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3Form Factors ⟹ Quark distributions in b-space
Fourier transforms of form factors give charge densities in impact parameter:
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Fig. 2. The two-gluon ladder exchange contribution to the pion’s coherent diffractive dissociation process.

Fig. 3. (Color online) Three-dimensional rendering of the transverse charge density in the pion based on the analysis of [25].

2.1. Pion dissociation into two jets

Fig. 2 shows one of the dominant QCD diagrams for the coherent pion diffractive dissociation. The space–time picture
of the process is as follows—long before the target, the pion fluctuates into qq̄ configuration with transverse separation d,
which elastically scatters off the target with an amplitude, which for t = 0 is given by Eq. (1) (up to small corrections due to
different off shellness of the qq̄ pair in the initial and final states), followed by the transformation of the pair into two jets.
A slightly simplified final answer is

A(⇡ N ! 2 jets + N)(z, pt , t = 0) /
Z

d2d qq̄
⇡ (z, d)�qq̄�N(A)(d, s)eipt d, (2)

where z is the light-cone fraction of the pion momentum carried by a quark. The normalization  qq̄
⇡ (z, d) – the quark

– antiquark Fock component of the meson light-cone wave function, at d ! 0 is determined by the Brodsky–Lepage
relation [24]

 qq̄
⇡ (z, d)d!0 =

p
48f⇡ z(1 � z), (3)

where f⇡ = 92 MeV is the pion decay constant.
Note here that the presence of point-like configurations in the pionwave function is confirmed by themodel independent

analysis of the transverse pion charge density [25], ⇢⇡ (b) which shows a sharp peak at b ⇠ 0 which appears to originate
from the small size qq̄ configurations (see Fig. 3).

The Fermilab experiment E791 [26]measured the diffractive dissociation into di-jets of 500 GeV⇡� beam that coherently
scattered from carbon and platinum targets. Diffractive di-jets were identified through the e�bq2t dependence of their yield,
where q2t is the square of the transverse momentum transferred to the nucleus and b = hRi2

3 , where R is the nuclear radius.
Fig. 4 shows the q2t distributions of di-jet events from platinum and carbon. The events in the low-q2t region are dominated
by diffractive dissociation of the pion. The data are fit to sums of q2t distributions of di-jet events produced coherently1and

1 Presence of the break up channel modifies the factor before the first exponential from A2 to (A � 1)A.

Miller, Strikman, Weiss (2010)

Pion
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tantly, its interaction as a function of its color field. CT51

