Analysis of dihadron observables

Aurore Courtoy IFPA-Université de Liège (Belgium) & LNF-INFN (here)

PSHP, LNF, Frascati November 12, 2013

- Why Dihadron Fragmentation Functions?
- How well do we know DiFFs?
- First success: Transverse Target-Spin Asymmetry in two-pion SIDIS
- First this year's fav' topic: Higher-twist distributions

▶ 3 leading-twist PDFs:

... and a bunch of higher-twist PDFs

▶ 3 leading-twist PDFs:

▶ ... and a bunch of higher-twist PDFs

▶ 3 leading-twist PDFs:

... and a bunch of higher-twist PDFs

▶ 3 leading-twist PDFs:

▶ ... and a bunch of higher-twist PDFs

Why Dihadron Fragmentation Functions

Hadronization: fragmentation functions

see Francesca Giordano's talk

Hadronization of the quark into a hadron h

Hadronization: fragmentation functions

see Francesca Giordano's talk

Hadronization of the quark into a hadron *h*

Hadronization: fragmentation functions

see Francesca Giordano's talk

Hadronization of the quark into a hadron *h*

Interference Fragmentation Functions

 $H_1^{\triangleleft}(z, M_h)$

transverse pol. of the fragm. quark \leftrightarrow angular distribution of hadron pairs in the transverse plane

Factorization

TMD factorization

$$d\sigma \propto \sum_{q} [\mathrm{PDF}^{q} \otimes \mathrm{FF}^{q}] \left(x, z, P_{h\perp}^{2} \right)$$

Collinear factorization

$$d\sigma \propto \sum_{q} \mathrm{PDF}^{q}(x) \times \mathrm{DiFF}^{q}(z, M_{h})$$

Factorization

TMD factorization

$$d\sigma \propto \sum_{q} [\mathrm{PDF}^{q} \otimes \mathrm{FF}^{q}] \left(x, z, P_{h\perp}^{2} \right)$$

Collinear factorization

$$d\sigma \propto \sum_{q} \mathrm{PDF}^{q}(x) \times \mathrm{DiFF}^{q}(z, M_{h})$$

TMD PDF vs. collinear PDF

see talks by J.O. Gonzalez H. & M. Radici

Factorization

TMD factorization

$$d\sigma \propto \sum_{q} [\mathrm{PDF}^{q} \otimes \mathrm{FF}^{q}] \left(x, z, P_{h\perp}^{2} \right)$$

√ Convenient to use DiFFs!

Collinear factorization

$$d\sigma \propto \sum_{q} \mathrm{PDF}^{q}(x) \times \mathrm{DiFF}^{q}(z, M_{h})$$

TMD PDF vs. collinear PDF

see talks by J.O. Gonzalez H. & M. Radici

Twist-2

$$\Delta^{[\gamma^{-}]} = D_1(z, M_h) \qquad \Delta^{[i\sigma^{i-}\gamma_5]} = \frac{\epsilon_T^{ij}R_{Tj}}{2M}H_1^{\triangleleft}(z, M_h)$$

plus 2 k_T dependent FF

► Twist-3

Twist-2

$$\Delta^{[\gamma^{-}]} = D_1(z, M_h) \qquad \Delta^{[i\sigma^{i-}\gamma_5]} = \frac{\epsilon_T^{ij}R_{Tj}}{2M}H_1^{\triangleleft}(z, M_h)$$

plus 2 k_T dependent FF

• Twist-3

Kinematical twist-3 Wandzura-Wilzcek approximation

Dynamical twist-3...

▶ higher-twists...

Twist-2

$$\Delta^{[\gamma^{-}]} = D_1(z, M_h) \qquad \Delta^{[i\sigma^{i-}\gamma_5]} = \frac{\epsilon_T^{ij}R_{Tj}}{2M}H_1^{\triangleleft}(z, M_h)$$

plus 2 k_T dependent FF

• Twist-3

Kinematical twist-3 *Wandzura-Wilzcek approximation*

Dynamical twist-3...

▶ higher-twists...

