Dihadron production in SIDIS experiments

 $Christopher Braun^1$

¹Physikalisches Institut IV der Universität Erlangen-Nürnberg

2nd Workshop on Probing Strangeness in Hard Processes, November 12th 2013, Frascati National Laboratories, Italy

NATURWISSENSCHAFTLICHE FAKULTÄT

Outline

1 The experiments

- 2 Theoretical framework
- 3 Data selection
- 4 The asymmetries
- **5** Conclusion and outlook

The experiments

The experiments ► overview

COMPASS

CLAS Hall-B

The experiments ► beams and targets

The experiments \blacktriangleright particle ID

Theoretical framework

Theoretical framework \blacktriangleright leading twist PDFs 1

3 independent parton distribution functions (PDFs) are necessary to describe the spin structure of the nucleon in leading twist in the collinear case:

Theoretical framework \blacktriangleright leading twist PDFs 2

Taking into account the quark intrinsic transverse momentum k_T , at leading twist in total 8 PDFs are needed:

Theoretical framework ► subleading twist PDFs

Envolving to subleading twist adds another 16 PDFs:

Theoretical framework ► dihadron cross section

Selection of relevant parts of the full dihadron cross section:

$$\begin{split} \mathrm{d}^{7}\sigma_{UT} &= \\ \frac{\alpha^{2}}{2\pi Q^{2}y} \left| \vec{S}_{\perp} \right| \sum_{a} e_{a}^{2} B(y) \mathrm{sin}(\phi_{R} + \phi_{S}) \frac{\left| \vec{R}_{T} \right|}{M_{hh}} h_{1}^{a}(x) H_{1}^{\triangleleft,a}(z,\xi,M_{hh}^{2}) + \dots \\ \mathrm{d}^{7}\sigma_{UL} &= \\ \frac{\alpha^{2}}{2\pi Q^{2}y} \vec{S}_{L} \sum_{a} e_{a}^{2} V(y) \mathrm{sin} \phi_{R} \frac{\left| \vec{R}_{T} \right|}{Q} \frac{M}{M_{hh}} x h_{L}^{a}(x) H_{1}^{\triangleleft,a}(z,\xi,M_{hh}^{2}) + \dots \\ \mathrm{d}^{7}\sigma_{LU} &= \\ \frac{\alpha^{2}}{2\pi Q^{2}y} \lambda \sum_{a} e_{a}^{2} W(y) \mathrm{sin} \phi_{R} \frac{\left| \vec{R}_{T} \right|}{Q} \frac{M}{M_{hh}} x e^{a}(x) H_{1}^{\triangleleft,a}(z,\xi,M_{hh}^{2}) + \dots \\ h_{1} \text{ Transversity PDF} \\ h_{L} \text{ subleading twist PDF of transv. polarized quark in long. polarized nucleon} \\ H_{1}^{\triangleleft} \text{ Interference Fragmentation Function (IFF)} \end{split}$$

Bacchetta A. & Radici M. arXiv:hep-ph/0311173 (2003)

Theoretical framework \blacktriangleright kinematics 1

$$\ell + N^{\uparrow} \to \ell' + h_1 + h_2 + X$$

Fragmentation of a transversely polarized quark into a pair of unpolarized hadrons

- k, k' and q are 3-momenta of incoming, scattered lepton and virtual photon
- ϕ_{S} azimuthal angle of the spin S of the fragmenting quark
- p_i is the 3-momenta of h_i
- z_i is the fraction of the virtual-photon energy carried by h_i
- P_h is the sum of p_1 and p_2

Theoretical framework \blacktriangleright kinematics 2

- Definition of relative vector of the two hadrons slightly different between HERMES and COMPASS:
 - HERMES: $\mathbf{R} = (\mathbf{p_1} \mathbf{p_2})/2$, $\mathbf{R_T} = \mathbf{R} (\mathbf{R} \cdot \hat{\mathbf{P}_h})\hat{\mathbf{P}_h}$ thus $\mathbf{R_T}$ is the component of $\mathbf{p_1}$ orthogonal to perp. to $\mathbf{P_h}$ and $\phi_{R(\perp)}$ the zimuthal angle of $\mathbf{R_T}$ about the γ^* direction
 - \blacktriangleright COMPASS: $\pmb{R}=\frac{z_2p_1-z_1p_2}{z_1+z_2}$, which is invariant against boosts in the γ^* direction 1