is a key property of QCD. It offers a unique probe of52

“color”, a defining feature of QCD, yet totally invisi-53

ble in the observed structure of ordinary nuclear mat-54

ter. Establishing the kinematic conditions for the onset55

of CT is also critical to the future program of proton56

structure studies based on deep exclusive meson pro-57

cesses where the CT property of QCD is routinely used58

in the proof of QCD factorization theorem [11]. Re-59

cently, CT was proposed [12] as the possible cause of60

the anomalous increase with centrality in the ratio of61

protons-to-pions produced at large transverse momenta62

in gold-gold collisions at the relativistic heavy ion col-63

lider in Brookhaven National Lab [13].64

Searches for CT with proton knock-out have all been65

negative [14, 15, 16, 17, 18] or inconclusive [19, 20, 21],66

while results for meson production [22, 23, 24, 25] have67

been more promising. The reason could be that the cre-68

ation of a SSC is more probable for a meson than for69

a baryon since only two quarks have to be localized to70

form the SSC. The first hint of CT at moderate ener-71

gies was obtained in pion photoproduction off 4He [22]72

with photon energies up to 4.5 GeV, but the experiment73

needed greater statistical precision to achieve conclu-74

sive findings. Another experiment [23] studied pion75

electroproduction off 12C, 27Al, 64Cu and 197Au over a76

range of Q2 = 1.1 - 4.7 GeV2. The nuclear transparen-77

cies of all targets relative to deuterium showed an in-78

crease with increasing Q2. The most statistically signif-79

icant result corresponds to the nuclear transparency for80

197Au, which when fitted with a linear Q2 dependence81

resulted in a slope of 0.012 ± 0.004 GeV−2. The authors82

concluded that measurements at still higher momentum83

transfer would be needed to firmly establish the onset of84

CT.85

Exclusive diffractive electroproduction of ρ0 mesons86

provides a tool of choice to study color transparency.87

The advantage of using ρ0 mesons is that they have the88

same quantum numbers as photons and so can be pro-89

duced by a simple diffractive interaction, which selects90

small size initial state [26]. In this process, illustrated in91

Fig. 1, the incident electron exchanges a virtual pho-92

ton with the nucleus. The photon can then fluctuate93

into a virtual q  q pair [27] of small transverse separa-94

tion [28] proportional to 1/Q, which can propagate over95

a distance lc = 2ν/(Q2 + M2
q  q), known as the coherence96

length, where ν is the energy of the virtual photon and97

Mq  q is the invariant mass of the q  q pair. The virtual q  q98

pair can then scatter diffractively off a bound nucleon99

and becomes an on mass shell SSC. While expanding in100

size, the SSC travels through the nucleus and ultimately101

evolves to a fully formed ρ0, which, in the final state,102
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Figure 1: An illustration of the creation of a SSC and its evolution to
a fully formed ρ0 (see the text for a full description).

decays into a (π+, π−) pair. By increasing Q2, the size103

of the selected SSC can be reduced and consequently104

the nuclear transparency for the ρ0 should increase.105

The nuclear transparency, TA, is taken to be the ra-106

tio of the observed ρ0 mesons per nucleon produced107

on a nucleus (A) relative to those produced from deu-108

terium, where no significant absorption is expected. CT109

should yield an increase of TA with Q2, but measure-110

ments by the HERMES [29] collaboration show that TA111

also varies with lc, which can also lead to a Q2 depen-112

dence. Thus, to unambiguously identify CT, lc should113

be held constant or, alternatively, kept small compared114

to the nuclear radius to minimize the interactions of the115

q  q pair prior to the diffractive production of the SSC.116

Fermilab experiment E665 [24] and the HERMES ex-117

periment [25] at DESY used exclusive diffractive ρ0 lep-118

toproduction to search for CT. However, both measure-119

ments lacked the necessary statistical precision. HER-120

MES measured the Q2 dependence of the nuclear trans-121

parency for several fixed lc values. A simultaneous fit of122

the Q2 dependence over all lc bins resulted in a slope of123

0.089 ± 0.046 GeV−2. The unique combination of high124

beam intensities available at the Thomas Jefferson Na-125

tional Accelerator Facility know as JLab and the wide126

kinematical coverage provided by the Hall B large ac-127

ceptance spectrometer [30] (CLAS) was key to the suc-128

cess of the measurements reported here.129

The experiment ran during the winter of 2004. An130

electron beam with 5.014 GeV energy was incident si-131

multaneously on a 2 cm liquid deuterium target and a 3132

mm diameter solid target (C or Fe). The nuclear targets133

were chosen to optimize two competing requirements;134

provide sufficient nuclear path length compared to the135

SSC expansion length while minimizing the probability136

of ρ0 decay inside the nucleus. A new double-target sys-137

tem [31] was developed to reduce systematic uncertain-138

ties and allow high precision measurements of the trans-139

parency ratios between heavy targets and deuterium.140

The cryogenic and solid targets were located 4 cm apart141

3
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Figure 3: (color online) Nuclear transparency as a function of lc. The
inner error bars are the statistical uncertainties and the outer ones are
the statistical and point-to-point (lc dependent) systematic uncertain-
ties added in quadrature. There is an additional normalization sys-
tematic uncertainty of 1.9% for carbon and 1.8% for iron (not shown
in the figure) with acceptance and background subtraction being the
main sources. The carbon data has been scaled by a factor 0.77 to fit
in the same figure with the iron data.

