

Flavor dependence of partonic transverse momentum

Marco Radici INFN - Pavia

Istituto Nazionale di Fisica Nucleare

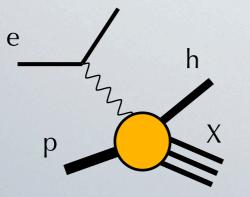
based on Master Th. A. Signori (now at VU, Amsterdam) supervisor A. Bacchetta (Univ. Pavia)

preprint (with also G. Schnell) arXiv:1309.3507 [hep-ph] NIKHEF 2013-030

Investigations into the flavor dependence of partonic transverse momentum

 Andrea Signori,^{1,*} Alessandro Bacchetta,^{2,3,†} Marco Radici,^{3,‡} and Gunar Schnell^{4,5,§}
 ¹Nikhef Theory Group and Department of Physics and Astronomy, VU University Amsterdam De Boelelaan 1081, NL-1081 HV Amsterdam, the Netherlands
 ²Dipartimento di Fisica, Università di Pavia
 ³INFN Sezione di Pavia, via Bassi 6, 27100 Pavia, Italy
 ⁴Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
 ⁵IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

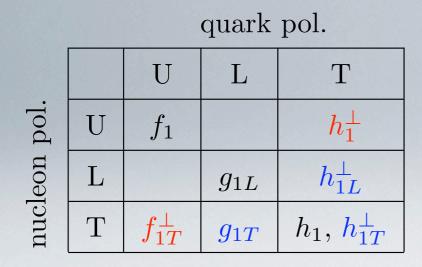
Recent experimental data on semi-inclusive deep-inelastic scattering from the HERMES collabora-



Semi-Inclusive DIS with unpolarized final hadron "h"

SIDIS cross section @leading twist :

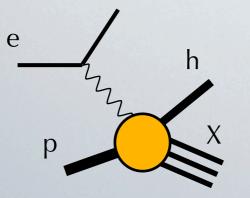
8 TMD PDF



2 TMD FF

quark pol.

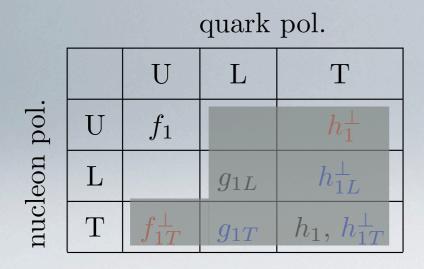
U	L	Т
D_1		H_1^{\perp}

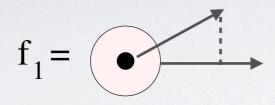


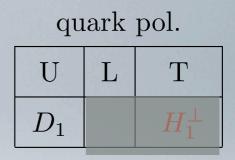
Semi-Inclusive DIS with unpolarized final hadron "h"

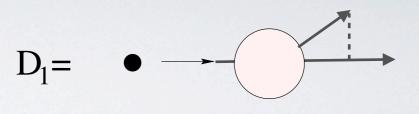
SIDIS cross section @leading twist :

8 TMD PDF



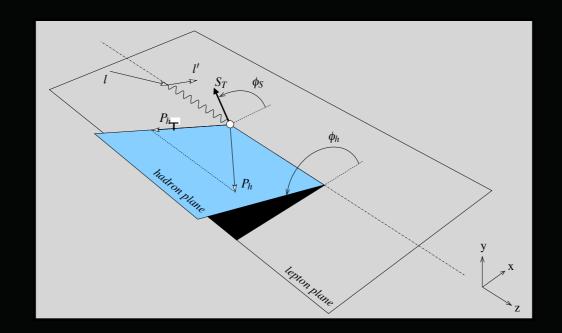






only unpolarized objects, but with memory of (poorly known) ⊥ kinematics

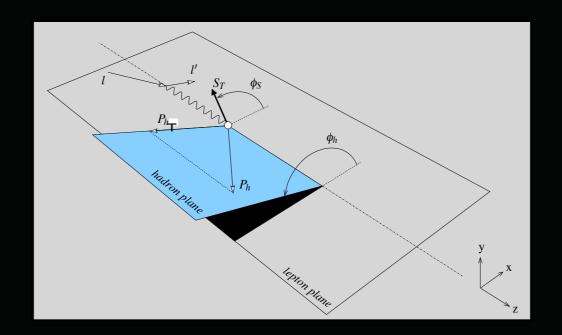
why worrying about the unpolarized cross section ?



spin asymmetry

$$A_{\vec{e}\,\vec{N}}^{f(\phi_h,\,\phi_S)} \propto \frac{F_{\vec{e}\,\vec{N}}^{f(\phi_h,\,\phi_S)}}{F_{UU}} \propto \frac{\sum_q e_q^2 \text{ TMD_PDF}^q \otimes_w \text{ TMD_FF}^q}{\sum_q e_q^2 f_1^q \otimes D_1^q}$$

why worrying about the unpolarized cross section ?

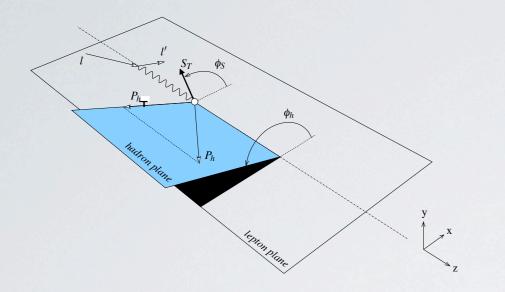


spin asymmetry

$$A_{\vec{e}\,\vec{N}}^{f(\phi_h,\,\phi_S)} \propto \frac{F_{\vec{e}\,\vec{N}}^{f(\phi_h,\,\phi_S)}}{F_{UU}} \propto \frac{\sum_q e_q^2 \text{ TMD_PDF}^q \otimes_w \text{ TMD_FF}^q}{\sum_q e_q^2 f_1^q \otimes D_1^q}$$

unpolarized TMDs affect spin asymmetries A
⇒ they influence the extraction of polarized TMDs

