## Analysis of dhadron obscrvables

## Aurore Courtoy

IFPA-Université de Liège (Belgium) \& LNF-INFN (here)

PSHP, LNF, Frascati
November 12, 2013

## Outline

\& Why Dihadron Fragmentation Functions?
\& How well do we know DiFFs?
© The very first success: Transverse Target-Spin Asymmetry in two-pion SIDIS
© This year's fav' topic: Higher-twist distributions

## Primary goal: Proton structure

## - 3 leading-twist PDFs:



$$
\begin{aligned}
& h_{1}(x) \\
& \text { T } \\
& \text { transversely polarized target }
\end{aligned}
$$

## Primary goal: Proton structure

## - 3 leading-twist PDFs:



- ... and a bunch of higher-twist PDFs


## Primary goal: Proton structure

## - 3 leading-twist PDFs:



- ... and a bunch of higher-twist PDFs


## Primary goal: Proton structure

## - 3 leading-twist PDFs:



- ... and a bunch of higher-twist PDFs


Why Dihadron Fragmentation Functions

## Hadronization: fragmentation functions

see Francesca Giordano's talk

Hadronization of the quark into a hadron $h$

$$
D_{1}^{q \rightarrow h}\left(z, \kappa_{T}^{2}\right)
$$



## Hadronization: fragmentation functions

Hadronization of the quark into a hadron $h$

$$
D_{1}^{q \rightarrow h}\left(z, \kappa_{T}^{2}\right)
$$



## Hadronization: fragmentation functions

Hadronization of the quark into a hadron $h$


## Interference Fragmentation Functions

$$
H_{1}^{\varangle}\left(z, M_{h}\right)
$$


transverse pol. of the fragm. quark $\leftrightarrow$ angular distribution of hadron pairs in the transverse plane

## Factorization

## TMD factorization

$$
d \sigma \propto \sum_{q}\left[\mathrm{PDF}^{q} \otimes \mathrm{FF}^{q}\right]\left(x, z, P_{h \perp}^{2}\right)
$$

## Collinear factorization

$$
d \sigma \propto \sum_{q} \operatorname{PDF}^{q}(x) \times \operatorname{DiFF}^{q}\left(z, M_{h}\right)
$$

## Factorization

## TMD factorization

$$
d \sigma \propto \sum_{q}\left[\mathrm{PDF}^{q} \otimes \mathrm{FF}^{q}\right]\left(x, z, P_{h \perp}^{2}\right)
$$

## Collinear factorization

$$
d \sigma \propto \sum_{q} \operatorname{PDF}^{q}(x) \times \operatorname{DiFF}^{q}\left(z, M_{h}\right)
$$

TMD PDF vs. collinear PDF
see talks by J.O. Gonzalez H. \& M. Radici

## Factorization

## TMD factorization

$$
d \sigma \propto \sum_{q}\left[\mathrm{PDF}^{q} \otimes \mathrm{FF}^{q}\right]\left(x, z, P_{h \perp}^{2}\right)
$$

$\checkmark$ Convenient to use DiFFs!
Collinear factorization

$$
d \sigma \propto \sum_{q} \operatorname{PDF}^{q}(x) \times \operatorname{DiFF}^{q}\left(z, M_{h}\right)
$$

TMD PDF vs. collinear PDF
see talks by J.O. Gonzalez H. \& M. Radici

## The DiFF family

- Twist-2

$$
\Delta^{\left[\gamma^{-}\right]}=D_{1}\left(z, M_{h}\right)
$$

$$
\Delta^{\left[i \sigma^{i-} \gamma_{5}\right]}=\left.\frac{\epsilon_{T}^{i j} R_{T j}}{2 M} H_{1}^{\varangle}\left(z, M_{h}\right)\right|_{\text {plus } 2 \mathrm{k} \text { dependent } \mathrm{FF}}
$$

- Twist-3


## The DiFF family

- Twist-2

$$
\Delta^{\left[\gamma^{-}\right]}=D_{1}\left(z, M_{h}\right)
$$

$$
\Delta^{\left[i \sigma^{i-} \gamma_{5}\right]}=\frac{\epsilon_{T}^{i j} R_{T j}}{2 M} H_{1}^{\varangle}\left(z, M_{h}\right) \text { plus } 2 \mathrm{k} \text { dependent FF }
$$

- Twist-3


## Kinematical twist-3 Wandzura-Wilzcek approximation

Dynamical twist-3 ...

- higher-twists...


## The DiFF family

- Twist-2

$$
\Delta^{\left[\gamma^{-}\right]}=D_{1}\left(z, M_{h}\right)
$$

$$
\Delta^{\left[i \sigma^{i-} \gamma_{5}\right]}=\frac{\epsilon_{T}^{i j} R_{T j}}{2 M} H_{1}^{\varangle}\left(z, M_{h}\right) \text { plus } 2 \mathrm{k} \text { dependent FF }
$$

- Twist-3

Kinematical twist-3 Wandzura-Wilzcek approximation

$$
E, D^{\varangle}, H, G^{\varangle}
$$

Dynamical twist-3 ...

- higher-twists...