Twist-2

$$\Delta^{[\gamma^{-}]} = D_1(z, M_h) \qquad \Delta^{[i\sigma^{i-}\gamma_5]} = \frac{\epsilon_T^{ij}R_{Tj}}{2M}H_1^{\triangleleft}(z, M_h)$$

plus 2 k_T dependent FF

• Twist-3

Kinematical twist-3 *Wandzura-Wilzcek approximation*

 $E, D^{\triangleleft}, H, G^{\triangleleft}$

Dynamical twist-3 ...

$$\tilde{D}^{\triangleleft}, \tilde{G}^{\triangleleft}, \tilde{H}, \tilde{E}$$

higher-twists...

Twist-2

$$\Delta^{[\gamma^{-}]} = D_1(z, M_h) \qquad \Delta^{[i\sigma^{i-}\gamma_5]} = \frac{\epsilon_T^{ij}R_{Tj}}{2M}H_1^{\triangleleft}(z, M_h)$$

plus 2 k_T dependent FF

Twist-3

Kinematical twist-3 *Wandzura-Wilzcek approximation*

 $E, D^{\triangleleft}, H, G^{\triangleleft}$

Dynamical twist-3 ...

$$\tilde{D}^{\triangleleft}, \tilde{G}^{\triangleleft}, \tilde{H}, \tilde{E}$$

- higher-twists...
- ► **P-odd DiFFs** [Bacchetta, Boer, Radici, in progress??]

Bianconi, Boffi, Jakob & Radici, PRD62

AUT

$$A_{UT}^{\sin(\phi_R + \phi_S) \sin \theta}(x, y, z, M_h; Q) = -\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x; Q^2) H_{1,sp}^{\triangleleft q}(z, M_h; Q^2)}{\sum_q e_q^2 f_1^q(x; Q^2) D_1^q(z, M_h; Q^2)}$$

Two-hadron SIDIS

Jaffe, Jin, Tiang, PRL 80 Radici, Jakob & Bianconi, PRD65

ALU

$$A_{LU}^{\sin\phi_R\sin\theta}(x,y,z,M_h,Q) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[xe^q(x) H_{1,sp}^{\triangleleft,q}(z,M_h) + \frac{M_h}{zM} f_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,M_h)}$$

Bacchetta & Radici, PRD69

Aul

$$A_{UL}^{\sin\phi_R\sin\theta}(x,y,z,M_h,Q) = -\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[x h_L^q(x) H_{1,sp}^{\triangleleft,q}(z,M_h) + \frac{M_h}{zM} g_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,M_h)}$$

Bacchetta & Radici, PRD69

AUL $A_{UL}^{\sin\phi_R\sin\theta}(x,y,z,M_h,Q) = -\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[xh_L^q(x) H_{1,sp}^{\triangleleft,q}(z,M_h) + \frac{M_h}{zM} g_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,M_h)}$

$$A_{LU}^{\sin\phi_R\sin\theta}(x,y,z,M_h,Q) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[xe^q(x) H_{1,sp}^{\triangleleft,q}(z,M_h) + \frac{M_h}{zM} f_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,M_h)}$$

Bacchetta & Radici, PRD69

two-hadron plane

$$A_{UL}^{\sin\phi_R\sin\theta}(x, y, z, M_h, Q) = -\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[xh_L^q(x) H_{1,sp}^{\triangleleft,q}(z, M_h) + \frac{M_h}{zM} g_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z, M_h)\right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z, M_h)}$$

Two-hadron SIDIS

two-hadron plane

 P_1 R_T

 $A_{LU}^{\sin\phi_R\sin\theta}(x,y,z,M_h,Q) = -\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[xe^q(x) H_{1,sp}^{\triangleleft,q}(z,M_h) + \frac{M_h}{zM} f_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,M_h) \right]}{\sum_q e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,M_h)}$ Stay awake until the last part of the talk !
Bacchetta & Radici, PRD69

