Laboratori Nazionali di Frascati November 11-13, 2013

aboratori Nazionali di Frascati

Spectroscopy with Kaons at CLAS and CLASI2

Raffaella De Vita INFN –Genova

for the CLAS Collaboration

Why Hadron Spectroscopy

- Most of the visible mass of the universe is due to hadrons, in particular to the protons and neutrons that form the atomic nucleus
- Hadrons have an internal structure being made of quarks: known quark configurations are baryons, made of tree quarks and mesons, made of quark-antiquark pairs
- Quark masses account only for a small fraction of the nucleon mass: ~ 1%
 - $m_q \sim 10 \text{ MeV}$
 - m_N ~ 1000 MeV

while the remaining fraction is to to the force that binds the quarks: **QCD**

 QCD with its rules and constraints determines the mass and spectrum of hadrons and makes the world as we know it

Hadrons and QCD

- Studying hadron properties and rules of QCD is crucial to reach a deep understanding of the structure of matter
- Hadrons are color neutral systems made of quarks and gluons but...
 - What is the internal structure and what are the rule that govern hadron production mechanism?
 - What is the role of gluons?
 - What is the origin of quark confinement?
 - Are 3-quarks and quark-antiquark the only possible configurations
- Spectroscopy is a key tool to investigate these issues

Quarks and Gluons

0.1 – 1 fm

Effective Degrees of Freedom

Spectroscopy with Kaons at CLAS and CLAS12

> I fm

Mesons & Baryons

LNF, November 12th 2013

Jefferson Laporatory

High electron polarization Beam Power: IMW Beam Current: 200 µA Max Energy: 6 GeV RF: 1499 MHz Continuous Electron Beam Accelerator Facility (CEBAF):

- a superconducting electron machine based on two Linacs in racetrack configuration
- Simultaneous distribution to 3 experimental Halls

CEBAF Large Acceptance Spectrometer

Kaons in CLAS

Kaon ID based on time of flight technique:

- 200 ps average TOF resolution
- pion-kaon separation up to 2.5 GeV
- good match to CLAS energy range and large angular coverage

Hadrons and Strangeness

Rich physics program focused on understanding the hadron spectrum and hadron production mechanisms via strangeness tagging in photo and electro-production:

Hyperon spectroscopy:

- Lambda, Sigma and Cascade ground and excited states
- Measurement of total cross sections, differential cross sections and polarization observables to investigate internal structure and strangeness formation

Spectroscopy of mesons with open and hidden strangeness:

- ϕ and f₀(980) production
- K* spectrum and production

The largest data set in hyperon photoproduction and more than 25 publications in journals

Study of the $\Lambda(1405)$

First excited state of the Λ baryon:

- State known since 1950's
- PDG:
 - M=(1405±1) MeV
 - Γ=(50±2) MeV
 - J^P=1/2⁻ based on CQM assignment
- Mass inconsistent with CQM expectations
- Complex line shape
- Mass is below NK threshold but state has a strong coupling to NK
- Different interpretations:
 - Standard 3 quark state
 - Molecule or hybrid
 - Dynamically generated state with two overlapping poles (χUT)

PDG: "The nature of the $\Lambda(1405)$ has been a puzzle for decades: three-quark state or hybrid; two poles or one. We cannot here survey the rather extensive literature..."

Study of the $\Lambda(1405)$

First excited state of the Λ baryon:

- State known since 1950's
- PDG:
 - M=(1405±1) MeV
 - Γ=(50±2) MeV
 - J^P=1/2⁻ based on CQM assignment
- Mass inconsistent with CQM expectations
- Complex line shape
- Mass is below NK threshold but state has a strong coupling to NK
- Different interpretations:
 - Standard 3 quark state
 - Molecule or hybrid
 - Dynamically generated state with two overlapping poles (XUT)

PDG: "The nature of the $\Lambda(1405)$ has been a puzzle for decades: three-quark state or hybrid; two poles or one. We cannot here survey the rather extensive literature..."