## The DiFF family

- Twist-2

$$
\Delta^{\left[\gamma^{-}\right]}=D_{1}\left(z, M_{h}\right)
$$

$$
\begin{array}{r}
\Delta^{\left[i \sigma^{i-} \gamma_{5}\right]}=\frac{\epsilon_{T}^{i j} R_{T j}}{2 M} H_{1}^{\varangle}\left(z, M_{h}\right) \\
\text { plus } 2 \mathrm{k}_{\mathrm{T}} \text { dependent } \mathrm{FF} \\
\end{array}
$$

- Twist-3

Kinematical twist-3 Wandzura-Wilzcek approximation

$$
E, D^{\varangle}, H, G^{\varangle}
$$

Dynamical twist-3 ...

$$
\tilde{D}^{\varangle}, \tilde{G}^{\varangle}, \tilde{H}, \tilde{E}
$$

- higher-twists...


## The DiFF family

- Twist-2

$$
\Delta^{\left[\gamma^{-}\right]}=D_{1}\left(z, M_{h}\right)
$$

$$
\Delta^{\left[i \sigma^{i-} \gamma_{5}\right]}=\left.\frac{\epsilon_{T}^{i j} R_{T j}}{2 M} H_{1}^{\varangle}\left(z, M_{h}\right)\right|_{\text {plus } 2 \mathrm{k}_{\mathrm{T}} \text { dependent } \mathrm{FF}}
$$

- Twist-3

Kinematical twist-3 Wandzura-Wilzcek approximation

$$
E, D^{\varangle}, H, G^{\varangle}
$$

Dynamical twist-3 ...

$$
\tilde{D}^{\varangle}, \tilde{G}^{\varangle}, \tilde{H}, \tilde{E}
$$

- higher-twists...
- P-odd DiFFs [Bacchetta, Boer, Radici, in progress??]


## Two-hadron SIDIS

- Aut

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h} ; Q\right)=-\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x ; Q^{2}\right) H_{1, s p}^{\varangle q}\left(z, M_{h} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right) D_{1}^{q}\left(z, M_{h} ; Q^{2}\right)}
$$

Jaffe, Jin, Tiang, PRL 80 Radici, Jakob \& Bianconi, PRD65

- Alu

$$
A_{L U}^{\sin \phi_{\phi} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) H_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z_{n}} f_{1}^{q}(x) \tilde{G}_{s p}^{\varangle} q\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

Bacchetta \& Radici, PRD69

- Aul

$$
A_{U L}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x h_{L}^{q}(x) H_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} g_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

## Two-hadron SIDIS

- Aut

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h} ; Q\right)=-\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x ; Q^{2}\right) H_{1, s p}^{\varangle q}\left(z, M_{h} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right) D_{1}^{q}\left(z, M_{h} ; Q^{2}\right)}
$$

Jaffe, Jin, Tiang, PRL 80
Radici, Jakob \& Bianconi, PRD65

- Alu

$$
A_{L U}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) H_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} f_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

Bacchetta \& Radici, PRD69

- Aul

$$
A_{U L}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x h_{L}^{q}(x) H_{1, s p}^{\triangleleft, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} g_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{q} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

## Two-hadron SIDIS

- Aut


## Vala!

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h} ; Q\right)=-\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x ; Q^{2}\right) H_{1, s p}^{\varangle q}\left(z, M_{h} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right) D_{1}^{q}\left(z, M_{h} ; Q^{2}\right)}
$$

Jaffe, Jin, Tiang, PRL 80
Radici, Jakob \& Bianconi, PRD65

- Alu

$$
A_{L U}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) H_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} f_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

Bacchetta \& Radici, PRD69

- Aul

$$
A_{U L}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x h_{L}^{q}(x) H_{1, s p}^{\triangleleft, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} g_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{q} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

## Two-hadron SIDIS

- Aut


## $\checkmark$ Daka!

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h} ; Q\right)=-\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x ; Q^{2}\right) H_{1, s p}^{\varangle q}\left(z, M_{h} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right) D_{1}^{q}\left(z, M_{h} ; Q^{2}\right)}
$$

Jaffe, Jin, Tiang, PRL 80
Radici, Jakob \& Bianconi, PRD65

- Alu

$$
A_{L U}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) H_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} f_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

## Stay awake until the

 last part of the talk!- Aul

$$
A_{U L}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x h_{L}^{q}(x) H_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} g_{1}^{q}(x) G_{s, s}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{q} f_{1}^{q}(x) \emptyset_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

## Aut at HERMES and COMPASS


see Christopher Braun's talk
[JHEP 06, 017 (2008)]
[Phys. Lett. B 713 (2012)]


2002-4 Deuteron Data

2007 Proton Data

## Pion pair production in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

## - Artru-Collins asymmetry

+ 2 hemispheres
- azimuthal modulation between the 2 hemispheres

† If we integrate over one hemisphere, we get

$$
A^{\cos \left(\phi_{R}+\bar{\phi}_{R}\right)}\left(z, M_{h}, Q^{2}\right)=-\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle}\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\triangleleft q}\left(z, M_{h} ; Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h} ; Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