AUL $A_{UL}^{\sin\phi_R\sin\theta}(x,y,z,M_h,Q) = -\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 \left[xh_L^q(x)H_{1,sp}^{\triangleleft,q}(z,M_h) + \frac{M_h}{zM}g_1^q(x)\tilde{G}_{sp}^{\triangleleft,q}(z,M_h)\right]}{\sum_q e_q^2 f_1^q(x)D_{1,ss+pp}^q(z,M_h)}$

AUT at HERMES and COMPASS

Pion pair production in e⁺e⁻ annihilation

Artru-Collins asymmetry

 h_{1} R_{T} R_{T} R_{T} R_{1} R_{2} R_{2} R_{2} R_{2} R_{2} R_{2} R_{2} R_{2} R_{3} R_{4} R_{5} R_{5

- 2 hemispheres
- azimuthal modulation between the 2 hemispheres

✦ If we integrate over one hemisphere, we get →

$$A^{\cos(\phi_R + \overline{\phi}_R)}\left(z, \ M_h, Q^2\right) = -\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \left\langle \sin \theta \right\rangle \left\langle \sin \overline{\theta} \right\rangle \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 H_{1,sp}^{\triangleleft q}(z, M_h; Q^2) n_q^{\uparrow}(Q^2)}{\sum_q e_q^2 D_1^q(z, M_h; Q^2) n_q(Q^2)}$$

Artru-Collins asymmetry at Belle

BaBar? see Isabella Garzia's talk [Phys.Rev.Lett.107 (2011)]

Pion pair production in pp[↑] collision

 $A_N(\eta_C, |\mathbf{P}_{C\perp}|, \cos\theta_C, M_C^2, \phi_{R_C}, \phi_{S_B}) \propto \frac{f_1 \otimes h_1 \otimes H_1^{\triangleleft}}{f_1 \otimes f_1 \otimes D_1}$

Bacchetta & Radici, PRD70

Pion pair production in pp^{\uparrow} collision

$$A_N(\eta_C, |\mathbf{P}_{C\perp}|, \cos\theta_C, M_C^2, \phi_{R_C}, \phi_{S_B}) \propto \frac{f_1 \otimes h_1 \otimes H_1^{\triangleleft}}{f_1 \otimes f_1 \otimes D_1}$$

Bacchetta & Radici, PRD70

► A_N^{sinΦ} asymmetry @ Phenix

• $A_N^{\sin\Phi}$ asymmetry @ STAR

Pion pair production in pp^{\uparrow} collision

$A_N \equiv \frac{d\sigma_{UT}}{d\sigma_{UU}}$

$$A_N(\eta_C, |\mathbf{P}_{C\perp}|, \cos\theta_C, M_C^2, \phi_{R_C}, \phi_{S_B}) \propto \frac{f_1 \otimes h_1 \otimes H_1^{\triangleleft}}{f_1 \otimes f_1 \otimes D_1}$$

Bacchetta & Radici, PRD70

10

A_N^{sinΦ} asymmetry @ Phenix

A. Vossen talk, Evolution workshop, 2012, JLab

What we know about DiFFs

First principles for D₁

Hadronization process:

 $q \rightarrow \pi^+\pi^-X$

First principles for D₁

Hadronization process:

$$q \rightarrow \pi^+\pi^-X$$

Related to *MULTIPLICITIES*

see Nour Makke's talk

Nbr of events:

$$\sigma^U(e^+e^-) \equiv \frac{N}{lum} = 4\pi \frac{\alpha^2}{Q^2} \sum_{i=1}^{n_f} e_{q_n}^2$$

Nbr of pion pairs:

$$\sigma^{U}(e^{+}e^{-} \to \pi^{+}\pi^{-} + X) \equiv \frac{n^{\pi^{+}\pi^{-}}}{lum} = 4\pi \frac{\alpha^{2}}{Q^{2}} \sum_{i=1}^{n_{f}} e_{q_{i}}^{2} \int dz dM_{h} D_{1}^{q \to \pi^{+}\pi^{-}}(z, M_{h}^{2})$$