exp. observable : multiplicity

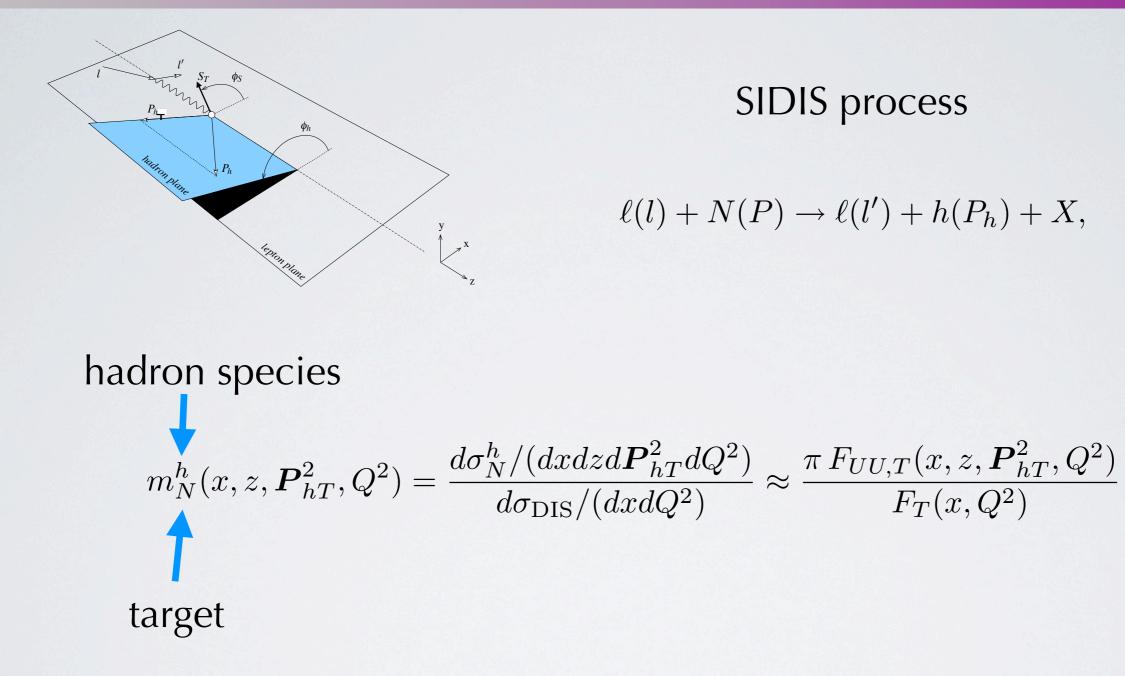


SIDIS process

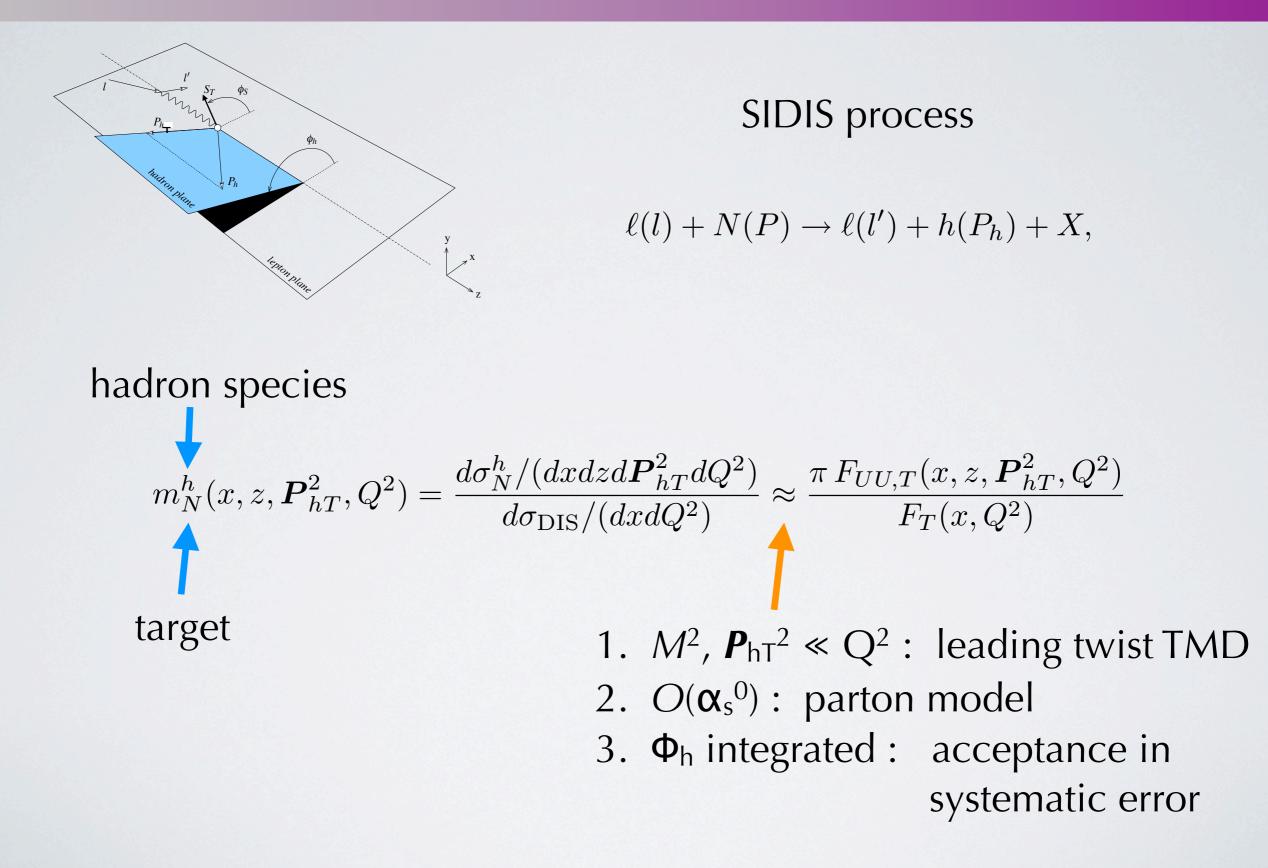
$$\ell(l) + N(P) \to \ell(l') + h(P_h) + X,$$

$$m_N^h(x, z, \boldsymbol{P}_{hT}^2, Q^2) = \frac{d\sigma_N^h / (dx dz d\boldsymbol{P}_{hT}^2 dQ^2)}{d\sigma_{\text{DIS}} / (dx dQ^2)} \approx \frac{\pi F_{UU,T}(x, z, \boldsymbol{P}_{hT}^2, Q^2)}{F_T(x, Q^2)}$$