the simulation. The magnitudes of each contributing210

process were taken as free parameters in the fit of211

the mass spectra. The acceptance correction to the212

transparency ratio was found to vary between 5 and213

30%. Radiative corrections were extracted for each214

(lc, Q2) bin using our MC generator in conjunction215

with the DIFFRAD [34] code developed for exclusive216

vector meson production. The radiative correction to217

the transparency ratio was found to vary between 0.4218

and 4%. An additional correction of around 2.5% was219

applied to account for the contribution of deuterium220

target endcaps. The corrected t distributions for exclu-221

sive events were fit with an exponential form Ae−bt. The222

slope parameters b for 2H (3.59 ± 0.5), C (3.67 ± 0.8)223

and Fe (3.72 ± 0.6) were reasonably consistent with224

CLAS [35] hydrogen measurements of 2.63 ± 0.44225

taken with 5.75 GeV beam energy.226

The transparencies for C and Fe are shown as a227

function of lc in Fig. 3. As expected, they do not exhibit228

any lc dependence because lc is much shorter than the229

C and Fe nuclear radii of 2.7 and 4.6 fm respectively.230

Consequently, the coherence length effect cannot mimic231

the CT signal in this experiment.232

Fig. 4 shows the increase of the transparency with233

Q2 for both C and Fe. The data are consistent with234

expectations of CT. Note that in the absence of CT235

effects, hadronic Glauber calculations would predict236

no Q2 dependence of TA since any Q2 dependence in237

the ρ0 production cross section would cancel in the238

ratio. The rise in transparency with Q2 corresponds239
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Figure 4: (color online) Nuclear transparency as a function of Q2.
The inner error bars are statistic uncertainties and the outer ones are
statistic and point-to-point (Q2 dependent) systematic uncertainties
added in quadrature. The curves are predictions of the FMS [39] (red)
and GKM [38] (green) models with (dashed-dotted and dashed curves,
respectively) and without (dotted and solid curves, respectively) CT.
Both models include the pion absorption effect when the ρ0 meson
decays inside the nucleus. There is an additional normalization sys-
tematic uncertainty of 2.4% for carbon and 2.1% for iron (not shown
in the figure).

to an (11 ± 2.3)% and (12.5 ± 4.1)% decrease in240

the absorption of the ρ0 in Fe and C respectively.241

The systematics uncertainties were separated into242

point-to-point uncertainties, which are lc dependent in243

Fig. 3 and Q2 dependent in Fig. 4 and normalization244

uncertainties, which are independent of the kinematics.245

Effects such as kinematic cuts, model dependence in246

the acceptance correction and background subtraction,247

Fermi motion and radiative correction were studied248

and taken into account in the systematic uncertainties249

described in details in [36]. The fact that we were250

able to observe the increase in nuclear transparency251

requires that the SSC propagated sufficiently far in the252

nuclear medium and experienced reduced interaction253

with the nucleons before evolving to a normal hadron.254

The Q2 dependence of the transparency was fitted by255

a linear form TA = a Q2 + b. The extracted slopes “a”256

for C and Fe are compared to the model predictions in257

Table 1. Our results for Fe are in good agreement with258

both Kopeliovich-Nemchik-Schmidt (KNS) [37] and259

Gallmeister-Kaskulov-Mosel (GKM) [38] predictions,260
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in the same figure with the iron data.
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decays inside the nucleus. There is an additional normalization sys-
tematic uncertainty of 2.4% for carbon and 2.1% for iron (not shown
in the figure).
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requires that the SSC propagated sufficiently far in the252

nuclear medium and experienced reduced interaction253

with the nucleons before evolving to a normal hadron.254

The Q2 dependence of the transparency was fitted by255

a linear form TA = a Q2 + b. The extracted slopes “a”256

for C and Fe are compared to the model predictions in257

Table 1. Our results for Fe are in good agreement with258

both Kopeliovich-Nemchik-Schmidt (KNS) [37] and259

Gallmeister-Kaskulov-Mosel (GKM) [38] predictions,260

5

Compare with Color Transparency

Effective transverse size of hadrons is process-dependent

γ* produces ρ in compact configuration
Transverse size (including gluons) as fn of Q2 measured by nucleus A

A

In form factors, Q2 dependence measures the transverse distribution of quarks
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7Example: Deuteron disintegration at 90°

Dimensional scaling:
Only compact deuterons at large k⊥

⇒ Broad distribution in q2

In photoproduction (q2 = 0):   
the 90° cross section shows 
dimensional scaling for Eγ ≥ 1 GeV.

with K the number of elementary fields (quarks, photons, leptons, etc.) among / inside the initial and

final particles.

For example, in the case of the deuteron break-up by a photon, γ + D → p + n, we have K =
1 + 6 + 6 = 13 (a photon and 6 quarks inside the initial deuteron and another 6 in the final proton and

neutron). So, the differential cross section is expected to fall with s, asymptotically, as s−11 = E−22
c.m. .

The key word asymptotically always provided an excuse for unnerved HEP theorists in their encounters

with angered experimenters. The JLAB plot in Fig. 1 which I borrowed from Paul Hoyer’s talk [27]

seems to be telling us that this standard excuse is unnecessary here. However, it is again unnerving but

for precisely opposite reason, if you take my meaning. Indeed, it is very difficult to digest how the naive

asymptotic regime manage to settle that early! The lab. energy 1GeV of the incident photon, where the

scaling behaviour starts, is just too low.