 \hookrightarrow The azimuthal angle of $\phi_{R(\perp)}$:

$$\phi_{R(\perp)} = \frac{(q \times k) \cdot R_{(T)}}{|(q \times k) \cdot R_{(T)}|} \arccos\left(\frac{(q \times k) \cdot (q \times R_{(T)})}{|q \times k||q \times R_{(T)}|}\right)$$
$$\phi_{S} = \frac{(q \times k) \cdot S_{(T)}}{|(q \times k) \cdot S_{(T)}|} \arccos\left(\frac{(q \times k) \cdot (q \times S_{(T)})}{|q \times k||q \times S_{(T)}|}\right)$$

¹ cf. Artru & Collins, Z.Phys. **C69** (1996) 277-286

Theoretical framework \triangleright asymmetry extraction *e.g.* A_{UT}

$$N_{h^+h^-}(x, y, z, M_{hh}^2, \cos\theta, \phi_{RS}) \propto \sigma_{UU}(1 \pm f P_T D_{NN} A_{UT}^{\sin\phi_{RS}} \sin\theta \sin\phi_{RS})$$

 $\phi_{RS} = \phi_{R(\perp)} + \phi_S$ (COMPASS uses additional phase of $-\pi$ leading to sign change)

 θ polar angle of h_1 in the dihadron rest frame w.r.t. the P_h direction

- σ_{UU} unpolarized cross section
 - \pm indicates nucleon spin orientation
 - f target dilution factor
 - P_T target polarization

 $D_{NN}(y)$ transv. spin transfer coef.

$$A_{UT}^{\sin\phi_{RS}\sin\theta} \propto \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1,q}^{\triangleleft}(z, M_{h}^{2}, \cos\theta)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1,q}(z, M_{h}^{2}, \cos\theta)}$$

 f_1 number density

 D_1 unpolarized Interference Fragmentation Function

Data selection

Data selection \blacktriangleright cuts

Chr. Braun (Univ. Erlangen)

Data selection \blacktriangleright kinematic distributions 1

Data selection \blacktriangleright kinematic distributions 2

Clear contributions from resonance decay in the invariant mass distribution in the data of all three experiments

• $\eta~(548\,{\rm GeV}/c^2)$ and $\eta'~(958\,{\rm GeV}/c^2)$

Data selection \blacktriangleright kinematic distributions 3

- $\omega ~(783\,{\rm GeV}/c^2)$
- $K^0 (498 \,{
 m GeV}/c^2)$
- $\rho^0 \ (776 \, {\rm GeV}/c^2)$
- indication for higher mass resonances in COMPASS data

Data selection \blacktriangleright mean values 1

Data selection \blacktriangleright mean values 2

The asymmetries

 A_{UT}

 $\pi^+\pi^-$ pairs

HERMES and COMPASS

HERMES $\triangleright \pi^+\pi^-$ dihadron asymmetries A_{UT}

Clear non-zero asymmetry amplitudes in high x region and in ρ^0 mass bin

 \hookrightarrow First indication of a non-zero h_1 Transversity PDF and H_1^{\triangleleft} IFF

A. Airapetian et al. [HERMES Collaboration], JHEP 0806 (2008) 017

COMPASS $\triangleright \pi^+\pi^-$ asymmetries A_{UT}

 \hookrightarrow Clear asymmetry amplitudes of $\pi^+\pi^-$ pairs in high x region and around the ρ^0 mass

 \hookrightarrow Confirmation of HERMES results with increased statistical precision in a larger kinematic range in x and M_{inv} with a higher $\langle Q^2 \rangle$.