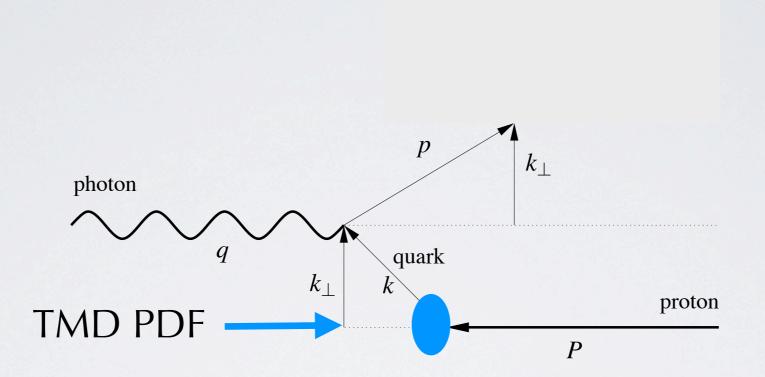
exp. observable : multiplicity



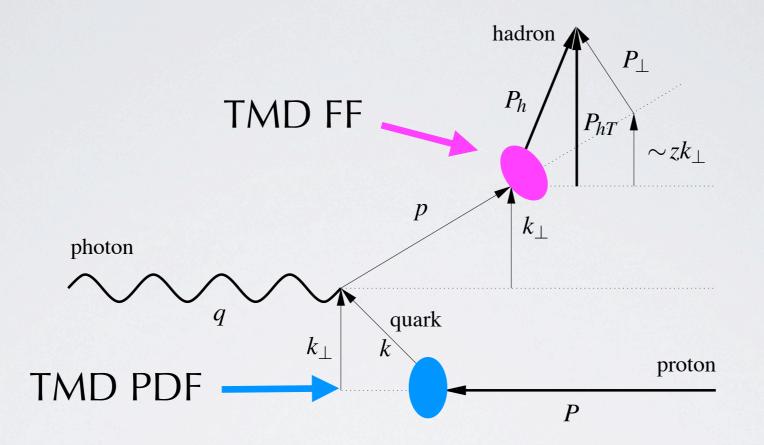
exp. observable : multiplicity



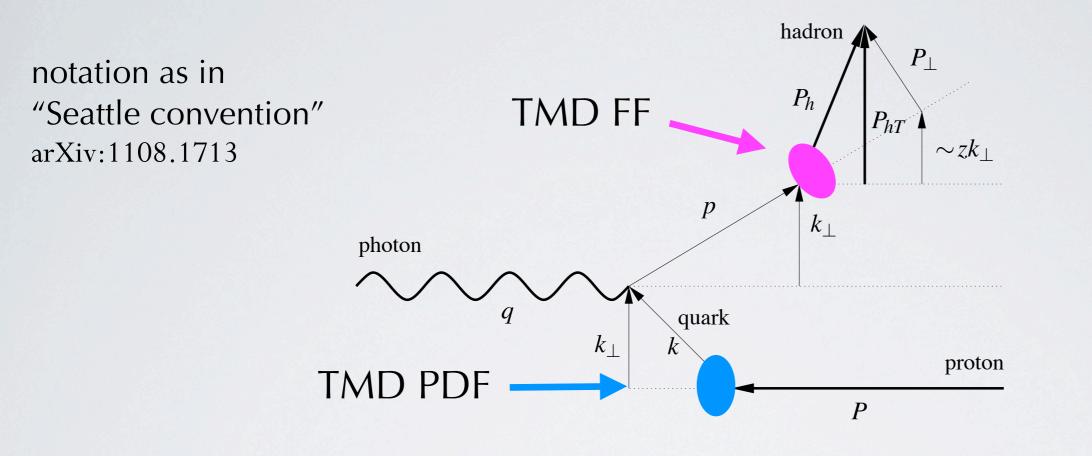
involved transverse momenta



involved transverse momenta



involved transverse momenta



parton model

$$\begin{aligned} F_{UU,T}(x,z,\boldsymbol{P}_{hT}^{2};Q^{2}) &= \sum_{q} e_{q}^{2} x \int d\boldsymbol{k}_{\perp} d\boldsymbol{P}_{\perp} \,\delta\big(z\boldsymbol{k}_{\perp} + \boldsymbol{P}_{\perp} - \boldsymbol{P}_{hT}\big) \,f_{1}^{q}\big(x,\boldsymbol{k}_{\perp}^{2},Q^{2}\big) \,D_{1}^{q \to h}\big(z,\boldsymbol{P}_{\perp}^{2};Q^{2}\big) \\ &= \sum_{q} e_{q}^{2} \left[f_{1}^{q} \otimes D_{1}^{q \to h}\right] \end{aligned}$$

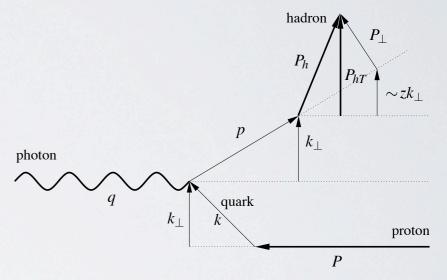
TMD PDF

 $f_1^q(x, \boldsymbol{k}_\perp^2; Q^2) = f_1^q(x; Q^2) \; \frac{e^{-\boldsymbol{k}_\perp^2/\langle \boldsymbol{k}_\perp^2 \rangle}}{\pi \langle \boldsymbol{k}_\perp^2 \rangle}$

TMD FF

$$D_1^{q \to h}(z, \boldsymbol{P}_{\perp}^2; Q^2) = D_1^{q \to h}(z; Q^2) \; \frac{e^{-\boldsymbol{P}_{\perp}^2/\langle \boldsymbol{P}_{\perp}^2\rangle}}{\pi \langle \boldsymbol{P}_{\perp}^2 \rangle}$$

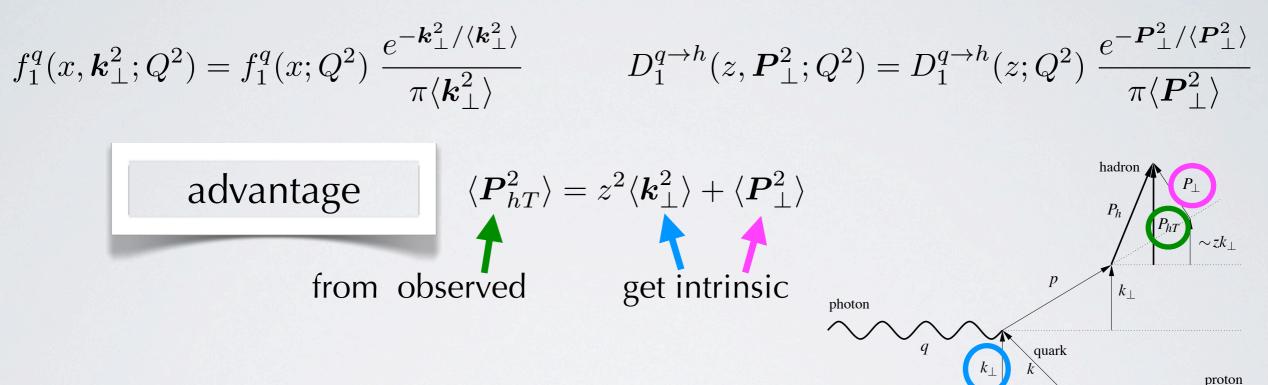
$$\langle {m P}_{hT}^2
angle = z^2 \langle {m k}_\perp^2
angle + \langle {m P}_\perp^2
angle$$