The “counting rules” invite us to view a

fast deuteron as a system of six comoving

valence quarks. One of them is punched

by the photon. The other five we have

to properly push ourselves so as to make

them fit into two outgoing nucleons. This

is done by exchanging five gluons be-

tween the quarks in the scattering am-

plitude so that the cross section acquires

the factor α10
s . The picture makes sense

as long as 1) the deuteron is indeed fast

and 2) typical momentum transfers q2 be-

tween quarks are large enough to allow us

to use the concept of gluon exchange and

of the QCD{1} coupling αs(q2) for that

E  (GeV)γ

E    –– (γd   pn) / kb GeVdσ
dt

22
←

20

CM

Fig. 1: Large angle γ-disintegration of a deuteron [28].

matters. None of these conditions holds for Eγ " 1GeV.

Nonetheless we would have had every right to feel happy about Fig. 1 provided we could con-

vincingly answer but one question: why is such precocious scaling not seen for simpler systems and in

particular for the simplest of them all – the electromagnetic form factor of a pion?

Too smooth?

HERA measurements of the DIS proton structure

function F2(x,Q2) in a wide range of photon vir-

tualities,

0.1GeV2 < Q2 < 35GeV2,

are compiled in Fig. 2. The data are plotted as a

function of the simple variable

ξ = log
0.04

x
log

(
1 +

Q2

0.5GeV2

)

proposed by Dieter Haidt [29].

Being surprisingly smooth, they show no sign of a

“phase transition” when going from large virtualities

(perturbative{1} regime) downto very small scales

where non-perturbative{1} physics should dominate. ξ

F
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 2: F2 for x ≤ 10−3, Q2 ≥ 0.1GeV2 [29].

γ + D → p + n

Need to consider electroproduction
to determine the size of the deuteron.

Here: Specify how Fourier transform of q 
          determines the transverse size of deuteron

C. Bochna et al, 
PRL 81 (1998) 4576

q

l

n(–k )

p(+k )*

l

D
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Z
d2q

(2�)2
e�iq·b 1

2p+
�f(pf )|J+(0)|N(p)⇥

4

To allow a simple interpretation of the amplitude (5) it is essential to choose a frame where p+f = p+.5 A photon

with q+ = 0 cannot create a qq̄ pair, causing the matrix element to be diagonal in the number of incoming and
outgoing quarks. In fact, the initial and final Fock states are identical. As seen from (13) the J+(0) current interacts
with a single quark or antiquark6 at bk = 0⇤ in |N⇧, and similarly in ⌅f |. The remaining n� 1 partons in |N⇧ must
thus be identical to those in ⌅f |. The constraints

�
i xi = 1 in the initial and final states forces also the momentum

fraction xk of the struck quark to be the same. The “center of momentum” constraint b =
�

i xibi in (13) then
requires the impact parameters of the initial and final states to be equal,

1

2p+
⌅f(p+, bf )|J+(0)|N(p+, bN )⇧ ⇥ 1

(4⇤)2
⇥2(bf � bN )AfN (�bN ) (14)

where, after a shift of integration variables bi ⇤ bi + bN ,

AfN (b) =
1

4⇤

⇥

n

⇧ n⇤

i=1

⌅ 1

0
dxi

⌅
4⇤d2bi

⌃
⇥(1�

⇥

i

xi)⇥
2(
⇥

i

xibi)⌅
f
n
⇥
(xi, bi)⌅

N
n (xi, bi)

⇥

k

ek⇥
2(bk � b) (15)

This expression for the current matrix element in impact parameter space is central for the applications we consider
below. For f = N the positivity of |⌅N

n (xi, bi)|2 allows the Fourier transform (2) of the elastic form factor to be
interpreted as a charge density. Even when the final state di�ers from the initial one its electro-excitation still
proceeds only via Fock components which are common to both.