First principles for D₁

Hadronization process:

$$q \rightarrow \pi^+\pi^-X$$

Related to *MULTIPLICITIES*

see Nour Makke's talk

Nbr of events:

$$\sigma^{U}(e^{+}e^{-}) \equiv \frac{N}{lum} = 4\pi \frac{\alpha^{2}}{Q^{2}} \sum_{i=1}^{n_{f}} e_{q_{r}}^{2}$$

Nbr of pion pairs:

$$\sigma^{U}(e^{+}e^{-} \to \pi^{+}\pi^{-} + X) \equiv \frac{n^{\pi^{+}\pi^{-}}}{lum} = 4\pi \frac{\alpha^{2}}{Q^{2}} \sum_{i=1}^{n_{f}} e_{q_{i}}^{2} \int dz dM_{h} D_{1}^{q \to \pi^{+}\pi^{-}}(z, M_{h}^{2})$$

One-hemisphere differential cross section:

$$\frac{d\sigma}{dzdM_h^2} = \frac{4\pi\alpha^2}{Q^2} \sum_{i=1}^{n_f} e_{q_i}^2 D_1^i(z, M_h^2)$$

GOOD NEWS: Bins in z & M_h related to nbr of pion pairs ↓ Monte Carlo event generator

Spectator model for D₁

Most prominent channels at $M_h \le 1.8$ GeV

1. Background:

2. ρ production: $M_h \sim m_\rho = 770 \text{ MeV}$

$$q \to \rho X_2 \to \pi^+ \pi^- X_2$$

3. ω production: M_h~m_{ω}=782 MeV

$$q \to \omega X_3 \to \pi^+ \pi^- X_3$$

broad peak at $M_h \sim 500 \text{ MeV}$

$$q \to \omega \pi^0 X'_4 \to \pi^+ \pi^- \pi^0 X'_4$$

undetected $\pi 0$

4. κ production: M_h~m_K=497 MeV

$$q \to K^0 X_6 \to \pi^+ \pi^- X_6$$

Bacchetta & Radici, PRD74

Spectator model for D₁

Most prominent channels at $M_h \leq 1.8 \mbox{ GeV}$

1. Background:

2. ρ production: $M_h \sim m_\rho = 770 \text{ MeV}$

$$q \to \rho X_2 \to \pi^+ \pi^- X_2$$

Spectator model

pair produced in relative s-wave

parameter tuned to PYTHIA output for HERMES

Bacchetta & Radici, PRD74

NJL-jet model for D₁

Parameterization of D₁

Use PYTHIA output as "data set"

Relevant variables and quantities: (Z, M_h)

Standard fitting approach: Functional form in (z, M_h)

Parameterization of D₁

Use PYTHIA output as "data set"

Relevant variables and quantities: (Z, M_h)

Standard fitting approach: Functional form in (z, M_h)

Scale dependence:

Belle@100GeV² but SIDIS@ ~2.5GeV²

Parameterization of D₁

Use PYTHIA output as "data set"

(**z**, **M**_h) **Relevant variables and quantities:**

Standard fitting approach: Functional form in (z, M_h)

Scale dependence:

Belle@100GeV² but SIDIS@ ~2.5GeV²

LO Evolution with unpol. splitting functions & HOPPET:

qq, gq, qg, gg

Ceccopieri, Radici & Bacchetta, PLB 650 (2007) 81-89

1st step: forward evolution

Start fit @ 1GeV : Induce quark & gluon distristributions

Spectator model for H₁[≮]

Spectator model for IFF

pair produced in relative p-wave

parameter tuned to PYTHIA output for HERMES

Parameterization of H_1^{\neq}

Start fit @ 1GeV : Induce quark distristributions

Parameterization of H₁[≮]

0.4

0.6

z

0.8

0.0e+00

0.2

Parameterization of H¹[⊀]

Parameterization of H¹[⊀]

The very first success

Transversity at SIDIS

and combinations of both ...

Transversity at SIDIS

and combinations of both ...

We take results for our analysis from pion pair production in e⁺e⁻ annihilation at Belle

0.10

Х

0.01

- - point by point from fit
- [Bacchetta, A.C., Radici, JHEP 1303]

point by point from fit

• [Bacchetta, A.C., Radici, JHEP 1303]

Ok, but not of practical use!