## Artru-Collins asymmetry at Belle


[Phys.Rev.Lett. 107 (2011)]
see Isabella Garzia's talk

## Pion pair production in $\mathrm{pp}^{\uparrow}$ collision

$$
A_{N} \equiv \frac{d \sigma_{U T}}{d \sigma_{U U}}
$$

$$
A_{N}\left(\eta_{C},\left|\mathbf{P}_{C \perp}\right|, \cos \theta_{C}, M_{C}^{2}, \phi_{R_{C}}, \phi_{S_{B}}\right) \propto \frac{f_{1} \otimes h_{1} \otimes H_{1}^{\varangle}}{f_{1} \otimes f_{1} \otimes D_{1}}
$$

## Pion pair production in $\mathrm{pp}^{\uparrow}$ collision

$$
A_{N} \equiv \frac{d \sigma_{U T}}{d \sigma_{U U}} \quad A_{N}\left(\eta_{C},\left|\mathbf{P}_{C \perp}\right|, \cos \theta_{C}, M_{C}^{2}, \phi_{R_{C}}, \phi_{S_{B}}\right) \propto \frac{f_{1} \otimes h_{1} \otimes H_{1}^{\varangle}}{f_{1} \otimes f_{1} \otimes D_{1}}
$$

- $\mathrm{A}_{N}{ }^{\sin \Phi}$ asymmetry @ Phenix
- $A_{N}{ }^{\text {sin } \Phi}$ asymmetry @ STAR


## Pion pair production in $\mathrm{pp}^{\uparrow}$ collision

$$
A_{N} \equiv \frac{d \sigma_{U T}}{d \sigma_{U U}} \quad A_{N}\left(\eta_{C},\left|\mathbf{P}_{C \perp}\right|, \cos \theta_{C}, M_{C}^{2}, \phi_{R_{C}}, \phi_{S_{B}}\right) \propto \frac{f_{1} \otimes h_{1} \otimes H_{1}^{\varangle}}{f_{1} \otimes f_{1} \otimes D_{1}}
$$

- $\mathbf{A}_{N}{ }^{\sin \Phi}$ asymmetry @ Phenix

- $\mathrm{A}_{\boldsymbol{N}}{ }^{\sin \Phi}$ asymmetry @ STAR

A. Vossen talk, Evolution workshop, 2012, JLab


What we know about DiFFs

## First principles for $\mathrm{D}_{1}$

Hadronization process:
$q \rightarrow \pi^{+} \pi^{-X}$

## First principles for $\mathrm{D}_{\mathbf{1}}$

Hadronization process:

$$
q \rightarrow \pi^{+} \pi^{-X}
$$

Related to MULTIPLICITIES
see Nour Makke's talk

Nbr of events: $\quad \sigma^{U}\left(e^{+} e^{-}\right) \equiv \frac{N}{l u m}=4 \pi \frac{\alpha^{2}}{Q^{2}} \sum_{i=1}^{n_{f}} e_{q_{n}}^{2}$

Nbr of pion pairs: $\quad \sigma^{U}\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}+X\right) \equiv \frac{n^{\pi^{+} \pi^{-}}}{\operatorname{lum}}=4 \pi \frac{\alpha^{2}}{Q^{2}} \sum_{i=1}^{n_{f}} e_{q_{i}}^{2} \int d z d M_{h} D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right)$

## First principles for $\mathrm{D}_{\mathbf{1}}$

## Hadronization process:

$$
q \rightarrow \pi^{+} \pi^{-X}
$$

Related to MULTIPLICITIES
see Nour Makke's talk

Nbr of events: $\quad \sigma^{U}\left(e^{+} e^{-}\right) \equiv \frac{N}{l u m}=4 \pi \frac{\alpha^{2}}{Q^{2}} \sum_{i=1}^{n_{f}} e_{q_{n}}^{2}$

Nbr of pion pairs:

$$
\sigma^{U}\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}+X\right) \equiv \frac{n^{\pi^{+} \pi^{-}}}{l u m}=4 \pi \frac{\alpha^{2}}{Q^{2}} \sum_{i=1}^{n_{f}} e_{q_{i}}^{2} \int d z d M_{h} D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right)
$$

One-hemisphere differential cross section:

$$
\frac{d \sigma}{d z d M_{h}^{2}}=\frac{4 \pi \alpha^{2}}{Q^{2}} \sum_{i=1}^{n_{f}} e_{q_{i}}^{2} D_{1}^{i}\left(z, M_{h}^{2}\right)
$$

GOOD NEWS:
Bins in $\mathbf{z}$ \& $\mathbf{M}_{\mathbf{h}}$ related to $\mathbf{n b r}$ of pion pairs
$\Downarrow$

