

GPD analyses of kaons leptoproduction

S.V. Goloskokov

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,

Dubna 141980, Moscow region, Russia

In collaboration with P. Kroll, Wuppertal

Euro, Phys. J. A47, 112 (2011)

- Handbag factorization .
- GPDs and amplitudes structure.
- Kaons leptoproduction .
- Polarized GPDs and transversity effects.
- Results on kaons production.
- Conclusion.

PSHP2013, Frascati, November 11-13, 2013

DIS and DVCD

• Deep Inelastic scattering

Cross section - expressed in terms of ordinary parton distributions q(x)

• Deeply Virtual Compton Scattering

Amplitude - proportional to Generalized Parton Distributions GPDs $H(x, \xi, t)$

GPDs – extensive information about hadron structure.

• Ordinary parton distribution connected with GPDs

$$H^g(x,0,0) = xg(x)$$

• Hadron Form factors —are the GPDs moment

$$\int dx H(x,\xi,t) = F(t)$$

• Information on the parton angular momenta from Ji sum rules

$$\int x dx (H^{q}(x,\xi,0) + E^{q}(x,\xi,0)) = 2J^{q}$$

Handbag factorization of Mesons production amplitude

• Large Q^2 - factorization into a hard meson photoproduction off partons, and GPDs. (LL)

Radyushkin, Collins, Frankfurt Strikman

 $L \to L$ transition - predominant. Other amplitudes are suppressed as powers 1/Q

The process of meson production

- ϕ production (gluon&strange sea)
- ρ , ω production (gluon&sea&valence quarks)
- Pseudoscalar mesons- polarized distributions

The handbag model typically is valid at the range of large $Q^2 > 3 \text{GeV}^2$ and low $x_B \leq 0.1$.

Modelling the GPDs

The double distributions for GPDs Radyushkin '99.

$$H_i(\overline{x}, \xi, t) = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta + \xi \, \alpha - \overline{x}) \, f_i(\beta, \alpha, t) \tag{1}$$

simple for the double distributions.

$$f_i(\beta, \alpha, t) = h_i(\beta, t) \frac{\Gamma(2n_i + 2)}{2^{2n_i + 1} \Gamma^2(n_i + 1)} \frac{[(1 - |\beta|)^2 - \alpha^2]^{n_i}}{(1 - |\beta|)^{2n_i + 1}},$$
(2)

 $\star h_{val}^q(\beta,0) = q_{val}(|\beta|) \Theta(\beta)$ -valence contribution (n=1).

PDF t-dependence —Regge parameterization. Regge form: $\alpha_i(t) = \alpha_i(0) + \alpha' t$

$$h(\beta, t) = N e^{b_0 t} \beta^{-\alpha(t)} \left(1 - \beta\right)^n \tag{3}$$

* Amplitudes in terms of GPDs.

The proton non-flip amplitude is associated with F GPDs.

$$\mathcal{M}_{\mu'+,\mu+} \propto \int_{-1}^1 d\overline{x} \, H^a(\overline{x},\xi,t) \, F^a_{\mu',\mu}(\overline{x},\xi) \, .$$

 k_{\perp}/Q^2 and Sudakov corrections are taken into account.

$$H^{a}(x,0,0) = h^{a}(x), \quad H^{g}(x,0,0) = xg(x)$$

Quark (valence, sea), gluon PDFs are determined from CTEQ6 parameterization

 \star Spin-flip contribution. Effects of E GPDs.

$$\mathcal{M}_{\mu'-,\mu+} \propto rac{\sqrt{-t}}{2m} \int_{-1}^{1} d\overline{x} \, E^a(\overline{x},\xi,t) \, F^a_{\mu',\mu}(\overline{x},\xi)$$

E parameters- from Pauli form factor. M. Diehl, ..., P. Kroll

Standard connection with ordinary distribution:

$$E^a(x,0,0) = e^a(x)$$

Double distribution model is used to construct all GPDs.

Cross sections of VM production

 Q^2 dependence of cross sections of ρ and ϕ production at $W=75 \, \text{GeV}$. H1 and ZEUS data.

Cross sections of ρ production with errors from uncertainty in parton distributions at W=75 GeV/10 and W=90 GeV. Dashed line leading twist results.

Cross sections of ϕ production with errors from uncertainty in parton distributions at W=75 GeV. Dashed line leading twist results.

 \star Power corrections $\sim k_\perp^2/Q^2$ in propagators are important at low Q^2 –1/10 suppression at $Q^2\sim 3{\rm GeV}^2$

A_{UT} asymmetries in VM production.

$$A_{UT} = \propto \frac{\text{Im} < E >^* < H >}{| < H > |^2}$$

Our results on $A_{UT}^{\sin(\phi-\phi_s)}$ asymmetry for ρ production on the proton and deuteron togeter with COMPASS data.

Pseudoscalar K meson production.

Pole and handbag

contributions to Kaons production.

- \star Meson pole (charge mesons) is essential mainly in $\mathcal{M}_{0+,0+}$ amplitude.
- * Contribute to $\mathcal{M}_{0-,0+}$, $\mathcal{M}_{0+,++}$, $\mathcal{M}_{0-,++}$ amplitudes too.