As already indicated in (2), the Fourier transform wrt. q of the generalized form factor in (5) should be done in a
frame where the nucleon and photon momenta are

p = (p+, p�,� 1
2q)

q = (0+, q�, q) (16)

pf = (p+, p� + q�, 1
2q)

The excitation amplitude in impact parameter space is then, using (10) and (14),
⌅

d2q

(2⇤)2
e�iq·b 1

2p+
⌅f(pf )|J+(0)|N(p)⇧ = (17)

=

⌅
d2q

(2⇤)2
d2bNd2bf e�iq·(b+ 1

2bN+ 1
2bf ) (4⇤)

2

2p+
⌅f(p+, bf )|J+(0)|N(p+, bN )⇧ = AfN (b)

The expansion (15) shows that AfN (b) gets contributions from LF Fock states that are common to the initial and
final states (localized at bN = bf = 0) which have a quark or antiquark at transverse position bk = b. The range of
AfN (b) in b thus reflects the transverse size of the transition process.

The above analysis has previously been applied to elastic and transition electromagnetic form factors [9–11]. The
Fock expansion (11) is, however, completely general and applies also to states |f⇧ that consist of several hadrons. This
makes it possible to measure the transverse shape of the hadronic states that contribute to �⇥ + i ⇤ f transitions,
for any states i and f .

III. TWO-BODY FINAL STATES

The momentum pf = p + q of the final state f varies with q in the Fourier transform (17), hence the dependence
of the Fock amplitudes on the parent momentum pf must be known. As seen from (11) the LF wave functions
depend only on the relative coordinates of the constituents, not on the total momentum of the state. Final states
|f⇧ = |h1, . . . , hn⇧ consisting of several hadrons may be regarded as a particular type of hadronic state, where we are
free to specify the relative momenta of the hadrons, each one of which has its own (non-perturbative) Fock expansion.
The multi-hadron Fock amplitudes must conform with the general LF rules to ensure the frame independence of the
state |f⇧. In this Section we specify the LF Fock expansion and the Fourier transform for a two-body (⇤N) state, and
illustrate it with a tree-level QED amplitude. The multi-hadron case is considered in Section IV, where we discuss
the Fourier transform of the cross section.

5 In the case of GPD’s this condition implies an extrapolation from the experimentally accessible kinematic region. For form factors it
amounts to a choice of frame.

6 Due to the anti-commutation of the d-operators the charge ek in (15) has opposite sign for quarks and antiquarks.

∝

Note: Wave functions are diagonal in xi, bi

      The wave functions are evaluated at t+z = 0, when the γ* interacts.

          The b-distribution reflects the transverse size at the LF time of interaction,

                     and may be studied as a function of the final state f .

          Analogous expression for the squared amplitudes (cross sections)

q

N N

π

e el

p pf

*

For any transition  γ*N → f
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Example: γ*(q) N(p) → f = K+ (p1) Λ(p2)

The final state f is characterized by x and k, which are independent of q:

5

A. Transverse shape analysis of ��N � ⇥N

The standard LF Fock expansion in transverse momentum space for a single pion is [5, 7]

|⇥(p+1 ,p1)⌅ = 16⇥3
⌅

n

⌥ n⇧

i=1

⌃ 1

0

dxi⇧
xi

⌃
d2ki

16⇥3

�
�
�
1�
⌅

i

xi

⇥
�2
�⌅

i

ki

⇥
⇤�
n(xi,ki)

n⇧

i=1

b†(xip
+
1 , xip1 + ki) · · · |0⌅ (18)

where · · · stands for the operators which create the remaining n� 1 partons of the Fock state. As noted above, the
wave functions ⇤�

n(xi,ki) are independent of the pion momentum p1. The ‘plus’ momentum of parton i is xip
+
1 and

its transverse momentum is xip1 + ki. The restrictions on the xi and ki implied by (18) ensure that the parton
momenta sum to the total pion momentum in each Fock state.

For a ⇥N state we have then the double expansion

|⇥(p1)N(p2)⌅ = (16⇥3)2
⌅

n�,nN

⌥ n�⇧

i=1

⌃ 1

0

dxi⇧
xi

⌃
d2ki

16⇥3

�⌥nN⇧

j=1

⌃ 1

0

dyj⇧
yj

⌃
d2�j
16⇥3

�
�
�
1�

n�⌅

i=1

xi

⇥
�
�
1�

nN⌅

j=1

yj
⇥

(19)

⇥ �2
� n�⌅

i=1

ki

⇥
�2
� nN⌅

j=1

�j
⇥
⇤�
n�

(xi,ki)⇤
N
nN

(yj , �j)
⇧

i,j

b†(xip
+
1 , xip1 + ki) b

†(yjp
+
2 , yjp2 + �j) · · · |0⌅

which should be transformed into the standard form (18), where parton momenta refer to the total momentum
pf = p1 + p2 of the state. We parametrize the pion and nucleon momenta in terms of a momentum fraction x and
relative transverse momentum k,

p+1 = xp+f p1 = xpf + k

p+2 = (1� x)p+f p2 = (1� x)pf � k
(20)

where p+f = p+ and pf = 1
2q in the frame (16). The momentum fractions of the pion and nucleon constituents wrt.