## Spectator model for $D_{1}$



Most prominent channels at $\mathrm{M}_{\mathrm{h}} \leq 1.8 \mathrm{GeV}$

1. Background:

$$
q \rightarrow \pi^{+} \pi^{-} X_{1}
$$

2. $\rho$ production: $\mathrm{M}_{\mathrm{h}} \sim \mathrm{m}_{\rho}=770 \mathrm{MeV}$

$$
q \rightarrow \rho X_{2} \rightarrow \pi^{+} \pi^{-} X_{2}
$$

3. $\omega$ production: $\mathrm{M}_{\mathrm{h}} \sim \mathrm{m}_{\omega}=782 \mathrm{MeV}$

$$
q \rightarrow \omega X_{3} \rightarrow \pi^{+} \pi^{-} X_{3}
$$

$$
\text { broad peak at } \mathrm{M}_{\mathrm{h}} \sim 500 \mathrm{MeV}
$$

$$
q \rightarrow \omega \pi^{0} X_{4}^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0} X_{4}^{\prime}
$$

undetected $\pi 0$
4. K production: $\mathrm{M}_{\mathrm{h}} \sim \mathrm{m}_{\mathrm{K}}=497 \mathrm{MeV}$

$$
q \rightarrow K^{0} X_{6} \rightarrow \pi^{+} \pi^{-} X_{6}
$$

## Spectator model for $\mathbf{D}_{1}$



Most prominent channels at $\mathrm{M}_{\mathrm{h}} \leq 1.8 \mathrm{GeV}$

1. Background:

$$
q \rightarrow \pi^{+} \pi^{-} X_{1}
$$

2. $\rho$ production: $\mathrm{M}_{\mathrm{h}} \sim \mathrm{m}_{\rho}=770 \mathrm{MeV}$

$$
q \rightarrow \rho X_{2} \rightarrow \pi^{+} \pi^{-} X_{2}
$$

3. $\omega$ oroduction: $M_{h} \sim m_{\omega}=782 \mathrm{MeV}$

Spectator model
pair produced in relative s-wave parameter tuned to PYTHIA output for HERMES


## NJL-jet model for $D_{1}$



NJL vertices
Vector meson decays


$$
\begin{aligned}
& +\mathrm{d}, \mathrm{~s} \\
& +\pi^{ \pm} \pi^{0}, \pi \mathrm{~K}
\end{aligned}
$$

## Parameterization of $D_{1}$



## Use PYTHIA output as "data set"

Relevant variables and quantities: $\quad\left(z_{,}, M_{h}\right)$
Standard fitting approach: Functional form in ( $\mathrm{z}, \mathrm{M}_{\mathrm{h}}$ )

## Parameterization of $D_{1}$



Scale dependence:

## Use PYTHIA output as "data set"

Relevant variables and quantities: $\quad\left(z_{,}, M_{h}\right)$
Standard fitting approach: Functional form in ( $\mathrm{z}, \mathrm{M}_{\mathrm{h}}$ )

## Parameterization of $D_{1}$



Scale dependence:

## Use PYTHIA output as "data set"

Relevant variables and quantities: $\quad\left(z_{,}, M_{h}\right)$
Standard fitting approach: Functional form in ( $\mathrm{z}, \mathrm{M}_{\mathrm{h}}$ )

Belle@100GeV ${ }^{2}$.... but SIDIS@ ~2.5GeV ${ }^{2}$

LO Evolution with unpol. splitting functions \& HOPPET:


Ceccopieri, Radici \& Bacchetta,, PLB 650 (2007) 81-89

1st step: forward evolution

Start fit @ 1GeV : Induce quark \& gluon distristributions

## Parameterization of the unpolarized DiFF

## $M_{h}$ behavior


z behavior


error analysis with $\Delta \chi^{2}=1$

$\chi^{2 / d o f}$
p: 1.28
$\omega$ : 1.68
$K_{s}{ }^{0}: 1.85$
cont: 1.69
TOT: 1.69

## Parameterization of the unpolarized DiFF



A.C., Bacchetta, Radici \& Bianconi, PRD85

NJL-jet based MC event generator

H. Matevosyan et al., 1310.1917

## Spectator model for $\mathrm{H}_{1}{ }^{\star}$



## Spectator model for IFF

pair produced in relative p-wave
parameter tuned to PYTHIA output for HERMES

## Parameterization of $\mathrm{H}_{1}{ }^{\star}$

$$
\frac{|\mathbf{R}|}{M_{h}} H_{1, s p}^{\varangle u}\left(z, M_{h} ; Q^{2}\right) n_{u}^{\uparrow}\left(Q^{2}\right) \equiv \frac{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle}{\left\langle\sin ^{2} \theta_{2}\right\rangle} \frac{9}{5} \frac{1}{\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle} \times \underbrace{\begin{array}{c}
\text { Artru-Collins } \\
\text { asymmetry@ Belle }
\end{array}}_{\text {we just got them! }}
$$

LO Evolution with chiral-odd splitting functions \& HOPPET:


1st step: forward evolution
... just like the unpol. case

+ integration over bin ranges


## Parameterization of $\mathrm{H}_{1}{ }^{\star}$




Phenomenological cut $\gamma_{h} \equiv \frac{2 M_{h}}{z Q} \ll 1$

## $\chi^{2} / \mathrm{dof}=0.57$

## Parameterization of $\mathrm{H}_{1}{ }^{\star}$




$$
\text { Phenomenological cut } \gamma_{h} \equiv \frac{2 M_{h}}{z Q} \ll 1
$$

## $\chi^{2} / \mathrm{dof}=0.57$

Evolution effects : From Belle's scale to HERMES and COMPASS'scale
$\rightarrow$ needs analytical expression and gluon DiFF $\rightarrow$ fits $\rightarrow$ [A.C., Bacchetta, Radici \& Bianconi, PRD85]