TMD PDF

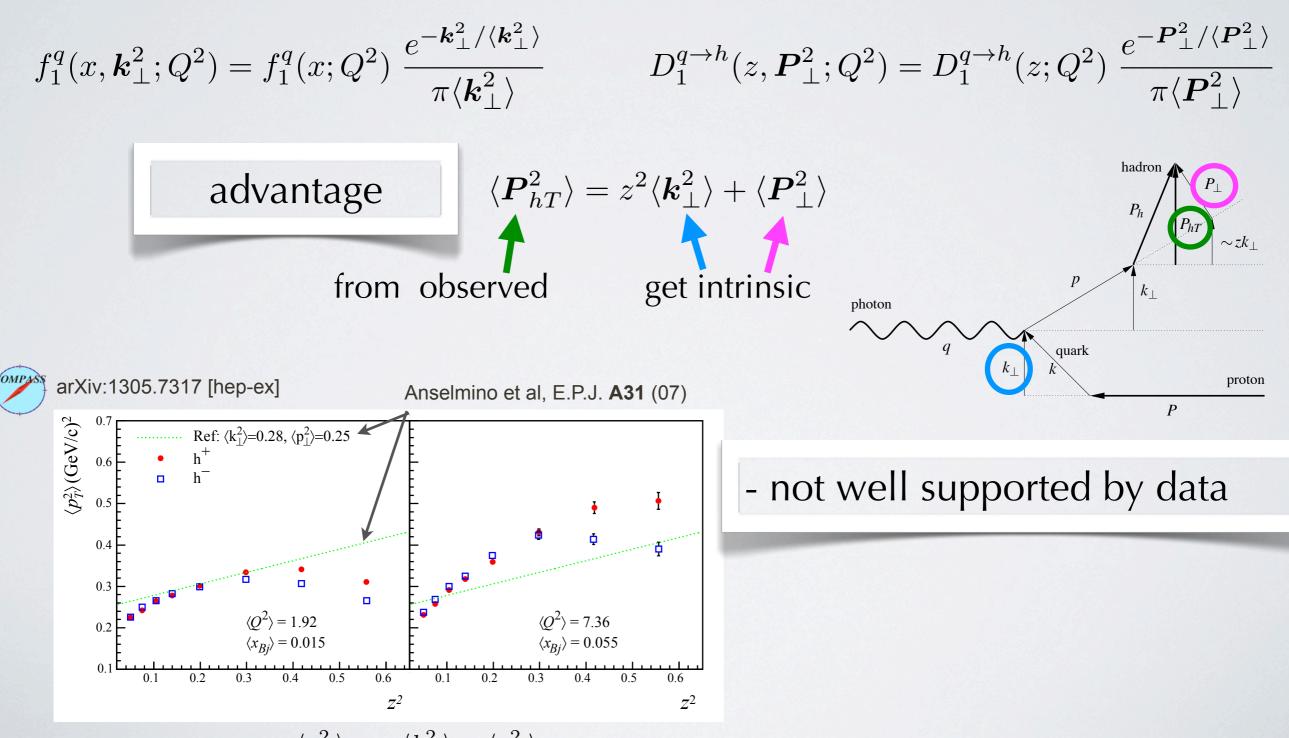
TMD FF

Р



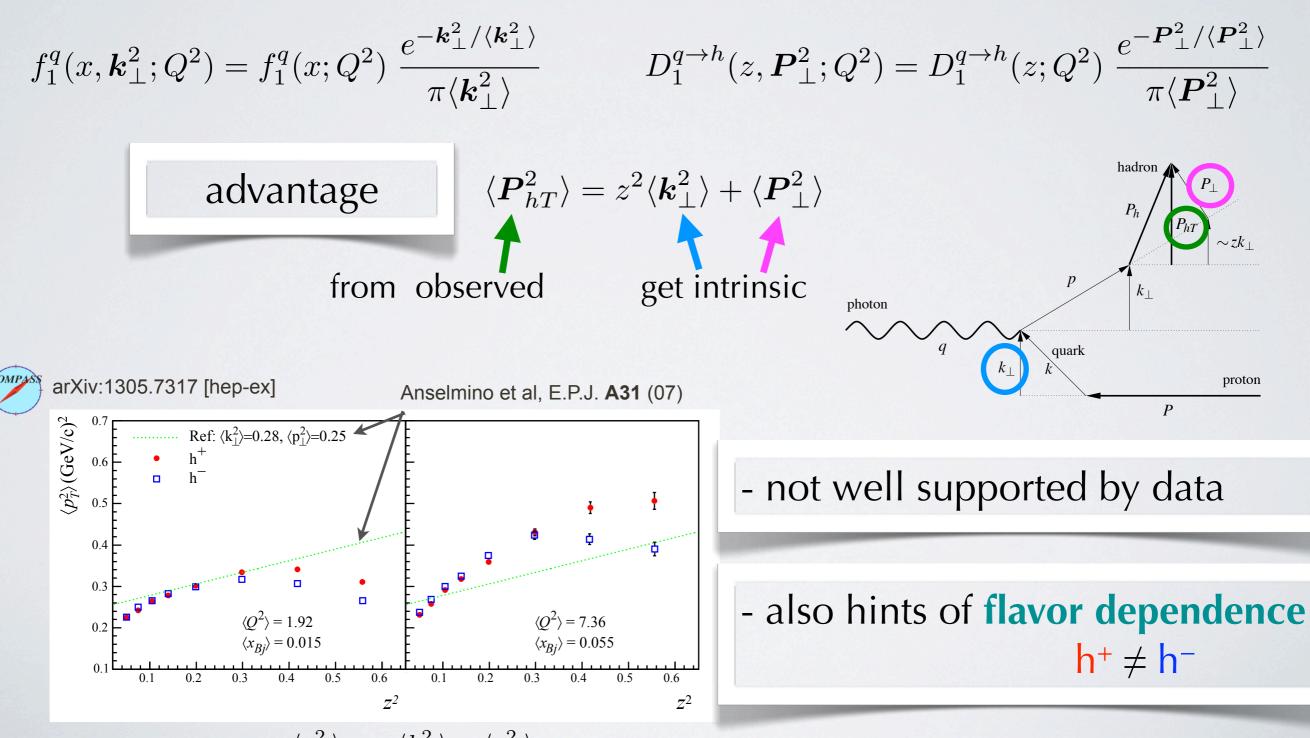
TMD PDF

TMD FF



TMD PDF

TMD FF



unpolarized (collinear) PDFs

similar evidences in

Jimenez-Delgado, Reja (JR09), P. R. D**80** (09) 114011 Alekhin *et al.* (ABKM09), P. R. D**81** (10) 014032 Lai *et al.* (CT10), P. R. D**82** (10) 074024 Alekhin, Blümlein, Moch (ABM11), P. R. D**86** (12) 054009 Ball et al. (NNPDF13), N. P. **B867** (13) 244

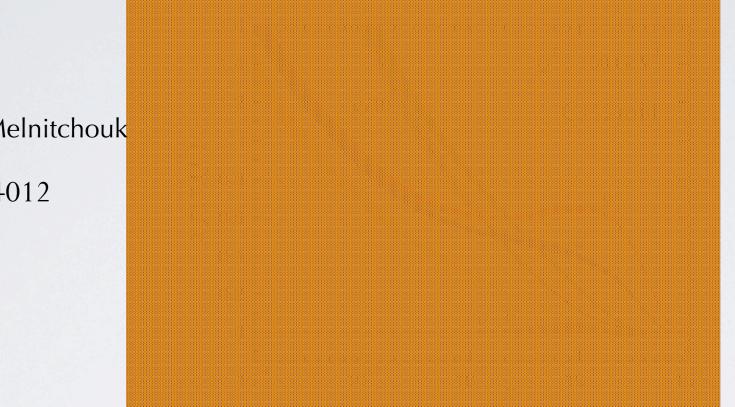
....

unpolarized (collinear) PDFs

example :

Owens, Accardi, Melnitchouk (CJ12) P.R. D**87** (13) 094012

....



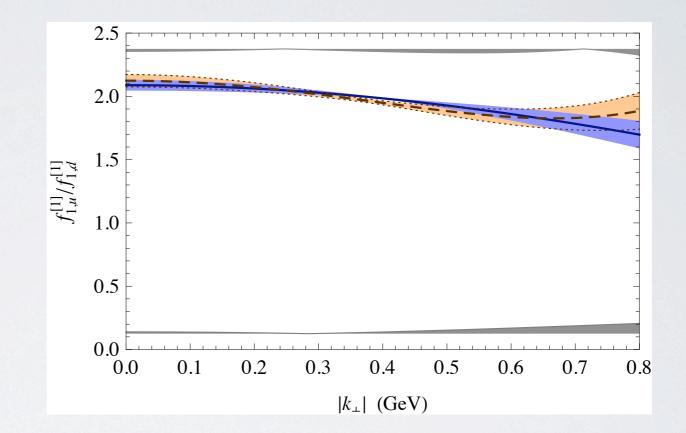
similar evidences in

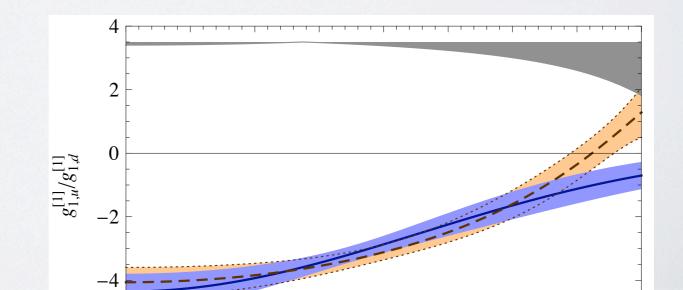
Jimenez-Delgado, Reja (JR09), P. R. D**80** (09) 114011 Alekhin *et al.* (ABKM09), P. R. D**81** (10) 014032 Lai *et al.* (CT10), P. R. D**82** (10) 074024 Alekhin, Blümlein, Moch (ABM11), P. R. D**86** (12) 054009 Ball et al. (NNPDF13), N. P. **B867** (13) 244 why not for **k**_⊥ dependence of TMDs ?