HERMES vs. COMPASS $\triangleright \pi^+\pi^-$ asymmetries A_{UT}

 \hookrightarrow Good agreement between HERMES and COMPASS results within the uncertainties.

HERMES data scaled with
$$\frac{1}{D_{nn}} = \frac{1-y+y^2/2}{1-y}$$
 and sign changed

HERMES vs. COMPASS $\triangleright \pi^+\pi^-$ asymmetries A_{IIT}

 \hookrightarrow Common trend of data and model predictions

- Good agreement in x and z dependence
- Very good agreement around ρ^0 mass in strength and shape
- No significant asymmetry amplitude from in η , η' , K^0 and ω region?

Bacchetta A. and Radici M., Phys. Rev. D **74** (2006) 114007 Ma B.-Q. *et al.*, Phys. Rev. D **77** (2008) 014035 **COMPASS** \triangleright h^+h^- asymmetries A^d_{UT}

Adolph C. et al. [COMPASS Collaboration], Phys. Lett. B **713** (2012) 10 Bacchetta A. and Radici M., Phys. Rev. D **74** (2006) 114007 Ma B.-Q. et al., Phys. Rev. D **77** (2008) 014035

 \hookrightarrow Asymmetries for deuteron target compatible with zero within the uncertainties

The models also predict a cancellation of the u and d quark transversity on the deuteron.

HERMES & COMPASS ► extraction of transversity

talk by A. Courtoy A. Bachetta, A. Courtoy and M. Radici, PRL **107** (11), arXiv:1206.1836

The asymmetries

 A_{UT}

$\pi^+\pi^0$ and $\pi^-\pi^0$ pairs

HERMES

HERMES $\triangleright \pi^+\pi^0$ & $\pi^-\pi^0$ new formalism 1

- Artru/Lund string fragmentation model cannot be easily related to the published notation
- D_1 is unpolarized FF with $(\chi = \chi')$
- H_1^{\perp} is generalized Collins FF with $(\chi \neq \chi')$
- Fragmentation functions expanded into partial waves in the direct sum basis $|\ell, m\rangle$ (rather then direct product basis $|\ell_1, m_1\rangle |\ell_2, m_2\rangle$):

$$D_{1} = \sum_{\ell=1}^{\infty} \sum_{\substack{m=-\ell \\ m=-\ell}}^{\ell} P_{\ell,m}(\cos\vartheta) e^{\imath m(\phi_{R}-\phi_{k})} D_{1}^{|\ell,m\rangle}(z, M_{hh}, |\boldsymbol{k}_{T}|)$$
$$H_{1}^{\perp} = \sum_{\ell=1}^{\infty} \sum_{\substack{m=-\ell \\ m=-\ell}}^{\infty} P_{\ell,m}(\cos\vartheta) e^{\imath m(\phi_{R}-\phi_{k})} H_{1}^{\perp|\ell,m\rangle}(z, M_{hh}, |\boldsymbol{k}_{T}|)$$

Gliske S. PhD thesis (2011)

HERMES $\triangleright \pi^+\pi^0$ & $\pi^-\pi^0$ new formalism 2

$\frac{1}{2} \otimes \frac{1}{2} = 1 \oplus 0 = 1 \text{ PSM} + 1 \text{ long. VM} + 2 \text{ transv. VM}$

- PSM = $|0,0\rangle$; long. VM = $|1,0\rangle$; transv. VM = $|1,\pm1\rangle$
- Artru/Lund: PSM asymmetry has opposite sign of transv. pol. VM (left vs. right) and $|1,0\rangle$ is zero
- Collins FF includes pairs of dihadrons: CG algebra $\rightarrow |2, \pm 2\rangle$ with opposite sign as PS (*cf.* Collins $\pi^+ vs. \pi^-$)

 $|1,\pm1\rangle$ moments allow collinear access to the transversity PDF $\Rightarrow H_1^{\perp|1,1\rangle}$ is related to usual IFF H_1^{\triangleleft} including also pp interference

 $|2,\pm2\rangle$ moments are transverse momentum dependent and related to string fragmentation models