## Parameterization of $\mathrm{H}_{1}{ }^{\star}$




Phenomenological cut $\gamma_{h} \equiv \frac{2 M_{h}}{z Q} \ll 1$

## $\chi^{2} / \mathrm{dof}=0.57$

Evolution effects : From Belle's scale to HERMES and COMPASS'scale
$\rightarrow$ needs analytical expression and gluon DiFF $\rightarrow$ fits $\rightarrow$ [A.C., Bacchetta, Radici \& Bianconi, PRD85]


only $\mathrm{H}_{1}<$ evolution on plot


The very first success

## Iransversity at SIDIS

$$
A_{\mathrm{DIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

Using symmetries for DiFFs:

$$
H_{1}^{\varangle, u}=-H_{1}^{\varangle, d}=-\bar{H}_{1}^{\varangle, u}=\bar{H}_{1}^{\varangle, d}
$$

$$
\begin{aligned}
& D_{1}^{u}=D_{1}^{d}=\bar{D}_{1}^{u}=\bar{D}_{1}^{d} \\
& D_{1}^{s}=\bar{D}_{1}^{s}, \quad D_{1}^{c}=\bar{D}_{1}^{c}
\end{aligned}
$$

Proton

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right) \propto-A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)
$$

Deuteron

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)+x h_{1}^{d_{v}}\left(x, Q^{2}\right) \propto-\frac{5}{3} A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} x\left(f_{1}^{u+\bar{u}}+f_{1}^{d+\bar{d}}+\frac{2}{5} f_{1}^{s+\bar{s}}\right)
$$

and combinations of both ...

## Iransversity at SIDIS

$$
A_{\mathrm{DIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

Using symmetries for DiFFs:

$$
H_{1}^{\varangle, u}=-H_{1}^{\varangle, d}=-\bar{H}_{1}^{\varangle, u}=\bar{H}_{1}^{\varangle, d}
$$

$$
\begin{aligned}
& D_{1}^{u}=D_{1}^{d}=\bar{D}_{1}^{u}=\bar{D}_{1}^{d} \\
& D_{1}^{s}=\bar{D}_{1}^{s}, \quad D_{1}^{c}=\bar{D}_{1}^{c}
\end{aligned}
$$

Proton

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right) \propto-A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)
$$

Deuteron

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)+x h_{1}^{d_{v}}\left(x, Q^{2}\right) \propto-\frac{5}{3} A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} x\left(f_{1}^{u+\bar{u}}+f_{1}^{d+\bar{d}}+\frac{2}{5} f_{1}^{s+\bar{s}}\right)
$$

and combinations of both ...

We take results for our analysis
from pion pair production in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation at Belle

## Point-by-point transversity

- from HERMES data
- DiFF analysis
point by point from fit
- [Bacchetta, A.C., Radici, PRL 107]

- from COMPASS data
- DiFF analysis
point by point from fit
- [Bacchetta, A.C., Radici, JHEP 1303]


## Point-by-point transversity

- from HERMES data
- DiFF analysis
point by point from fit
- [Bacchetta, A.C., Radici, PRL 107]

- from COMPASS data
- DiFF analysis
point by point from fit
- [Bacchetta, A.C., Radici, JHEP 1303]

Ok, but nok of practical use!

## Point-by-point transversity

- from HERMES data
- DiFF analysis
point by point from fit
- [Bacchetta, A.C., Radici, PRL 107]

- from COMPASS data
- DiFF analysis
point by point from fit
- [Bacchetta, A.C., Radici, JHEP 1303]

Ok, but not of practical use!
$\rightarrow$ Fit of valence Eransversiby

## Point-by-point transversity

- from HERMES data
- DiFF analysis
point by point from fit
- [Bacchetta, A.C., Radici, PRL 107]

- from COMPASS data
- DiFF analysis
point by point from fit
- [Bacchetta, A.C., Radici, JHEP 1303]

Ok, but nok of practical use!
$\rightarrow$ Fir of valence Eransversiby
Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\checkmark h_{1}(x=1)=0$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

## Collinear extraction of $h_{1}$



## Collinear extraction of $h_{1}$



## Collinear extraction of $h_{1}$


$1 \sigma$ error band from replicas @2.4 GeV²
see Marco Radici's talk

Best fit central curve @2.4 GeV ${ }^{2}$ and standard $1 \sigma$ error band


Rigid version

## Collinear extraction of $h_{1}$



## Tensor charge



Torino: Anselmino et al., (2013)

## Tensor charge



Torino: Anselmino et al.,(2013)

$$
\delta q=\int_{6.4 \times 10^{-3}}^{0.28} d x h_{1}^{q_{v}}(x)
$$

$$
\delta q=\int_{\sim 0}^{1} d x h_{1}^{q_{v}}(x)
$$


8. fit of $A_{0}$
7. fit of $\mathrm{A}_{12}$
6. MC extra flexible
5. standard extra flexible
4. MC flexible
3. standard flexible
2. MC rigid

1. standard rigid


Pavia: Bacchetta et al., JHEP 03 (2012) 119

## Tensor charge


Torino: Anselmino et al.,(2013)

$$
\delta q=\int_{6.4 \times 10^{-3}}^{0.28} d x h_{1}^{q_{v}}(x)
$$

$$
\delta q=\int_{\sim 0}^{1} d x h_{1}^{q_{v}}(x)
$$

8. fit of $A_{0}$
9. fit of $\mathrm{A}_{12}$
10. MC extra flexible
11. standard extra flexible
12. MC flexible
13. standard flexible
14. MC rigid
15. standard rigid