lattice QCD

valence picture
 of proton :
 #u / #d = 2

ratio of number densities (moments of f_1^q) depends upon $|\mathbf{k}_{\perp}|$

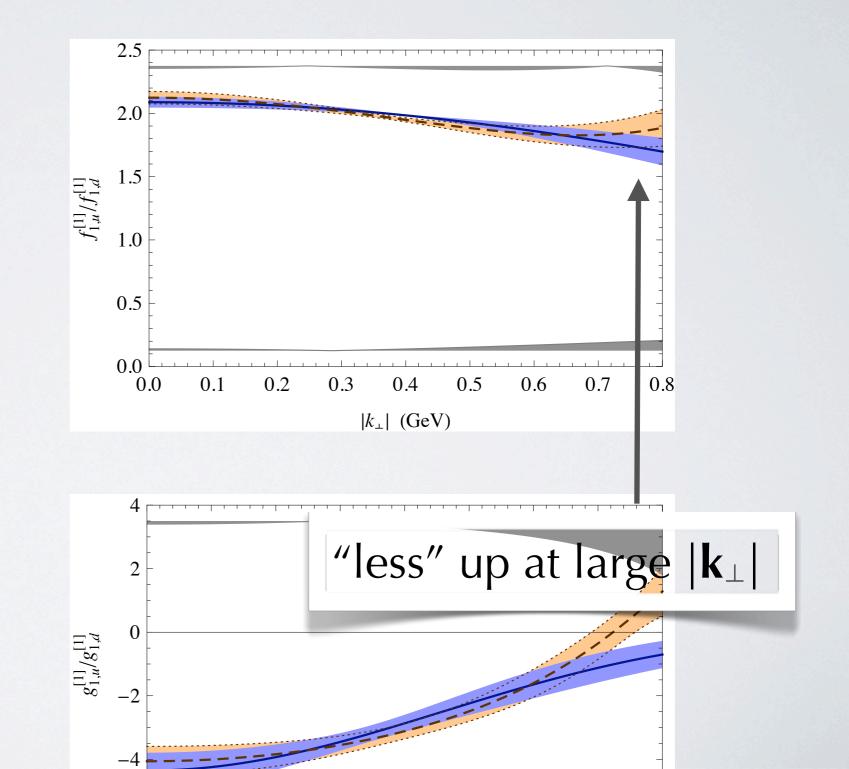




lattice QCD

valence picture
 of proton :
 #u / #d = 2

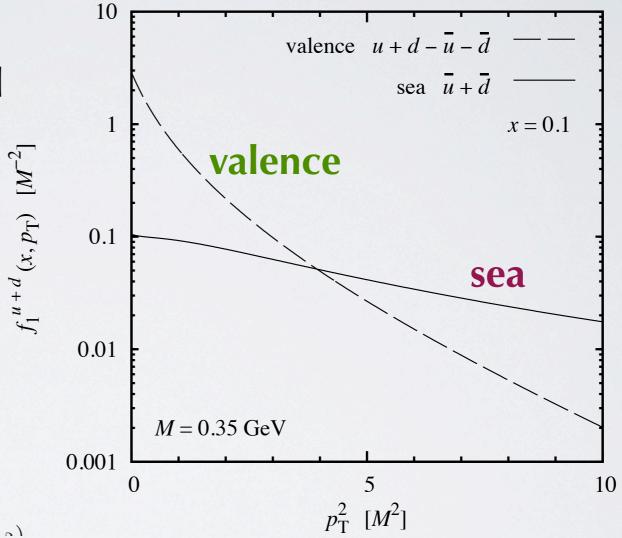
ratio of number densities (moments of f_1^q) depends upon $|\mathbf{k}_{\perp}|$



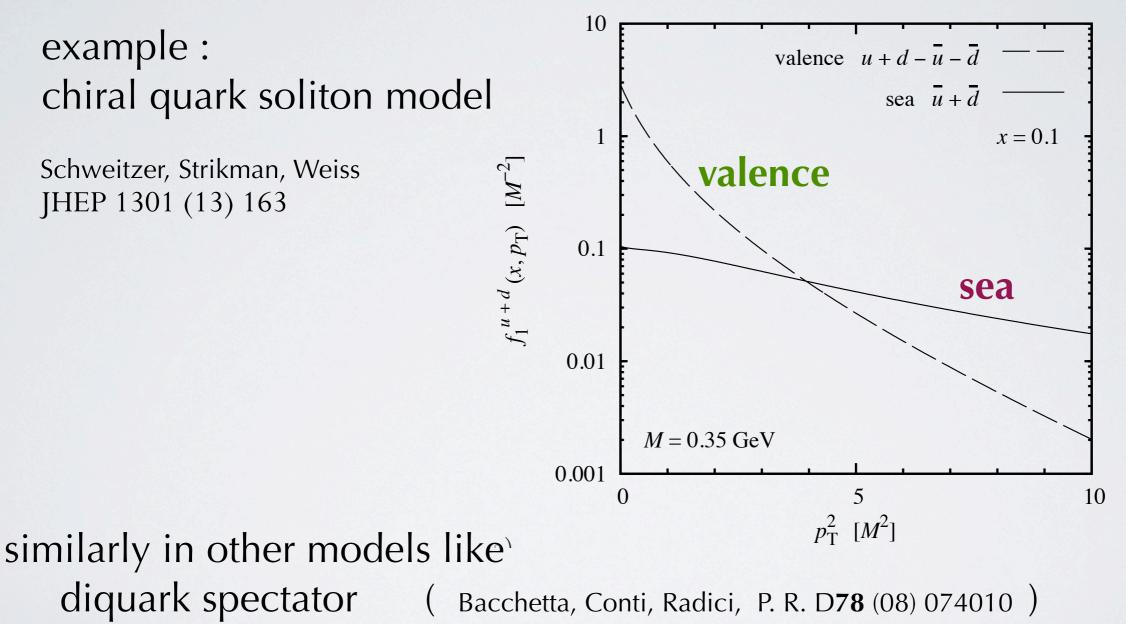
models of TMD PDFs

example : chiral quark soliton model

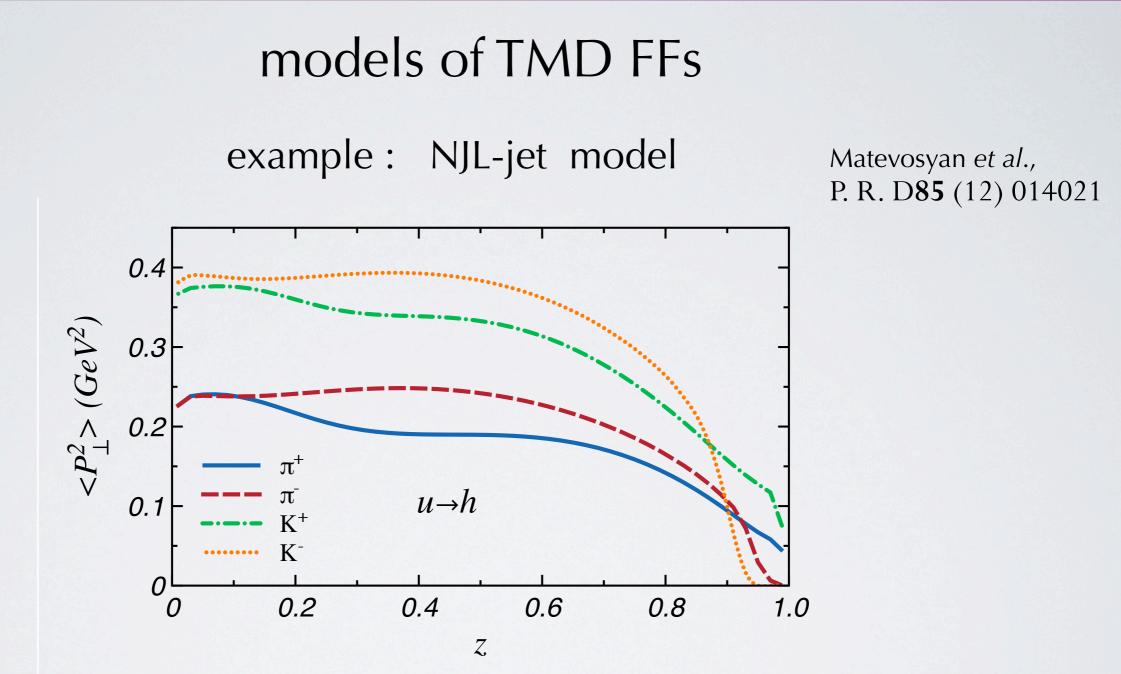
Schweitzer, Strikman, Weiss JHEP 1301 (13) 163