p+ are then x�
i = xxi and y�j = (1� x)yj , respectively. Using this and integrating over x gives

⌃ 1

0
dx �
�
1�
⌅

i

xi

⇥
�
�
1�
⌅

j

yj
⇥
= x(1� x)�

�
1�
⌅

i

x�
i �
⌅

j

y�j

⇥
(21)

where x =
⇤

i x
�
i on the rhs. The transverse momenta of the partons may be expressed as

xip1 + ki = x�
ipf + k�

i k�
i = ki + k x�

i/x

yjp2 + �j = y�jpf + ��j ��j = �j � k y�j/(1� x)
(22)

which gives

⌃
d2k

16⇥3
(16⇥3)2�2

⌥⌅

i

�
k�
i � k

x�
i

x

⇥�
�2
⌥⌅

j

�
��j + k

y�j
1� x

⇥�
= 16⇥3�2

�⌅

i

k�
i +
⌅

j

��j

⇥
(23)

For a |f⌅ = |⇥N⌅ state specified by a wave function �f (x,k) of the relative hadron momentum defined in (20) we get

|⇥N(p+f ,pf ;�
f )⌅ ⇤

⌃ 1

0

dx 
x(1� x)

⌃
d2k

16⇥3
�f (x,k)|⇥(p1)N(p2)⌅ = (24)

= 16⇥3
⌅

n�,nN

⌥⇧

i,j

⌃ 1

0

dx�
i 
x�
i

dy�j⌦
y�j

⌃
d2k�

i

16⇥3

d2��j
16⇥3

�
�
�
1�
⌅

i

x�
i �
⌅

j

y�j

⇥
�2
�⌅

i

k�
i +
⌅

j

��j

⇥

⇥ x(1� x)�f (x,k)⇤�
n�

�x�
i

x
, k�

i �
x�
i

x
k
⇥
⇤N
nN

� y�j
1� x

, ��j +
y�j

1� x
k
⇥

⇥
n�⇧

i

⌥ 1⇧
x
b†(x�

ip
+, x�

ipf + k�
i) · · ·

�⌥ nN⇧

j

1⇧
1� x

b†(y�jp
+, y�jpf + ��j) · · ·

�
|0⌅

p = (p+, p�,� 1
2q)

q = (0+, q�, q)

pf = q + p = p1 + p2

The Fourier transfor over q is 
done in a specific frame:

If the γ* couples directly to a strange quark (in the nucleon!), 
expect to see a narrower b-distribution than for f = π N.

q

N Λ

K

e el

p pf

*
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Fourier transform of the cross section

The γ*+N → f  amplitudes have dynamical phases (resonances,...).
⇒ Calculating their Fourier transforms requires a partial wave analysis.

However, we can Fourier transform the cross section itself.
Then the b-distribution reflects the difference between the impact parameters 
of the photon vertex in the amplitude and its complex conjugate:

8

is interesting to ask whether information about the transverse structure of the scattering process can be obtained from
a Fourier transform of the measured cross section. As we next discuss, this gives the distribution of the transverse
distance between the photon interaction vertices in the amplitude and its complex conjugate.

As in the case of the amplitude (5) we need to isolate the contribution of the J+ current. Here we again consider
the high energy limit s ⌅ ⌃�p+ ⇤ ⇧ at fixed momentum transfer q = ⌃� ⌃⇤. The Lorentz invariant cross section can
then be expressed as

⌃�
d⇧(⌃N ⇤ ⌃⇤f)

dq� d2q
⌅ 2�2

⌅

s

q4

⌥
d�f

����
1

2p+
⌃f(pf )|J+(0)|N(p)⌥

����
2

(42)

where d�f is the phase space element of the hadrons in f . The frame (16) can be reached from the ⌃N CM by
a rotation ⇥⇤ ⌅ |q/|⌃� around the normal to the lepton scattering plane. In the ⌃� ⇤ ⇧ limit the rotation is
infinitesimal and does not a⇤ect the finite momentum transfer q. Then the Fourier transformation below can be done
directly in the ⌃N CM.