Х

Ok, but not of practical use!

 \rightarrow Fit of valence transversity

- Ok, but not of practical use!
 - → Fit of valence transversity

Constraints from first principles

Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

 $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

Collinear extraction of h₁

Rigid version

Bacchetta, A.C.& Radici, JHEP1303

Collinear extraction of h₁

Rigid version

Bacchetta, A.C.& Radici, JHEP1303

Collinear extraction of h₁

Torino: Anselmino et al.,(2013)

Torino: Anselmino et al.,(2013)

$$\delta q = \int_{6.4 \times 10^{-3}}^{0.28} dx \, h_1^{q_v}(x)$$

2. MC rigid

1. standard rigid

Pavia: Bacchetta et al., JHEP 03 (2012) 119

Pavia: Bacchetta et al., JHEP 03 (2012) 119

Torino: Anselmino et al.,(2013)

Extrapolation outside the range of data

$$\delta q = \int_{\sim 0}^{1} dx \, h_1^{q_v}(x)$$

8. fit of A₀
7. fit of A₁₂
6. MC extra flexible
5. standard extra flexible
4. MC flexible
3. standard flexible
2. MC rigid
1. standard rigid

Pavia: Bacchetta et al., JHEP 03 (2012) 119

Future of transversity

- Functional Form crucial to standard fitting procedure
 - ➡ Highly unconstrained outside data range
 - ➡ Important! e.g., for tensor charge
 - → We NEED more data at higher x-values \rightarrow JLab@12GeV

Future of transversity

- Functional Form crucial to standard fitting procedure
 - Highly unconstrained outside data range
 - → Important! e.g., for tensor charge
 - → We NEED more data at higher x-values \rightarrow JLab@12GeV

Proposal for CLAS12

(A rated & waiting for HDice target to be ready)

A 12 GeV Research Proposal to Jefferson Lab (PAC 39)

Measurement of transversity with dihadron production in SIDIS with transversely polarized target

Future of transversity

- Functional Form crucial to standard fitting procedure
 - Highly unconstrained outside data range
 - ➡ Important! e.g., for tensor charge
 - → We NEED more data at higher x-values \rightarrow JLab@12GeV

Proposal for CLAS12

(A rated & waiting for HDice target to be ready)

A 12 GeV Research Proposal to Jefferson Lab (PAC 39) $\,$

Measurement of transversity with dihadron production in SIDIS with transversely polarized target

Letter of Intent for SoLID

(Proposal to be submit to next PAC)

Dihadron Electroproduction in DIS with Transversely Polarized 3 He Target at 11 and 8.8 GeV

May 10, 2013

(A Letter of Intent to Jefferson Lab (PAC 40))

Higher-twist PDFs

e(x): strange content of the proton

• Pion-nucleon σ term

$$\int_{-1}^{1} dx \left(e^{u} + e^{d} \right) (x) = \frac{1}{2M} \langle P | (\bar{u}u + \bar{d}d) | P \rangle \equiv \frac{\sigma_{\pi N}}{(m_u + m_d)/2}$$

related to the strangeness content of the nucleon

$$y_N = \frac{\langle N | \bar{\psi}_s \psi_s | N \rangle}{\frac{1}{2} \langle N | (\bar{\psi}_u \psi_u + \bar{\psi}_d \psi_d) N \rangle} = 1 - \frac{m}{m_s - m} \frac{M_\Xi + M_\Sigma - 2M_N}{\sigma_{\pi N}}$$

LO ChiPT

 $\sigma_{\pi N} = (50-70 \text{ MeV})$

- Iarge strange contribution
- **but mass contribution of strange** not sensitive to y

Higher-twist from experiments

Higher-twist from experiments

- Analysis of e(x) here at LNF (M. Mirazita, S. Pisano & A.C.)
 - (Second) *extraction* but first in collinear factorization from BSA
- Great experimentalist/theorist collaboration!
- **TSA@CLAS: Analysis of h**_L(x) here at LNF (data analyzed by S. Pereira)

Higher-twist from experiments

- Analysis of e(x) here at LNF (M. Mirazita, S. Pisano & A.C.)
 - (Second) extraction but first in collinear factorization from BSA
- Great experimentalist/theorist collaboration!
- ► TSA@CLAS: Analysis of h_L(x) here at LNF (data analyzed by S. Pereira)
 - ► (Re)submit a proposal for CLAS@12?
 - Projections based on models for e(x) & h_L(x) for PAC38

More asymmetries?