A(1405) cross section

γp → K⁺Λ(1405)

- Experiment: first-ever measurements
- High W: See t-channel like forward peaking & u-channel backward rise at high W
- Low W: See strong isospin dependence
 - Charge channels differ - WHY?!?
- Channels merge together at high W

Possible interference of I=0 and I=1 amplitudes in the mass range of the $\Lambda(1405)$

A(1405) Spin and Parity

Parity and spin of the state were never measured before and PDG J^P assignment is based on the CQM expectation

 J and P can be inferred finding a reaction where A(1405) is created polarized and studying the decay:

 $\Lambda(1405) \rightarrow \Sigma \pi$

- Decay angular distribution relates to J:
 - J=1/2: flat distribution
 - J=3/2: "smile" or "frown" distribution
- Parity is given by polarization transfer to daughter

Spectroscopy with Kaons at CLAS and CLAS12

Jefferson Lab Upgrade

CLASI2

Forward Detector:

- TORUS magnet
- Forward SVT tracker
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Preshower calorimeter
- E.M. calorimeter (EC)

Central Detector:

- SOLENOID magnet
- Barrel Silicon Tracker
- Central Time-of-Flight

Proposed upgrades:

- Micromegas (CD)
- Neutron detector (CD)
- RICH detector (FD)
- Forward Tagger (FD)

The CLASI2 Forward Tagger

Forward Tagger				
E'	0.5-4.5 GeV			
ν	7-10.5 GeV			
θ	2.5-4.5 deg			
Q ²	0.007 – 0.3 GeV ²			
W	3.6-4.5 GeV			
Photon Flux	$5 \times 10^7 \gamma/s @ L_e = 10^{35}$			

Quasi-real photoproduction on proton target:

- Detection of multiparticle final state from meson decay in the large acceptance spectrometer CLAS12
- Detection of the scattered electron for the tagging of the quasi-real photon in the novel Forward Tagger

R. De Vita

Spectroscopy with Kaons at CLAS and CLAS12

LNF, November 12th 2013

The CLASI2 Forward Tagger

Physics goals

Meson spectroscopy:

- Detailed mapping of the meson spectrum up to 2.5 GeV
- Investigation of strangeonium and strangeness rich states
- Search for exotics

Baryon spectroscopy:

- Study of the $\Omega^{\scriptscriptstyle -}$ and Ξ^*
- Study of Ξ^* production and polarization mechanisms

Quasi-real photoproduction on proton target:

- Detection of multiparticle final state from meson decay in the large acceptance spectrometer CLAS12
- Detection of the scattered electron for the tagging of the quasi-real photon in the novel Forward Tagger

Spectroscopy with Kaons at CLAS and CLAS12

LNF, November 12th 2013

R. De Vita

Very Strange Baryons

Study of the Ω^{-} and Ξ^{*} are among the main goals of the CLAS12 spectroscopy program:

- Ω^- discovered in 1964: after 50 years, indication on J^P from Babar and others but full determination not yet achieved
- $\bullet\,\Xi^*$ spectrum still poorly known: many states missing and spin/parity undetermined

Photoproduction mechanism implies creation of three s quarks

- Models indicate $\sigma(\Omega^{\scriptscriptstyle -}$) ~0.3-2 nb at E~7GeV
- Expected production rates in CLASI2:
 - Ω⁻ : 90 /h
 - Ξ-(1690)/Ξ-(1820): 0.2/0.9 k/h
- Ω⁻ : measurement of the cross section and investigation of production mechanisms
- Ξ^* : spin/parity determination, cross section and production mechanism, measurement of doublets mass splitting

V. E. Barnes et al., Phys. Rev. Let. 12 (1964) 204

Hybrids and Exotics

- Hybrids (qqg) are the ideal system to study qq interaction and the role of gluons
- Existence is not prohibited by QCD but not yet firmly established.
- A possibility to identify unambiguously a meson as an hybrid state is to look for exotic quantum numbers

- Excitation of the glue leads to a new spectrum of hadrons that can have exotic quantum numbers
 J^{PC} = 0⁺⁻, 1⁻⁺, 2⁺⁻...
- For each exotic quantum number combination, a nonet of state should exist, including states with open or hidden strangeness
- Lattice QCD calculations predict masses around 2 GeV, a range that can be explored at JLab

Lattice QCD

Predictions of the meson spectrum from Lattice QCD are now available

Spectroscopy with Kaons at CLAS and CLAS12

Lattice QCD

Predictions of the meson spectrum from Lattice QCD are now available

Spectroscopy with Kaons at CLAS and CLAS12

Strangeonia

- Mesons containing ss pairs
- Regular states in the quark model or hybrids (ssg) with/without exotic quantum numbers
- Experimental data still quite sparse: only 7 of the 22 states expected below 2.2 GeV are widely accepted
- Model predictions for width and decays available
- Experimental search would require measurement of many different final states