 $\Rightarrow \text{Cross-section has direct access to } H_1^{\perp|2,\pm2\rangle} \\\Rightarrow H_1^{\perp|2,\pm2\rangle} \text{ should have opposite sign as pseudo-scalar } H_1^{\perp}$

HERMES $\triangleright \pi^+\pi^0$ & $\pi^-\pi^0$ dihadron asymmetries $|1,1\rangle$

- $\hookrightarrow |1,1\rangle$ limited statistics for $\pi^{\pm}\pi^{0}$
 - still sizeable mean asymmetry
 - consistent signs of all $\pi^{\pm}\pi^{0}$ pairs
 - Despite uncertainties, may still help constrain global fits

HERMES $\triangleright \pi^+\pi^-, \pi^+\pi^0 \& \pi^-\pi^0$ dihadron asymmetries $|2,\pm 2\rangle$

 $\hookrightarrow |2, -2\rangle$ moment is compatible with zero for all combinations: Transversity TMD causes frag. quark to have positive polarization \rightarrow $|2, -2\rangle$ must be zero as this PW requires negative polarization

 $\hookrightarrow |2,+2\rangle$ moment is consistent with model expectations: No indication of any signal outside the ρ mass bin \rightarrow no non-resonant pion-pairs in *p*-wave

The asymmetries

 A_{UL} and A_{LU}

 $\pi^+\pi^-$ pairs

JLab

JLab $\triangleright \pi^+\pi^-$ dihadron asymmetries A_{LU}

- $\begin{array}{l} \hookrightarrow \text{Sizeable asymmetry amplitudes, from independent data sets} \\ \hookrightarrow \text{Very small statistical uncertainties} \\ \Rightarrow \text{Compatible results from 2 different setups} \end{array}$
 - e1f (21 fb⁻¹): unpol. liquid hydrogen target, $E_{beam} = 5.5 \text{ GeV}$, $\langle \lambda \rangle = 75 \%$
 - eg1-dvcs (50 fb⁻¹): long. pol. NH_3 target, $E_{beam} = 5.967 \,\text{GeV}$, $\langle P_T \rangle = 80 \,\%, \, \langle \lambda \rangle = 85 \,\%$

JLab \blacktriangleright dihadron asymmetries A_{UL}

 $\begin{array}{l} \hookrightarrow \text{Sizeable asymmetry amplitudes} \\ \hookrightarrow \text{Very small statistical uncertainties} \end{array}$

Pereira S.A. Como2013

The asymmetries

 A_{UT}

pairs with strangeness: K^+K^- , $K^+\pi^-$ and π^+K^-

HERMES & COMPASS

COMPASS \triangleright $z_1 + z_2$, M_{inv} and E_{miss} distributions

38 / 53

Chr. Braun (Univ. Erlangen)

Dihadron production in SIDIS exp.

COMPASS \triangleright Q_2 vs. x distributions

COMPASS \blacktriangleright M_{inv} vs. z distributions

COMPASS \triangleright K^+K^- asymmetries A_{UT}

 \hookrightarrow no clear trend & large statistical uncertainties

- weak indication of a non-zero asymmetry at high x
- weak indication of a non-zero asymmetry at high z
- indication of a wide dip at $M_{inv} \approx 1.4 \,\mathrm{GeV}/c^2$

COMPASS \triangleright K^+K^- asymmetries A_{UT}

 \hookrightarrow no clear trend & large statistical uncertainties

- weak indication of a non-zero asymmetry at high x
- weak indication of a non-zero asymmetry at high z
- indication of a wide dip at $M_{inv} \approx 1.4 \,\mathrm{GeV}/c^2$

 \hookrightarrow indication of a signal

- top row: $|0,0\rangle$, $|1,\pm1\rangle$: signal in $\phi(1020)$ bin?
- bottom row: $|2,\pm1\rangle$, $|2,\pm2\rangle$: opposite signs to $|0,0\rangle$