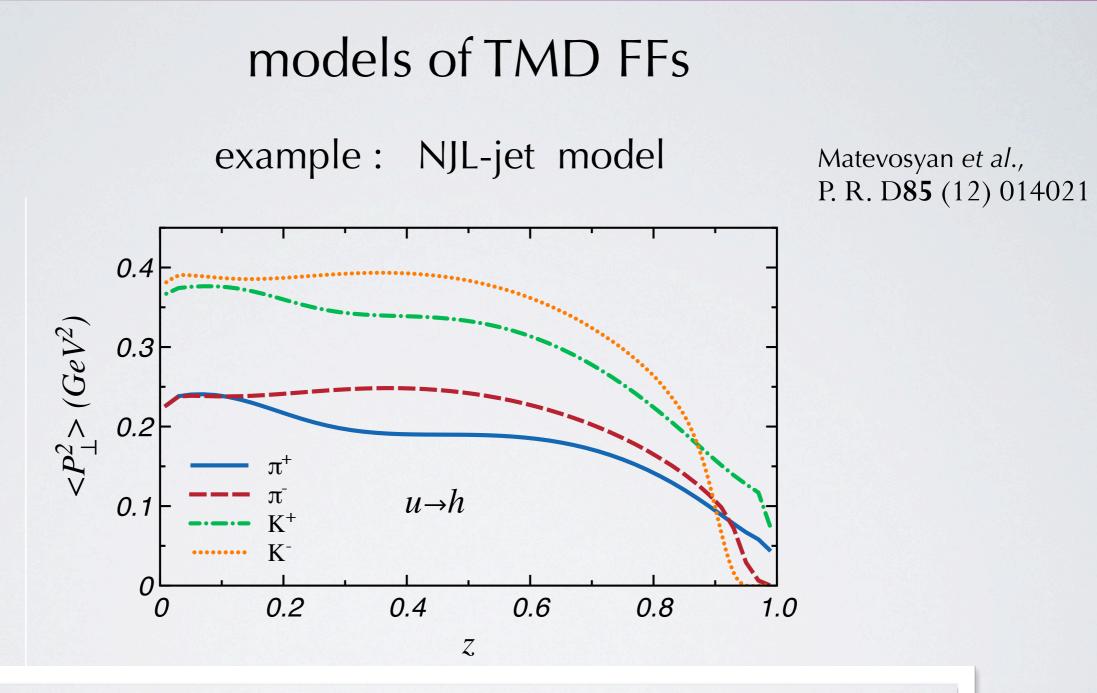


models of TMD PDFs



statistical approach (Bourrely, Buccella, Soffer, P. R. D83 (11) 074008)





 $<\mathbf{P}_{hT}^{2}>$ larger for unfavored / K fragmentation than for favored π fragmentation

our work :

can we find evidence of **flavor dependence** in k_{\perp} shape of TMDs from experimental data on SIDIS ?

our analysis : flavor dependent Gaussian shape for transverse momenta

TMD PDF

TMD FF

$$f_1^q(x, \boldsymbol{k}_\perp^2; Q^2) = f_1^q(x; Q^2) \; \frac{e^{-\boldsymbol{k}_\perp^2/\langle \boldsymbol{k}_{\perp,q}^2 \rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^2 \rangle} \qquad D_1^{q \to h}(z, \boldsymbol{P}_\perp^2; Q^2) = D_1^{q \to h}(z; Q^2) \; \frac{e^{-\boldsymbol{P}_\perp^2/\langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}}{\pi \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}$$

in the convolution, for each flavor we get a Gaussian with width $\langle P_{hT,q}^2 \rangle = z^2 \langle k_{\perp,q}^2 \rangle + \langle P_{\perp,q \to h}^2 \rangle$

our analysis : **flavor dependent** Gaussian shape for transverse momenta

TMD PDF

TMD FF

$$f_1^q(x, \boldsymbol{k}_\perp^2; Q^2) = f_1^q(x; Q^2) \; \frac{e^{-\boldsymbol{k}_\perp^2/\langle \boldsymbol{k}_{\perp,q}^2 \rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^2 \rangle} \qquad D_1^{q \to h}(z, \boldsymbol{P}_\perp^2; Q^2) = D_1^{q \to h}(z; Q^2) \; \frac{e^{-\boldsymbol{P}_\perp^2/\langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}}{\pi \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}$$

in the convolution, for each flavor we get a Gaussian with width

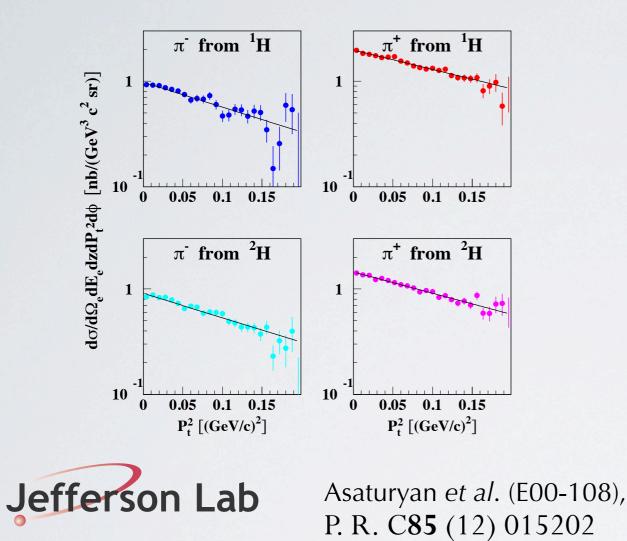
$$\langle \boldsymbol{P}_{hT,q}^2 \rangle = z^2 \langle \boldsymbol{k}_{\perp,q}^2 \rangle + \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle$$

multiplicity

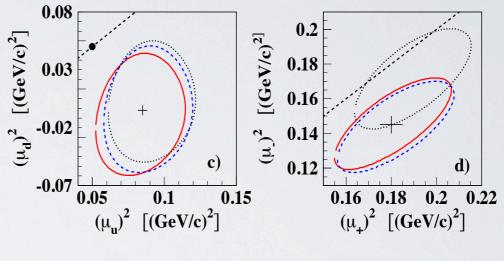
$$m_N^h(x,z,\boldsymbol{P}_{hT}^2;Q^2) = \frac{\pi}{\sum_q e_q^2 f_1^q(x;Q^2)} \sum_q e_q^2 f_1^q(x;Q^2) D_1^{q \to h}(z;Q^2) \frac{e^{-\boldsymbol{P}_{hT}^2/\langle \boldsymbol{P}_{hT,q}^2 \rangle}}{\pi \langle \boldsymbol{P}_{hT,q}^2 \rangle}$$

sum of Gaussians *≠* Gaussian

first hints on " \mathbf{k}_{\perp} flavor dependence"