- > Yes, but we need more info on multiplicities for
 - $\pi^{\pm}K^{\mp}$ pairs, $\pi^{\pm}K^{0}$ pairs
 - $\pi^0\pi^{\pm}$ pairs

Yes, but CLAS@12 kinematics probably more adapted

More asymmetries?

- > Yes, but we need more info on multiplicities for
 - $\pi^{\pm}K^{\mp}$ pairs, $\pi^{\pm}K^{0}$ pairs
 - $\pi^0\pi^\pm$ pairs \clubsuit From Belle & BaBar?
 - From COMPASS & HERMES?
 - From models?
- Yes, but CLAS@12 kinematics probably more adapted

More asymmetries?

More asymmetries?

Back-up Slides

Pion pair production in pp[↑] collision

$$A_N \equiv \frac{d\sigma_{UT}}{d\sigma_{UU}}$$

$$d\sigma_{UU} = 2 \left| \mathbf{P}_{C\perp} \right| \sum_{a,b,c,d} \int \frac{dx_a dx_b}{4\pi^2 z_c} f_1^a(x_a) f_1^b(x_b) \frac{d\hat{\sigma}_{ab\to cd}}{d\hat{t}} D_{1,oo}(\bar{z}_c, M_C^2),$$

$$d\sigma_{UT} = 2 \left| \mathbf{P}_{C\perp} \right| \sum_{a,b,c,d} \frac{|\mathbf{R}_{C}|}{M_{C}} \left| \mathbf{S}_{BT} \right| \sin \left(\phi_{S_{B}} - \phi_{R_{C}} \right) \int \frac{dx_{a} dx_{b}}{16\pi z_{c}} f_{1}^{a}(x_{a}) h_{1}^{b}(x_{b}) \frac{d\Delta \hat{\sigma}_{ab^{\uparrow} \to c^{\uparrow} d}}{d\hat{t}} H_{1,ot}^{\triangleleft c}(\bar{z}_{c}, M_{C}^{2})$$

Bacchetta & Radici, PRD70

@
$$Q_0^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} \left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

@
$$Q_0^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} (A_q + B_q x + C_q x^2 + D_q x^3)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

judicious choice for integrability of the transversities

$$(Q_0)^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} (A_q + B_q x + C_q x^2 + D_q x^3)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

judicious choice for integrability of the transversities

$$\chi^2/d.o.f. \simeq 1.1$$

no significant change in the X²/ dof in the 3 versions

$$(Q_0)^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} \left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

judicious choice for integrability of the transversities

Rigid version

$$\chi^2/d.o.f. \simeq 1.1$$

no significant change in the X²/ dof in the 3 versions

$$(Q_0)^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} \left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

judicious choice for integrability of the transversities

$$\chi^2/d.o.f. \simeq 1.1$$

no significant change in the X²/ dof in the 3 versions

$$(Q_0)^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} \left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

Rigid version

 $\chi^2/d.o.f. \simeq 1.1$

no significant change in the X²/ dof in the 3 versions

Extra-flexible version

We don't know GLUON distr. a priori !!

Fitting procedure: chiral-odd DiFF

Binning (z, M_h) of a₁₂@Belle

z-binning : 0.2, 0.27, 0.33, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0 mh-binning : 0.28, 0.4, 0.5, 0.62, 0.77, 0.9, 1.1, 1.5, 2.