General case of Pseudoscalar meson production

$$\mathcal{M}_{0+,0+}^{M} \propto \sqrt{1-\xi^{2}} \left[\langle \tilde{H}^{M} \rangle - \frac{\xi^{2}}{1-\xi^{2}} \langle \tilde{E}_{n.p.}^{M} \rangle - \frac{\xi(m_{N^{i}} + M_{N^{f}})Q^{2}}{1-\xi^{2}} \frac{\rho_{M}}{t-m_{M}^{2}} \right]; \tag{4}$$

$$\mathcal{M}_{0-,0+}^{M} \propto \frac{\sqrt{-t'}}{(m_{N^{i}} + M_{N^{f}})} \left[\xi \langle \tilde{E}_{n.p.}^{M} \rangle + (m_{N^{i}} + M_{N^{f}})Q^{2} \frac{\rho_{M}}{t-m_{M}^{2}} \right].$$

Masses: M- produced pseudoscalar meson , N^i -initial nucleon (proton) , M_{Nf} -final nucleon (Λ, Σ)

$$<\tilde{F}>=\sum_{\lambda}\int_{-1}^{1}d\overline{x}\mathcal{H}_{0\lambda,0\lambda}(\overline{x},...)\tilde{F}(\overline{x},\xi,t),$$

The hard scattering amplitudes-transverse quark motion

$$H_{0\lambda,0\lambda}^{a}(\overline{x},\xi) = \frac{8\pi\alpha_{s}(\mu_{R})}{\sqrt{2N_{c}}} \int_{0}^{1} d\tau \int \frac{d^{2}\mathbf{k}_{\perp}}{16\pi^{3}} \phi_{V\mu'}(\tau,k_{\perp}^{2}) f_{0\lambda,0\lambda}^{a}(\mathbf{k}_{\perp},\overline{x},\xi,\tau) D.$$
 (5)

$$\phi_V(\mathbf{k}_{\perp}, \tau) = 8\pi^2 \sqrt{2N_c} f_V a_V^2 \exp\left[-a_V^2 \frac{\mathbf{k}_{\perp}^2}{\tau \bar{\tau}}\right]. \tag{6}$$

Meson pole contribution (charge meson production)

$$\rho_M = g_{MN^iN^f} F_{MN^iN^f}(t) F_M(Q^2) \tag{7}$$

Why leading twist effects is not enough at low Q^2 ?

At low Q^2 we have problems with understanding of some observables.

Example: $A_{UT}^{\sin(\phi_s)}$ asymmetry in π^+ production.

$$A_{UT}^{\sin(\phi_s)} \propto \text{Im}[M_{0-,++}^* M_{0+,0+}]$$

The handbag amplitude $M_{0-,++} \propto t'$. Small pole effect in $M_{0-,++}$ can not explain asymmetry. New not small contribution to $M_{0-,++}$ amplitude is needed.

Calculation of $M_{0-,++}$ – transversity effects.

 $M_{\mu'\nu',\mu\nu} \propto \sqrt{-t'}^{|\mu-\nu-\mu'+\nu'|}$ from angular momentum conservation.

 $M_{0-,++} \propto \sqrt{-t'}^0 \propto const$ but handbag amplitude $\propto t'$

 $M_{0-,++}$ -is determined by twist 3 contribution $\rightarrow const$.

Transversity GPDs $(H_T, E_T, ...)$ contribute

$$\mathcal{M}_{0-,\mu+}^{twist-3} \propto \int_{-1}^{1} d\overline{x} \mathcal{H}_{0-,\mu+}^{twist-3}(\overline{x},...)[H_T + ...O(\xi^2 E_T)].$$

We calculate twist-3 amplitude and use twist-3 meson wave function. Double distribution model

$$H_T^a(x,0,0) = \delta^a(x)$$

transversity PDFs –from azimuthal asymmetry in semi-inclusive DIS (Anselmino model)

$$\delta^{a}(x) = C N_{T}^{a} x^{1/2} (1 - x) [q_{a}(x) + \Delta q_{a}(x)],$$

Estimation of $M_{0+,++}$ – transversity effects.

Amplitude is important in some asymmetries and cross section σ_T , σ_{TT} e.g.

$$\mathcal{M}_{0+,\mu+}^{twist-3} \propto \frac{\sqrt{-t'}}{4m} \int_{-1}^{1} d\overline{x} \mathcal{H}_{0-,\mu+}^{twist-3}(\overline{x},...) \, \overline{E}_{T}.$$

Similar calculation of twist-3 amplitude as for H_T

$$\bar{E}_T(\beta, 0, 0) = e_T(\beta); \quad e_T(\beta, t) = N e^{b_0 t} \beta^{-\alpha(t)} (1 - \beta)^n$$
 (8)

Double distribution model for \bar{E}_T

Parameters are taken from the lattice results for the moments of E_T

Moments for u and d are large and have the same sign and not very different each other

$$\star$$
 Enhancement for π^0 : $\bar{E}_T^0 = 2/3 \, \bar{E}_T^u + 1/3 \, \bar{E}_T^d$

Transversity effects at CLAS.