For a state f with n hadrons of momenta pi,

d�f (n) =

⇥
n⌃

i=1

dp+i d2pi

(2⌅)32p+i

⇤
(2⌅)4⇥4(p+ q �

⇧

i

pi) (43)

With a LF parametrization as in (20),

p+i = xip
+
f pi = xipf + ki (44)

where pf =
⌅

i pi, we obtain

d�f (n) =
2(2⌅)4

p+f

⇥
n⌃

i=1

dxi d2ki

(2⌅)32xi

⇤
⇥(1�

⇧

i

xi) ⇥
2(
⇧

i

ki) ⇥(p
� + q� � p�f ) (45)

The initial nucleon N and final state f in the matrix element of (42) may be Fourier transformed (10) in the frame
(16), where pf = �p = 1

2q and q+ = 0. According to (14) the matrix element is diagonal in impact parameter. Thus

⌥
d2q

(2⌅)2
e�iq·b

����
1

2p+
⌃f(pf )|J+(0)|N(p)⌥

����
2

=

⌥
d2bq AfN (bq)A⇥

fN (bq � b) (46)

Altogether we get for the Fourier transformed cross section,

SfN (b) ⇥
⌥

d2q

(2⌅)2
e�iq·b q4 d⇧(⌃N ⇤ ⌃⇤f)

d2q
(47)

= (4⌅)3�2
⇧

n

⌥
d2bq AfN (bq)A⇥

fN (bq � b)

⇥
n⌃

i=1

⌥
dxi d2ki

(2⌅)32xi

⇤
⇥(1�

⇧

i

xi) ⇥
2(
⇧

i

ki)

As indicated, the cross section may include several final states with di⇤erent multiplicities n. The amplitudes AfN (bq)
defined by (17) can according to (15) be expanded in terms of Fock states common to N and f . With the states
located at zero impact parameter the struck quark is at impact parameter bq. Hence SfN (b) gives the distribution
in transverse distance b between the quark struck in the amplitude and in its complex conjugate. It has a real part
that is even under b ⇤ �b and an imaginary part that is odd. In an unpolarized cross section the latter reflects
correlations between the lepton scattering plane (defined by the beam and q) and the transverse momenta ki of the
hadrons in f .

The final phase space integral in (47) refers to the internal momenta of f , and depends on the definition of the
final state f . E.g., in the particular case of |f⌥ = |⌅(p1)N(p2)⌥, with p1 and p2 defined by (20) and the hadronic wave
function ⇥f (x,k) chosen to be a ⇥-function in x and k as in (35),

SfN (b;x,k) =

⌥
d2q

(2⌅)2
e�iq·b q4 d⇧(⌃N ⇤ ⌃⇤⌅N)

d2q dx d2k
=

�2

4⌅3

1

x(1� x)

⌥
d2bq AfN (bq;x,k)A⇥

fN (bq � b;x,k) (48)

Thus the impact parameter distribution may be considered for fully exclusive (as well as fully inclusive) cross-sections.
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The impact parameter amplitude Aµ�(b;x,k) is given by (34) in the case of the µ ⌅ µ� example considered in
Section III B. The corresponding expression for Sµ�(b;x,k) is most easily found by substituting the expression (33)
for Aµ�(q;x,k) on the lhs. of (46) and Fourier transforming its square,

Sµ�(b;x,k) = 4e2x

⇤
k2/2

[(1� x)2m2 + k2]2
⇥(2)(b) � |k| cos(⌃b � ⌃k)

(1� x)2m2 + k2

im

2⌅

exp
�
� i k·b

1�x

⇥

1� x
K1(mb)

+
1

4⌅

exp
�
� i k·b

1�x

⇥

(1� x)2

⌃
K0(mb)� 1

2mbK1(mb)
⌥⌅

(49)

The three terms correspond, respectively, to the virtual photon interacting (i) with the initial muon in both Aµ� and
Aµ�⇥, (ii) once with the intial and once with the final muon, and (iii) only with the final muon. The imaginary part
can be seen to arise from the angular correlation between the lepton scattering plane (defined by b) and the relative
transverse momentum k in the final state. This correlation a⇤ects the real part as well.