Pavia: Bacchetta et al., JHEP 03 (2012) 119

## Tensor charge



Torino: Anselmino et al.,(2013)

## Extrapolation outside the range of data

$$
\delta q=\int_{6.4 \times 10^{-3}}^{0.28} d x h_{1}^{q_{v}}(x)
$$

$$
\delta q=\int_{\sim 0}^{1} d x h_{1}^{q_{v}}(x)
$$



Pavia: Bacchetta et al., JHEP 03 (2012) 119

## Future of transversity

- Functional Form crucial to standard fitting procedure
- Highly unconstrained outside data range
$\Rightarrow$ Important! e.g., for tensor charge
$\Rightarrow$ We NEED more data at higher $x$-values $\rightarrow$ JLab@12GeV


## Future of transversity

- Functional Form crucial to standard fitting procedure
= Highly unconstrained outside data range
$\Rightarrow$ Important! e.g., for tensor charge
$\Rightarrow$ We NEED more data at higher $x$-values $\rightarrow$ JLab@12GeV

Proposal for CLAS12 (A rated \& waiting for HDice target to be ready)

A 12 GeV Research Proposal to Jefferson Lab (PAC 39)

Measurement of transversity with dihadron production in SIDIS with transversely polarized target

## Future of transversity

- Functional Form crucial to standard fitting procedure
- Highly unconstrained outside data range
$\Rightarrow$ Important! e.g., for tensor charge
$\Rightarrow$ We NEED more data at higher $x$-values $\rightarrow$ JLab@12GeV

Proposal for CLAS12 (A rated \& waiting for HDice target to be ready)

A 12 GeV Research Proposal to Jefferson Lab (PAC 39)

Measurement of transversity with dihadron production in SIDIS with transversely polarized target

Dihadron Electroproduction in DIS with Transversely Polarized ${ }^{3} \mathrm{He}$ Target at 11 and 8.8 GeV

Letter of Intent for SoLID

May 10, 2013
(Proposal to be submit to next PAC)


Higher-twist PDFs

## $e(x)$ : strange content of the proton

- Pion-nucleon $\sigma$ term

$$
\int_{-1}^{1} d x\left(e^{u}+e^{d}\right)(x)=\frac{1}{2 M}\langle P|(\bar{u} u+\bar{d} d)|P\rangle \equiv \frac{\sigma_{\pi N}}{\left(m_{u}+m_{d}\right) / 2}
$$

- related to the strangeness content of the nucleon

$$
\sigma_{\pi N}=(50-70 \mathrm{MeV})
$$

$$
y_{N}=\frac{\langle N| \bar{\psi}_{s} \psi_{s}|N\rangle}{\frac{1}{2}\left\langle N \mid\left(\bar{\psi}_{u} \psi_{u}+\bar{\psi}_{d} \psi_{d}\right) N\right\rangle}=1-\frac{m}{m_{s}-m} \frac{M_{\Xi}+M_{\Sigma}-2 M_{N}}{\sigma_{\pi N}}
$$

LO ChiPT

- large strange contribution
- but mass contribution of strange not sensitive to $y$


## Higher-twist from experiments



$\Delta \sigma_{L U} \propto\left[\mathrm{e}(\mathrm{x}) H_{1}^{\Varangle q}+\mathrm{f}(\mathrm{x}) \tilde{G}_{1}^{\Varangle q}\right] \sin \varphi_{R}$

- Unpolarized H2 target
$\square$ Longitudinally-polarized NH3 target

Plot from
Silvia Pisano, LNF-INFN - MeNu2013

$$
A_{L U}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{W(y)}{A(y)} \frac{M}{Q} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}\left(x, Q^{2}\right) H_{1, s p}^{\varangle, q}\left(z, M_{h}, Q^{2}\right)+\frac{M_{h}}{2 M} f_{1}^{q}\left(x, Q^{2}\right) \tilde{G}_{s, q}^{\varangle, q}\left(z, M_{h},\right.\right.}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) D_{1, s s+p p}^{q}\left(z, M_{h}, Q^{2}\right)}
$$

## Higher-twist from experiments

- Analysis of $\mathrm{e}(\mathrm{x})$ here at LNF (M. Mirazita, S. Pisano \& A.C.)
- (Second) extraction but first in collinear factorization from BSA
- Great experimentalist/theorist collaboration!
- TSA@CLAS: Analysis of $h_{L}(x)$ here at LNF (data analyzed by S. Pereira)


## Higher-twist from experiments

Analysis of $\mathrm{e}(\mathrm{x})$ here at LNF (M. Mirazita, S. Pisano \& A.C.)

- (Second) extraction but first in collinear factorization from BSA

Great experimentalist/theorist collaboration!
TSA@CLAS: Analysis of $h_{L}(x)$ here at LNF (data analyzed by S. Pereira)
(Re)submit a proposal for CLAS@12?