Predictions for π^0 production at CLAS energy range together with CLAS data. Full line- $\sigma_T + \epsilon \sigma_L$, red dashed line- σ_{LT} , blue dashed-dotted- σ_{TT}

 η/π^0 production ratio at CLAS energy range together with preliminary data.

Transversity contributions are essential in the cross section of pseudoscalar meson production. Model predictions for π^0 cross sections and η/π^0 ratio were confirmed later by CLAS experiment.

Kaon production. Coupling constants and GPDs

- Wave function -non symmetric over $\tau \to \bar{\tau}$. Reason-quarks have different masses.
- Coupling constants-SU(3) predictions

$$g_{K^+p\Lambda} \sim -13.3;$$
 $g_{K^+p\Sigma^0} \sim -3.5;$

Pole contribution is larger for $K^+p\Lambda$ channel .

• Form Factors: $F_{K^+}(Q^2) \sim 0.9 \, F_{\pi^+}(Q^2)$ in agreement with CLEO data

GPDs in kaon production.

Proton-hyperon transition GPDs contracted with the help of SU(3) flavor symmetry.

$$\star \gamma p \to K^+ \Lambda : \qquad \tilde{F}_{p \to \Lambda} \sim -\frac{1}{\sqrt{6}} [2\tilde{F}^u - \tilde{F}^d - \tilde{F}^s]$$

$$\star \gamma p \to K^+ \Sigma^0 : \qquad \tilde{F}_{p \to \Sigma^0} \sim -\frac{1}{\sqrt{2}} [\tilde{F}^d - \tilde{F}^s]$$

$$\star \gamma p \to K^0 \Sigma^+ : \qquad \tilde{F}_{p \to \Sigma^+} \sim -[\tilde{F}^d - \tilde{F}^s]$$

Polarized distributions contribute.

Transversity effects at kaons production.

 \star Parameterization the same as for π^0 production .

Large H_T contributions for Kaons especially in $K^+\Lambda$ channel.

$$H_T(p \to \Lambda) \sim -\frac{1}{\sqrt{6}} [2H_T^u - H_T^d]$$

$$H_T(p \to \Sigma^0) \sim -\frac{1}{\sqrt{2}} [H_T^d]$$

$$H_T(p \to \Sigma^+) \sim -[H_T^d]$$

$$\bar{E}_T$$
 effects. $H_T \to \bar{E}_T$

In all processes of Kaons production we have and large \bar{E}_T contribution.

$\gamma p \to K^+ \Lambda$ reaction.

Cross section of $K^+\Lambda$ production. Dashed line- σ_L , dashed-dotted - σ_T

 $\sin(\phi - \phi_s)$ and $\sin(\phi_s)$ moments of transverse target asymmetry of $K^+\Lambda$ production.

Pole contribution is essential here- H_T is large no dip in σ_T . σ_T - is large with respect to the leading twist σ_L . Twist-3 transversity effects predominate at low Q^2 .

$\gamma p \to K^+ \Sigma^0$ reaction.

W=3.83 GeV 0.3 $Q^2 = 3.44 \text{ GeV}^2$ 0.2 、sin φ_s 0.1 $A_{UT}(K^{^{+}}\Sigma^{0})$ 0.0 -0.1 -0.2 sin (φ- φ_s) -0.3 -0.4 -0.5 -0.6 0.2 0.4 0.6 -t'[GeV²]

Cross section of $K^+\Sigma^0$ production.

 $\sin(\phi - \phi_s)$ and $\sin(\phi_s)$ moments of transverse target asymmetry of $K^+\Sigma^0$ production.

Pole contribution is much smaller here (small $K^+p\Sigma^0$ coupling constant) - dip in σ_T . σ_T is large with respect to σ_L - E_T effects. We predict large transversity effects in $K^0\Sigma^+$ channel.

$\gamma p \to K^0 \Sigma^+$ reaction and A_{LU} asymmetry for meson channels.

Cross section of $K^0\Sigma^+$ production. No pole contribution -sizeable dip in σ_T observed . σ_T is large- E_T effects with respect to σ_L . Large transversity effects in this reaction too.

The beam spin asymmetry for various pseudoscalar-meson channels

Conclusion

- Polarized GPDs are essential pseudoscalar K mesons production.
- GPDs are calculated using PDF on the bases of DD representation.
- At low Q^2 H_T effects are mostly essential in $K^+\Lambda$ channel.
- E_T effects are predominated in $K^+\Sigma^0$ and $K^0\Sigma^+$ channels. Dip in cross section at small momentum transfer is predicted.
- Moments of A_{UT} asymmetry are expected to be not small.
- Transversity H_T and E_T contributions are twist-3 effects. They decrease with Q^2 growing. At high Q^2 the leading twist σ_L will predominate.
- Future JLAB12 and COMPASS results will should throw the light on importance of transversity effects in pseudoscalar mesons production at low Q^2 .

Thank You!