V. DISCUSSION

The impact parameter analysis of virtual photon induced transition amplitudes and cross-sections appears to open
a new window on hadron dynamics. It is complementary to parton distributions in longitudinal momentum, and more
economical in using data at all q2, not being restricted to the leading twist (q2 ⌅ ⌃) contribution. The analysis
can be applied to any final (and initial) state, allowing to study systematic dependencies on, e.g., the mass, relative
momenta and flavor content of the state. The J+ component of the electromagnetic current needs to be isolated for
a simple Fock state picture.

Only Fock states that are common to the initial and final states contribute to the transition amplitudes (17), which
are determined (15) by the overlap of the corresponding wave functions. This interpretation requires [4, 5] a frame
like (16) with q+ = 0 , where the photon does not create or destroy quark pairs. This is analogous to DIS, where a
parton model interpretation is possible only in “infinite momentum” frames with q+ ⇤ 0.

The momentum pf = p+ q of the final state depends on the photon momentum q. Relativistic invariance requires
that the momenta of all hadrons in f be parametrized as in (44), with the relative momentum variables xi,ki being
independent of q. It is possible to form superpositions of final states through weighted integrals over the xi and ki. In
the case of two-particle (⌅N) final states we may thus consider states of the form (24) with photon matrix elements

⌥⌅N(pf ;⇥
f )|J+(0)|N(p)� ⇥

⇧ 1

0

dx�
x(1� x)

⇧
d2k

16⌅3
⇥f ⇥(x,k)⌥⌅(p1)N(p2)|J+(0)|N(p)� (50)

The pion and nucleon momenta are defined by (20) and we may freely choose the hadronic wave function ⇥f (x,k).
The Fourier transformed amplitudes (17) get contributions only from quarks at bq = b, with the initial nucleon
and final ⌅N states localized at zero impact parameter. The Fourier transform of the squared amplitude (46) gives
the distribution of the impact parameter di⇤erence between the photon interaction vertices in the amplitude and its
complex conjugate.

The transverse shape of the contributing Fock states reflects only the distribution of the quark struck by the photon,
not that of the other partons. For example, both compact valence (Brodsky-Lepage [14]) Fock states and non-compact
(Feynman [15, 16]) states may contribute to the elastic form factors of the nucleon at large photon virtualities |q|.
Both types of states will contribute at small bq, since the photon interacts only with the x ⌅ 1 quark of the Feynman
states, whose impact parameter is close to the transverse center-of-momentum (bN = 0) of the nucleon.

The impact parameter distribution in �⇥N ⌅ ⌅N should contract as a function of the relative transverse momentum
k between the final pion and nucleon. Only compact initial nucleons would be expected to have an overlap with ⌅N
states with high k, in analogy to the observed color transparency of high energy pions dissociating into exclusive jets
with high relative momentum [17].

Large angle photo-production cross-sections are consistent with constituent counting rules [18, 19] at surprisingly
low energies. Thus ⇧(�p ⌅ ⌅+n) [20] and ⇧(�p ⌅ K+�) [21] are both found to be ⇧ E�14

CM at ⇤CM = 90⇤. Even
⇧(�D ⌅ pn) [22] and ⇧(� 3He ⌅ pp(n)) [23] obey the rules, scaling as E�22

CM . The simplest theoretical prediction is
based on perturbative QCD, which requires that only transversally compact Fock states contribute at large angles.
Data on electro-production at large angles would allow to to measure the actual width of the impact parameter
distribution.

According to the present analysis all contributing Fock states are common to the initial and final states. However,
this does not require a heavy quark QQ̄ pair to be present in the initial nucleon in processes such as �⇥N ⌅ K� and

The 3 terms correspond to 2, 1 and 0 of the γ* interactions occurring on the 
initial muon. The imaginary part arises from an angular correlation between b 
and k .

µ ! ! µ

"

"*
!!µ
µ

"

"*

+

2

Sµ�(b;x,k) =

Z
d2q

(2⇥)2
e�iq·bq4 d⇤(⌅µ � ⌅⇥µ�)

d2q dx d2k

QED illustration: γ*+ µ → µ + γ
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Summary

Intuitively, the q -dependence of a virtual photon interaction gives information 
about the charge distribution in space.

2-dim. FT’s of scattering amplitudes describe charge densities in transverse 
space at an instant of Light-Front time  x+ = t + z

Unlike pdf’s, no “leading twist” limit is implied.
The resolution in impact parameter is   Δb ∼ 1/Qmax

⇒   Learn new aspects of strong interaction dynamics.

This type of analysis is waiting for an application to real data!

No model dependence – except to estimate finite energy effects.