COMPASS $\triangleright \pi^+\pi^- \& K^+K^-$ asymmetries A^d_{UT}

2002-04 deuteron data 2-hadron asymmetries: $\pi^+\pi^-$ pairs (top), K^+K^- pairs (bottom)

$\hookrightarrow h^+h^-$ asymmetries follow mostly $\pi^+\pi^-$ signal

 $\pi^+\pi^-$ asymmetries are small and compatible with zero K^+K^- no signal & low statistics

COMPASS $\triangleright \pi^+ K^- \& K^+ \pi^- \text{ asymmetries } A^d_{UT}$

2002-04 deuteron data 2-hadron asymmetries: all $\pi^+ K^-$ pairs (top), $K^+ \pi^-$ pairs (bottom)

 $\hookrightarrow \pi^+ K^- \& K^+ \pi^-$ signal compatible with zero

weak indication of opposite sign of the signal in x dependence

COMPASS \triangleright $K^+\pi^-$ asymmetries A_{UT}

- negative mean value with constant trend in x
- \bullet weak indication of a non-zero asymmetry at low and high z
- indication of a wide dip at $M_{inv} \approx 1.0 \,\mathrm{GeV}/c^2$
- \Rightarrow indication of signals from $K^*/K_{1/2}$ decays

COMPASS \triangleright $K^+\pi^-$ asymmetries A_{UT}

- negative mean value with constant trend in x
- \bullet weak indication of a non-zero asymmetry at low and high z
- indication of a wide dip at $M_{inv} \approx 1.0 \,\mathrm{GeV}/c^2$
- \Rightarrow indication of signals from $K^*/K_{1/2}$ decays

COMPASS $\triangleright \pi^+ K^-$ asymmetries A_{UT}

- x no signal
- z significant slope with a relative maximum around 0.45
- M_{inv} no clear signal
- \Rightarrow No clear signal in mass range

COMPASS \triangleright all identified pairs A_{UT}

Conclusion and outlook

Conclusion and outlook ► **Conclusion**

General

• non-zero Transversity TMD PDF h_1 and IFF H_1^{\triangleleft}

COMPASS

• Full set $\pi^+\pi^-$, K^+K^- , $K^+\pi^-$, π^+K^- from proton data

HERMES

- $\pi^{\pm}\pi^{0}$ pairs will assist in the *u*-*d* flavor separation
- Unique access to the TMD spin structure of fragmentation
- Testing the Lund/Artru model via $|2,\pm2\rangle$ moments
- $|2, -2\rangle$ must be zero if h_1 causes the fragmenting quark to have positive polarization as this partial wave requires negative polarization
- $|2,+2\rangle$ no non-resonant pion-pairs in p-wave, sizeable for $\rho^\pm,$ zero for ρ^0 JLab 6 GeV
 - sizeable A_{LU} , A_{UL} asymmetries of $\pi^+\pi^-$ with very small statistical uncertainties

Conclusion and outlook ► **Outlook**

COMPASS

- Reanalysis of deuteron data with homogeneous cuts, binning and methods w.r.t. proton 2007/2010 analyses for a full flavor separation incl. strangeness
- $\pi^{\pm}\pi^{0}$ pair asymmetries
- A_{UL} , A_{LL} asymmetries

HERMES

• K^+K^- (some data near ϕ mass), $\pi^+\gamma\gamma$, $\pi^-\gamma\gamma$, $K^+\pi^-$, π^+K^-

JLab $6\,\mathrm{GeV}$

- $\pi^+\pi^0$ pair asymmetries
- double spin asymmetries

JLab $12 \,\mathrm{GeV}$

- larger Q^2 coverage
- data with x up to 0.6
- Kaon sample with π/K separation at $3 8 \,\text{GeV}/c \Rightarrow \text{strangeness}$
- Transversal and longitudinally polarized H, D (CLAS12) and ${}^{3}He$ (SolID) targets

Thank you for your attention!

electronic address:christopher.braun@cern.chChr. Braun (Univ. Erlangen)Dihadron production in SIDIS exp.PSHP 2013, Frascati53 / 53