- Projections based on models for $\mathrm{e}(\mathrm{x}) \& h_{L}(\mathrm{x})$ for PAC38




## More asymmetries?

- Yes, but we need more info on multiplicities for
- $\pi^{ \pm} K^{\mp}$ pairs, $\pi^{ \pm} K^{0}$ pairs
- $\pi^{0} \pi^{ \pm}$pairs
- Yes, but CLAS@12 kinematics probably more adapted


## More asymmetries?

- Yes, but we need more info on multiplicities for
- $\pi^{ \pm} K^{\mp}$ pairs, $\pi^{ \pm} K^{0}$ pairs
- $\pi^{0} \pi^{ \pm}$pairs \& From Belle \& BaBar?
\& From COMPASS \& HERMES?
\& From models?
- Yes, but CLAS@12 kinematics probably more adapted


## More asymmetries?

- Yes, but we need more info on multiplicities for
- $\pi^{ \pm} K^{\mp}$ pairs, $\pi^{ \pm} K^{0}$ pairs
- $\pi^{0} \pi^{ \pm}$pairs
- Yes, but CLAS@12 kinematics probably more adapted

H. Matevosyan et al., 1310.1917


## More asymmetries?

- Yes, but we need more info on multiplicities for
- $\pi^{ \pm} \mathrm{K}^{\mp}$ pairs, $\pi^{ \pm} \mathrm{K}^{0}$ pairs
- $\pi^{0} \pi^{ \pm}$pairs
- Yes, but CLAS@12 kinematics probably more adapted
- Study di- to single-hadron SIDIS limits.

H. Matevosyan et al., 1310.1917
- Can we get more first principles'based arguments?


## Back-up Slides

PYTHIA event generator for $\mathrm{q} \rightarrow\left(\mathrm{I}^{+} \pi^{-}\right) \mathrm{X}$ @ Belle kinematics

# PYTHIA event generator for $\mathrm{q} \rightarrow\left(\mathrm{\pi}^{+} \mathrm{T}^{-}\right) \mathrm{X}$ @ Belle kinematics 



# PYTHIA event generator for $\mathrm{q} \rightarrow\left(\pi^{+} \pi^{-}\right) \mathrm{X}$ @ Belle kinematios 



# PYTHIA event generator for $\mathrm{q} \rightarrow\left(\pi^{+} \pi^{-}\right) \mathrm{X}$ @ Belle Kinematios 



# PYTHIA event generator for $\mathrm{q} \rightarrow\left(\pi^{+} \pi^{-}\right) \mathrm{X}$ @ Belle Kinematios 



## PYTHIA event generator for $\mathrm{q} \rightarrow\left(\pi^{+} \pi^{-}\right) \mathrm{X}$ @ Belle kinematios



| 9 zbins |
| :--- |
| Flavor decomposition |
| down |
| strange |
| charm |
| $\rho$ channel |
| $\omega$ channels |
| $\mathrm{K}^{0}$ channel |
| non resonant contrib. |

e.g. uds from $w$ channels

## Pion pair production in $\mathrm{pp}^{\uparrow}$ collision

$$
A_{N} \equiv \frac{d \sigma_{U T}}{d \sigma_{U U}}
$$

$$
\begin{gathered}
d \sigma_{U U}=2\left|\mathbf{P}_{C \perp}\right| \sum_{a, b, c, d} \int \frac{d x_{a} d x_{b}}{4 \pi^{2} z_{c}} f_{1}^{a}\left(x_{a}\right) f_{1}^{b}\left(x_{b}\right) \frac{d \hat{\sigma}_{a b \rightarrow c d}}{d \hat{t}} D_{1, o o}\left(\bar{z}_{c}, M_{C}^{2}\right), \\
d \sigma_{U T}=2\left|\mathbf{P}_{C \perp}\right| \sum_{a, b, c, d} \frac{\left|\mathbf{R}_{C}\right|}{M_{C}}\left|\mathbf{S}_{B T}\right| \sin \left(\phi_{S_{B}}-\phi_{R_{C}}\right) \int \frac{d x_{a} d x_{b}}{16 \pi z_{c}} f_{1}^{a}\left(x_{a}\right) h_{1}^{b}\left(x_{b}\right) \frac{d \Delta \hat{\sigma}_{a b \uparrow \rightarrow c t d}}{d \hat{t}} H_{1, o t}^{\triangleleft c}\left(\bar{z}_{c}, M_{C}^{2}\right)
\end{gathered}
$$

## The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

3rd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

## The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial
judicious choice for integrability of the transversities

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

3rd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

## The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial
judicious choice for integrability of the transversities

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

$$
\chi^{2} / d . o . f . \simeq 1.1
$$

3rd order polynomial
no significant change in the $X^{2} /$ dof in the 3 versions

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

## The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$


judicious choice for integrability of the transversities

Rigid version





## The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

## Flexible version

$\varepsilon$
judicious choice for integrability of the transversities

$$
\chi^{2} / d . o . f . \simeq 1.1
$$

no significant change in the $X^{2} /$ dof in the 3 versions

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

## The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

## Flexible version

judicious choice for integrability of the transversities

$$
\chi^{2} / d . o . f . \simeq 1.1
$$

3rd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

## Fitting procedure: $\left(z, M_{h}\right)$ and $Q^{2}$-dependence

Relevant variables and quantities: $\quad\left(z_{,}, M_{h}\right)$
unfactorized functional form $\rightarrow$ "theo"