State	Γ _{tot}		Γ _i			
	Γ _{th}	Γ _{exp}	КК	KK*	ηφ	К*К*, КК _{I,(2),} η'φ,
ф(1019)	2.5 MeV	4.26 MeV				
ф(1680)	378 MeV	150 MeV	Γ _{th} =89 MeV	Γ _{th} =245 MeV	Γ _{th} =44 MeV	
ф(2050)	378 MeV			Γ _{th} =20 MeV	Γ _{th} =21 MeV	Γ _{th} =337 MeV

³P₀ model, Barnes, Black and Page (2002)

Strangeonia in CLASI2

- ***** The $\phi \pi$ final state is one of the best candidate for the search of hybrids:
 - ss meson decay is prohibited by isotopic spin conservation
 - nn meson decay is suppressed because of the OZI rule
 - Strong coupling is expected for hybrids and tetraquarks
- Candidate C(1480) observed by the LEPTON-F experiment:
 - M=(1480±40) MeV Γ =(130±60) MeV
- ★ Can be studied in CLASI2 via the final state γp→pK⁺(K⁻)γγ
 - acceptance ~10%
 - exp. cross section ~10nb
 - π/K separation up to 4-5
 GeV needed: FTOF+RICH

- Spectroscopy is a key field for the understanding of fundamental questions in hadronic physics as what is the origin of the nucleon mass and what is the role of gluons
- * The study of strangeness production and strangeness-rich states represent an important sector and provide the mean to investigate crucial issues in spectroscopy and hadron production mechanisms
- CLAS has carried out a broad program focused on hyperon spectroscopy and study of meson production with open or hidden strangeness
- * This program will be extended with CLAS12 at 12 GeV using quasi-real photo-production, continuing the study of hyperons and opening new research lines focused on the search for exotics and strangeonia

Mesons in the Quark Model

In the quark model meson are quark-antiquark bound states.

The two constituents can pair giving total spin S=0 (singlet) or S=1 (triplet) and have a non zero orbital angular momentum L The resulting bound states are classified according to their J^{PC} where $P=(-1)^{L+1}$ $C=(-1)^{L+S}$

Not all the J^{PC} combinations are allowed: 0⁺⁺ 0⁺⁻ 0⁻⁺ 0⁻⁻ 1⁺⁺ 1⁺⁻ 1⁻⁺ 1⁻⁻ 2⁺⁺ 2⁺⁻ 2⁻⁺ 2⁻⁺ 3⁺⁺ 3⁺⁻ 3⁻⁺ 3⁻⁺ 3⁻⁺ ...

For each combination of J^{PC} , SU(3) flavor symmetry predicts the existence of a nonet (8 \oplus I) of degenerate states

$$J^{PC} = 0^{-+} \implies (\pi, K, \eta, \eta')$$

$$I^{--} \implies (\rho, K^*, \omega, \Phi)$$

$$I^{+-} \implies (b_1, K_1, h_1, h_1')$$
...
$$Q = 1$$

Spectroscopy with Kaons at CLAS and CLAS12

S=0

S=-1

Q=+1

 $\overline{\mathbf{K}^0}$

Hybrids and Exotics

Another category of unconventional mesons are **hybrids**, i.e. states with $q\bar{q}g$ configuration

- In the flux tube model, hybrids arise from
 excitations of the flux tube that connects the quark and antiquark
- The excited flux tube carries non-zero angular momentum that contribute to the quantum numbers of the new system
- Excitation of the flux tube leads to a new spectrum of hadrons that can have both regular and exotic quantum numbers

 $J^{PC} = 0^{-+}, 0^{+-}, 1^{++}, 1^{--}, 1^{-+}, 1^{+-}, 2^{-+}, 2^{+-}$

- For each J^{PC} combination a **nonet** of states is expected
- Masses of the lower states are predicted to be around 2 GeV

Normal meson:

flux tube in ground state $m=0, PC=(-1)^{S+1}$

Experiment Layout

Spectroscopy with Kaons at CLAS and CLAS12

LNF, November 12th 2013

PWA in CLASI2

In preparation for the experiment, **PWA tools** are being developed and tested on pseudo data (Monte Carlo) for different reactions as $\gamma p \rightarrow n\pi^{+}\pi^{+}\pi^{-}$

Test for 2 t bins:

- line: generated wave
- |t|=0.2 GeV²
- $|t|=0.5 \text{ GeV}^2$ As a function of $M_{3\pi}$

The CLASI2 detector system is intrinsically capable of meson spectroscopy measurements