conclusions

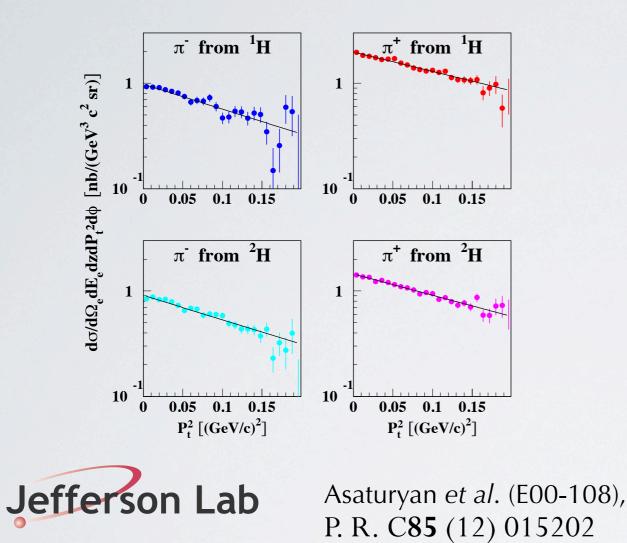


f₁q up wider than down D₁q→h favored wider than unfavored

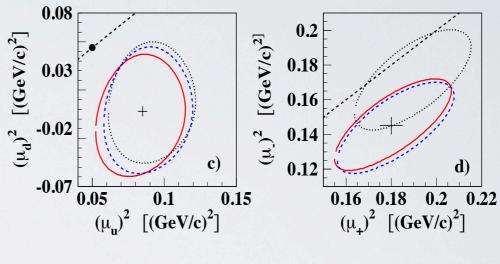
but not a multidimensional analysis :

no binning in x & z
no sea contribution
no K in final state

first hints on " \mathbf{k}_{\perp} flavor dependence"



conclusions

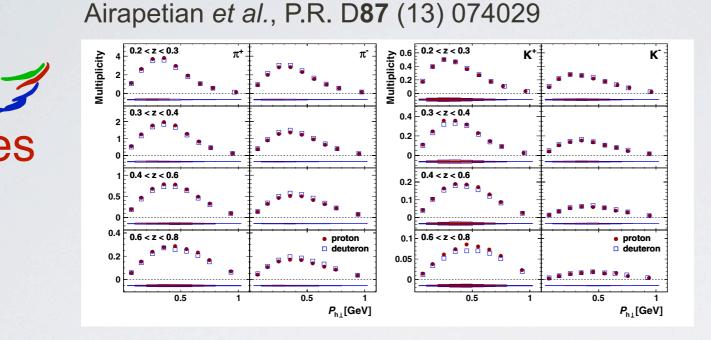


f₁q up wider than down D₁q→h favored wider than unfavored

but not a multidimensional analysis :

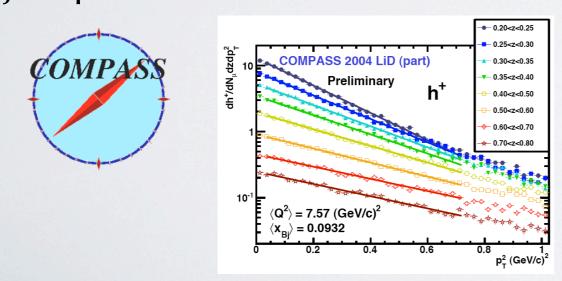
new data coming from JLab (see Osipenko's talk) no binning in x & zno sea contributionno K in final state

recent data on multiplicities



- target: proton, deuteron - final state: π^+ , π^- , K⁺, K⁻

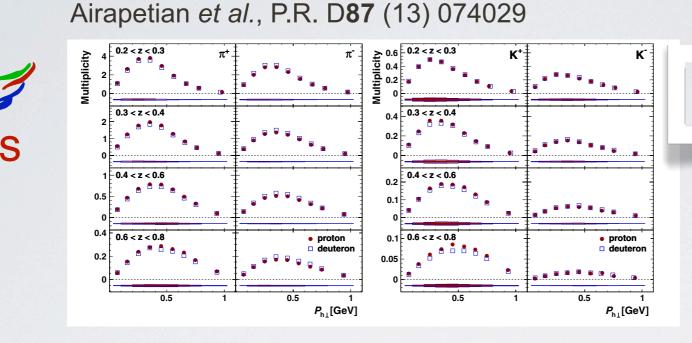
just published! Adolph et al., E.P.J. C73 (13) 2531, arXiv:1305.7317



large statistics & kin. coverage, but

- target: deuteron
- final state: h⁺, h⁻ unidentified (at the time of this work)
 now also π⁺,π⁻,K⁺,K⁻ (see Makke's talk)

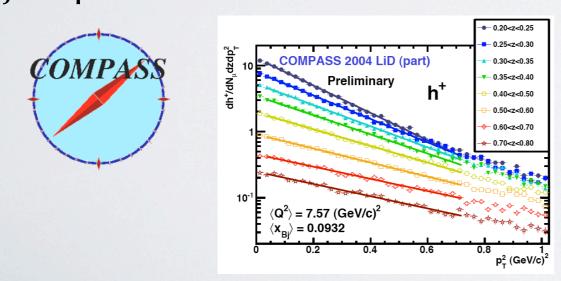
recent data on multiplicities



ideal for flavor analysis

- target: proton, deuteron - final state: π^+ , π^- , K⁺, K⁻

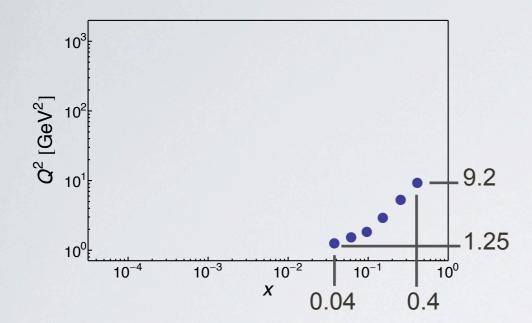
just published! Adolph et al., E.P.J. C73 (13) 2531, arXiv:1305.7317



large statistics & kin. coverage, but

- target: deuteron
- final state: h⁺, h⁻ unidentified (at the time of this work)
 now also π⁺, π⁻, K⁺, K⁻ (see Makke's talk)

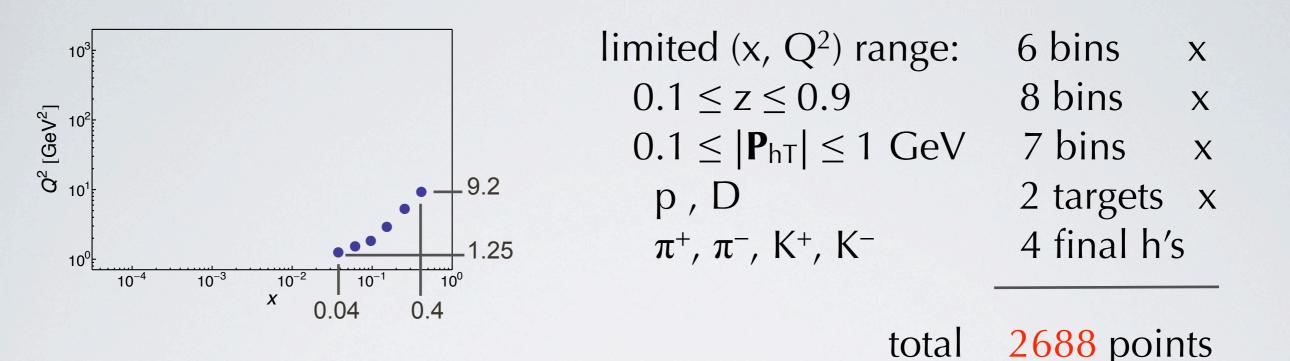
selection of data



limited (x, Q ²) range:	6 bins x
$0.1 \le z \le 0.9$	8 bins x
$0.1 \leq \mathbf{P}_{hT} \leq 1 \text{ GeV}$	7 bins x
p , D	2 targets x
π+, π-, Κ+, Κ-	4 final h's