Scale dependence:
Belle@100GeV ${ }^{2}$.... but SIDIS@~2.5GeV ${ }^{2}$

## Fitting procedure: ( $\mathrm{z}, \mathrm{Mh}_{\mathrm{h}}$ ) and $\mathrm{Q}^{2}$-dependence

Relevant variables and quantities: $\quad\left(z_{,}, M_{h}\right)$
$\xrightarrow{\longrightarrow}$ unfactorized functional form $\rightarrow$ "theo"

Scale dependence:
Belle@100GeV² .... but SIDIS@~2.5GeV ${ }^{2}$

LO Evolution with unpol. splitting functions \& HOPPET:


Oth step: backward evolution


## Fitting procedure: ( $\mathrm{z}, \mathrm{Mh}_{\mathrm{h}}$ ) and $\mathrm{Q}^{2}$-dependence

Relevant variables and quantities: $\quad\left(z_{,}, M_{h}\right)$
unfactorized functional form $\rightarrow$ "theo"

Scale dependence:
Belle@100GeV² .... but SIDIS@~2.5GeV ${ }^{2}$

LO Evolution with unpol. splitting functions \& HOPPET:


Oth step: backward evolution


We don't know GLUON distr. a priori !!

## Fitting procedure: $(z, M h)$ and $Q^{2}$-dependence

Relevant variables and quantities: $\quad\left(z_{,}, M_{h}\right)$
unfactorized functional form $\rightarrow$ "theo"

Scale dependence:
Belle@100GeV² .... but SIDIS@~2.5GeV ${ }^{2}$

LO Evolution with unpol. splitting functions \& HOPPET:

Oth step: backward evolution


We don't know GLUON distr. a priori !!

Start fit @ 1GeV
Induce $q$ \& g distr.

## Fitting procedure: chiral-odd DiFF

Binning (z, Mh) of a12@Belle
z-binning : $0.2,0.27,0.33,0.4,0.5,0.6,0.7,0.8,1.0$
mh-binning : $0.28,0.4,0.5,0.62,0.77,0.9,1.1,1.5,2$.
1st step: consider only bin $0.5<\mathrm{M}_{\mathrm{h}}<1.1 \mathrm{GeV}$

$$
\chi^{2}=\sum_{\text {dof }} \frac{(\text { theo }-e x p)^{2}}{e r r^{2}}
$$

LO Evolution with chiral-odd splitting functions \& HOPPET:


1st step: forward evolution
... just like the unpol. case

+ integration over bin ranges

$$
H_{1}^{\varangle u}\left(z, M_{h}\right) \propto \sqrt{M_{h}^{2}-4 m_{\pi}^{2}} e^{A(1-z)-M_{h} B+C / z} \frac{D+F z^{2}+G M_{h} z+H M_{h}^{2} z+J \frac{M_{h}^{2}}{z}}{\left(M_{h}^{2}-m_{\rho}^{2}\right)^{2}+K^{2}}
$$

## From Belle data

## Transversity fromept-e' (п+ா) X @ HERM=S


with 1-to-100 GeV² evolution correction: small corrections

## From Belle data

## 

$$
\begin{aligned}
& x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)=-C_{y}^{-1} A_{\text {DIS }}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right) \\
& \text { with 1-to-100 GeV² evolution correction: } \quad \text { HERMES range: } \mathbf{- 0 . 2 5 1 - 1}( \pm \mathbf{9 \%} \text { theo. err.) from BELLE }
\end{aligned}
$$ small corrections

## Transversity from e $p^{\dagger} \rightarrow e^{\prime}\left(\pi^{+} \pi^{-}\right)$X @ COMPASS 2007

$x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)=-C_{y}^{-1} A_{\mathrm{DIS}}\left(x, Q^{2}\right)\left(\frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{g=u . d . s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)\right.$
with 1-to-100 GeV² evolution correction: negligible corrections

COMPASS range: - $0.221^{-1}( \pm 5 \%$ theo. err. $)$ from BeLLE

## From Belle data

## 

 small correctionsHERMES range: $-0.251^{-1}( \pm 9 \%$ theo. err. $)$ from BELLE

## Transversity from e p ${ }^{\uparrow}-e^{e}\left(\pi^{+}+\boldsymbol{r}\right) X$ @ COMPASS 2007

$x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)=-C_{y}^{-1} A_{\mathrm{DIS}}\left(x, Q^{2}\right)\left(\frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{a=u, d_{s}} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)\right.$
with 1-to-100 GeV² evolution correction: negligible corrections

COMPASS range: $-\mathbf{0 . 2 2 1 - 1}( \pm 5 \%$ theo. err.) from BELLE

## From fit



|  | HERMES range | COMPASS range |
| ---: | ---: | ---: |
| $n_{u}=$ | 0.564 | 0.785 |
| $n_{s}=$ | 0.303 | 0.443 |
| $n_{u}^{\uparrow}=$ | $0.146 \pm 0.037$ | $0.163 \pm 0.031$ |

## Comparison with extraction



DEUTERON


