. (2.19) with the criterion for functions of type B, we find that convergence

is maintained if n < m� 1/2. The logarithmic modifications do not play a significant role

since logarithms grow more slowly than any polynomial.

The analysis of Ref. [37] reveals that (up to logarithmic modifications) f1, g1L, h1, f⇥,
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⇥, eT , e⇥T , D1, D⇥, G⇥, H,E ⇤ 1/p2
T . For these func-

tions, the corresponding zero-derivative and single-derivative Fourier-transforms f̃ (0)(x, b2T ),

f̃ (1)(x, b2T ), D̃
(0)(z, b2T ) and D̃(1)(z, b2T ) exist. A second group of distributions exhibits the

high-momentum behavior f⇥
1T , g1T , h

⇥
1L, h

⇥
1 , f
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T , g⇥T , h

⇥
1T , H

⇥
1 ⇤ 1/p4

T . For these latter func-

tions, the existence of n-derivative Fourier-transforms f̃ (n)(x, b2T ) and D̃(n)(z, b2T ) is ensured

up to n = 3. Again, we point out that these results are only valid for |bT | > 0, while the

limiting case |bT | = 0 leads to divergent integrals [37].

G.3 Systematic errors from the region at large P h⇥

TMD frameworks have been designed to give a good description of the cross section at

low transverse momentum, i.e., for |P h⇥|/z ⇧ Q. However, in weighted asymmetries we

integrate over the whole range of |P h⇥|. The contributions from high |P h⇥| thus lead to

theoretical errors in the results if one does not have a description of the cross section that

is valid there, even when one restricts to the region z|bT | ⌃ 1/Q. The Y term can in

principle be included to eliminate those errors, but its Fourier transform is expected to be

power suppressed in the region z|bT | ⌃ 1/Q, because it was shown to be power suppressed

at small |P h⇥| [13, 36]. Dropping the Y term means that we approximate the full result by

the large |P h⇥|-tail of the TMD expression. This in general may be a bad approximation,

but the question is whether it will a⇥ect the result much for z|bT | ⌃ 1/Q. In addition,

extending the integrals to arbitrarily large transverse momenta ignores the fact that the

physical cross section should vanish above a certain maximum transverse momentum value

|P h⇥|max (see also Refs. [12, 36]). In this appendix we are going to estimate the e⇥ect of

these various simplifications.

The Y term will be significant only in a finite region of |P h⇥|: between a scale �TMD

and |P h⇥|max. Note that both these scales will depend on Q. We can bound the error from

neglecting the Y term in terms of its maximal value. As long as |bT | ⌃ ��1
TMD > |P h⇥|�1
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we can approximate the Bessel-function as in Eq. (G.2) to obtain,
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Here |Y sin/cos(N�h+...)
XY,Z |max is the maximum absolute value of Y in the range between �TMD

and |P h⇥|max. It can be estimated from the (perturbatively calculable) Y -term. Thus,
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Here |Y sin/cos(N�h+...)
XY,Z |max is the maximum absolute value of Y in the range between �TMD

and |P h⇥|max. It can be estimated from the (perturbatively calculable) Y -term. Thus,
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Figure 2. Schematic illustration of important scales for Bessel-weighted asymmetries before and
after the Fourier-transform.

Eq. (G.12) shows that the theoretical error from neglecting the Y term is (at least) sup-

pressed as |bT |�1/2. An explicit treatment of the Y -term in Eq. (3.1) could eliminate this

theoretical error to a given order in �s in the Fourier transformed TMD PDFs and TMD

FFs extracted using Bessel weighting. We will not do this here.

The second error coming from extending the TMD expression beyond |P h⇤|max is more

suppressed and therefore less of a concern. Following a similar procedure as before we can

estimate it to be suppressed as |bT |�3/2. Let [F sin/cos(N�h+...)
XY,Z ]TMD denote the structure

functions as determined purely within the TMD framework, i.e., from convolutions of TMD

PDFs, TMD FFs and a potential soft factor. The contribution to its Fourier transform

coming from the large |P h⇤| region can be bounded using that the TMD expression (times

|P h⇤|1/2) is a monotonically decreasing function of |P h⇤|. Thus, applying Eq. (G.10),
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where the upper bound applies as long as |bT | � |P h⇤|�1
max. This second error is therefore

far less important than neglecting the Y term. The reason this same behavior could not

be obtained for the Y term is that it is not expected to be a monotonically falling function

of |P h⇤|.
Finally, let us consider what error would be introduced if all |P h⇤| integrations of the

experimental data were to be cut o⇥ at �TMD. In this case, we would be able to use Eq.

(G.13) as an error estimate, except that |P h⇤|�1
max would need to be replaced by �TMD.

Again the error estimate would be valid provided |bT | � ��1
TMD and provided the structure

function times |P h⇤|1/2 is monotonically falling, i.e., in its tail region, beyond �TMD. This
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• So far we get ratios of moments of TMDs and FFs 
that are free/insensitive to soft factor

• It was not necessary to specify explicit def. of 
TMDs and FFs

•We also analyze ratio of moments of TMDs 
directly on level of matrix elements of TMDs & FFs

• Again we find cancellation of soft factors in ratio 

• Impact for Lattice calculation of moments of 
TMDS,   Musch, Ph. Hagler, M. Engelhardt, J.W. Negele, A. Schafer  arXiv 2011

Cancellation of Soft Factor on level of the 
Matrix elements (summarize) 