1st step: consider only bin 0.5<M_h<1.1 GeV

qq,gg

$$\chi^2 = \sum_{\text{dof}} \frac{(theo - exp)^2}{err^2}$$

LO Evolution with chiral-odd splitting functions & HOPPET: 1st step: for

1st step: forward evolution

... just like the unpol. case

+ integration over bin ranges

$$H_1^{\triangleleft u}(z, M_h) \propto \sqrt{M_h^2 - 4 m_\pi^2} e^{A(1-z) - M_h B + C/z} \frac{D + F z^2 + G M_h z + H M_h^2 z + J \frac{M_h^2}{z}}{(M_h^2 - m_\rho^2)^2 + K^2}$$

Q²=1GeV²

From Belle data

Transversity from e $p^{\uparrow} \rightarrow e^{\prime}$ ($\pi^{+}\pi^{-}$) X @ HERMES

$$xh_{1}^{u_{v}}(x,Q^{2}) - \frac{1}{4}xh_{1}^{d_{v}}(x,Q^{2}) = -C_{y}^{-1}A_{\text{DIS}}(x,Q^{2})\underbrace{n_{u}(Q^{2})}_{n_{u}(Q^{2})}\sum_{q=u,d,s}\frac{e_{q}^{2}}{e_{u}^{2}}xf_{1}^{q+\bar{q}}(x,Q^{2})$$
with 1-to-100 GeV² evolution correction: **HERMES range:** -0.251⁻¹ (± 9% theo. err.) from BELLE

small corrections

From Belle data

Transversity from e $p^{\uparrow} \rightarrow e^{\prime} (\pi^{+}\pi^{-}) X @ HERMES$

$$xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2) = -C_y^{-1}A_{\text{DIS}}(x,Q^2)\underbrace{\frac{n_u(Q^2)}{n_u^{\uparrow}(Q^2)}}_{q=u,d,s}\sum_{q=u,d,s}\frac{e_q^2}{e_u^2}xf_1^{q+\bar{q}}(x,Q^2)$$

with 1-to-100 GeV² evolution correction: small corrections

HERMES range: -0.251^{-1} (± 9% theo. err.) from BELLE

Transversity from e $p^{\uparrow} \rightarrow e'$ ($\pi^{+}\pi^{-}$) X @ COMPASS 2007

$$xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2) = -C_y^{-1}A_{\text{DIS}}(x,Q^2)\underbrace{\frac{n_u(Q^2)}{n_u^{\uparrow}(Q^2)}}_{g=u.d.s}\underbrace{\sum_{q=u.d.s}\frac{e_q^2}{e_u^2}xf_1^{q+\bar{q}}(x,Q^2)$$

with 1-to-100 GeV² evolution correction: negligible corrections

COMPASS range: -0.221^{-1} (± 5% theo. err.) from BELLE

From Belle data

Transversity from e $p^{\uparrow} \rightarrow e^{\prime} (\pi^{+}\pi^{-}) X @ HERMES$

$$xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2) = -C_y^{-1}A_{\text{DIS}}(x,Q^2)\underbrace{\frac{n_u(Q^2)}{n_u^{\uparrow}(Q^2)}}_{q=u,d,s}\sum_{q=u,d,s}\frac{e_q^2}{e_u^2}xf_1^{q+\bar{q}}(x,Q^2)$$

with 1-to-100 GeV² evolution correction: small corrections **HERMES range:** -0.251^{-1} (± 9% theo. err.) from BELLE

Transversity from e $p^{\uparrow} \rightarrow e'$ ($\pi^{+}\pi^{-}$) X @ COMPASS 2007

$$xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2) = -C_y^{-1}A_{\text{DIS}}(x,Q^2) \underbrace{\frac{n_u(Q^2)}{n_u^{\uparrow}(Q^2)}}_{q=u.d.s} \underbrace{\frac{e_q^2}{e_u^2}xf_1^{q+\bar{q}}(x,Q^2)}_{q=u.d.s}$$

with 1-to-100 GeV² evolution correction: negligible corrections

COMPASS range: -0.221^{-1} (± 5% theo. err.) from BELLE

Comparison with extraction

PROTON

rigid functional form