total 2688 points

selection of data

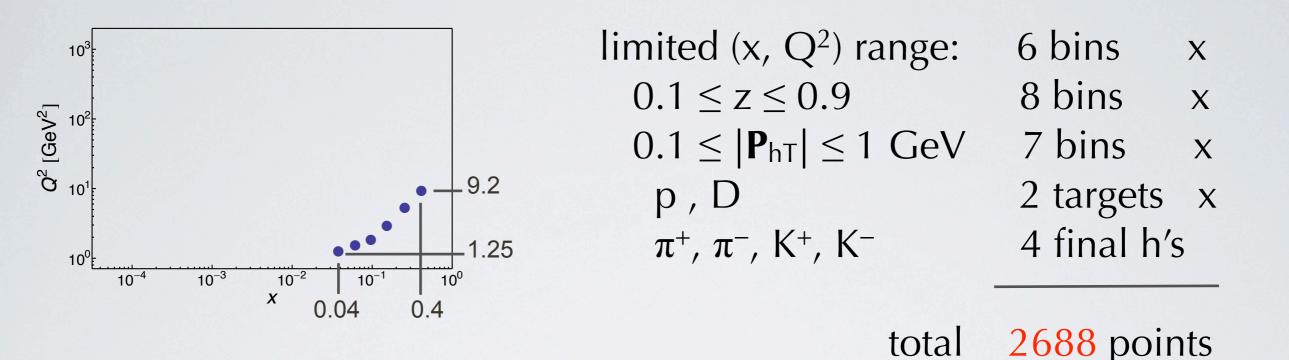


- TMDs valid for $\mathbf{P}_{hT^2} \ll Q^2$: cut first bin $Q^2 = 1.4 \text{ GeV}^2 \iff \text{lowest } x$)

- cut last bin z = 0.9 as in DSS (and use VM subtracted set)
- cut $|\mathbf{P}_{hT}| < 0.15 \text{ GeV} \Leftarrow \text{ problem to be fixed}$

total analyzed 1538 points \approx 60% of 2688

selection of data



- TMDs valid for $\mathbf{P}_{hT^2} \ll Q^2$: cut first bin $Q^2 = 1.4 \text{ GeV}^2$ (\leftrightarrow lowest x)

- cut last bin z = 0.9 as in DSS (and use VM subtracted set)
- cut $|\mathbf{P}_{hT}| < 0.15 \text{ GeV} \Leftarrow \text{ problem to be fixed}$

total analyzed 1538 points \approx 60% of 2688

limited Q² range \Rightarrow safely neglect evolution <u>everywhere</u>

our analysis : assumptions & parameters

TMD PDF

TMD FF

$$f_1^q(x, \boldsymbol{k}_{\perp}^2) = f_1^q(x) \Big|_{Q^2 = 2.4 \,\mathrm{GeV}^2} \, \frac{e^{-\boldsymbol{k}_{\perp}^2/\langle \boldsymbol{k}_{\perp,q}^2 \rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^2 \rangle}$$

$$D_1^{q \to h}(z, \mathbf{P}_{\perp}^2) = D_1^{q \to h}(z) \Big|_{Q^2 = 2.4 \,\mathrm{GeV^2}}$$

$$\frac{e^{-\boldsymbol{P}_{\perp}^{2}/\langle \boldsymbol{P}_{\perp,q \to h}^{2} \rangle}}{\pi \langle \boldsymbol{P}_{\perp,q \to h}^{2} \rangle}$$

DSS LO De Florian *et al.*, P.R. D**75** (07) 114010

MSTW08 LO Martin *et al.*, E.P.J. **C63** (09) 189

our analysis : assumptions & parameters

TMD PDF

TMD FF

$$f_1^q(x, \boldsymbol{k}_{\perp}^2) = f_1^q(x) \Big|_{Q^2 = 2.4 \,\mathrm{GeV}^2} \, \frac{e^{-\boldsymbol{k}_{\perp}^2/\langle \boldsymbol{k}_{\perp,q}^2 \rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^2 \rangle}$$

MSTW08 LO Martin et al., E.P.J. C63 (09) 189 $D_1^{q \to h}(z, \boldsymbol{P}_{\perp}^2) = D_1^{q \to h}(z) \Big|_{Q^2 = 2.4 \, \text{GeV}^2} \frac{e^{-\boldsymbol{P}_{\perp}^2 / \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}}{\pi \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}$

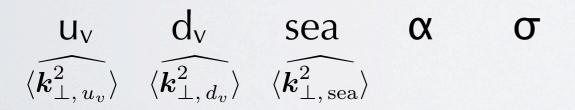


DSS LO De Florian et al., P.R. D75 (07) 114010

x-dependent width

$$\langle \boldsymbol{k}_{\perp,\,q}^2 \rangle(x) = \langle \widehat{\boldsymbol{k}_{\perp,\,q}^2} \rangle \,\frac{(1-x)^{\alpha} \, x^{\sigma}}{(1-\hat{x})^{\alpha} \, \hat{x}^{\sigma}}$$
$$\widehat{\langle \boldsymbol{k}_{\perp,\,q}^2} \rangle = \langle \boldsymbol{k}_{\perp,\,q}^2 \rangle(\hat{x} \,=\, 0.1)$$

5 parameters



our analysis : assumptions & parameters

TMD PDF

TMD FF

$$f_1^q(x, \boldsymbol{k}_{\perp}^2) = f_1^q(x) \Big|_{Q^2 = 2.4 \,\mathrm{GeV}^2} \, \frac{e^{-\boldsymbol{k}_{\perp}^2/\langle \boldsymbol{k}_{\perp,q}^2 \rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^2 \rangle}$$

MSTW08 LO Martin *et al.*, E.P.J. **C63** (09) 189 $D_1^{q \to h}(z, \mathbf{P}_{\perp}^2) = D_1^{q \to h}(z) \Big|_{Q^2 = 2.4 \, \text{GeV}^2}$

$$\frac{e^{-\boldsymbol{P}_{\perp}^2/\langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}}{\pi \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}$$

DSS LO De Florian *et al.*, P.R. D**75** (07) 114010

x-dependent width

$$\langle \boldsymbol{k}_{\perp,\,q}^2 \rangle(x) = \langle \widehat{\boldsymbol{k}_{\perp,\,q}^2} \rangle \,\frac{(1-x)^{\alpha} \, x^{\sigma}}{(1-\hat{x})^{\alpha} \, \hat{x}^{\sigma}}$$
$$\widehat{\langle \boldsymbol{k}_{\perp,\,q}^2} \rangle = \langle \boldsymbol{k}_{\perp,\,q}^2 \rangle(\hat{x} \,=\, 0.1)$$

5 parameters

our analysis : assumptions & parameters

u-

TMD PDF

TMD FF

 $a \rightarrow h$

$$f_1^q(x, \boldsymbol{k}_{\perp}^2) = f_1^q(x) \Big|_{Q^2 = 2.4 \,\text{GeV}^2} \frac{e^{-\boldsymbol{k}_{\perp}^2/\langle \boldsymbol{k}_{\perp,q}^2 \rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^2 \rangle}$$

MSTW08 LO

Martin et al., E.P.J. C63 (09) 189

x-dependent width

16

$$\langle \boldsymbol{k}_{\perp,q}^2 \rangle(x) = \langle \widehat{\boldsymbol{k}_{\perp,q}^2} \rangle \, \frac{(1-x)^{\alpha} \, x^{\sigma}}{(1-\hat{x})^{\alpha} \, \hat{x}^{\sigma}}$$
$$\langle \widehat{\boldsymbol{k}_{\perp,q}^2} \rangle = \langle \boldsymbol{k}_{\perp,q}^2 \rangle(\hat{x} \,=\, 0.1)$$

5 parameters

 $\begin{array}{c|c} \mathsf{u}_{\mathsf{V}} & \mathsf{d}_{\mathsf{V}} & \operatorname{sea} & \mathsf{\alpha} & \mathsf{\sigma} \\ \widehat{\mathbf{k}_{\perp,u_v}^2} & \widehat{\mathbf{k}_{\perp,d_v}^2} & \widehat{\mathbf{k}_{\perp,\mathrm{sea}}^2} & \boxed{} \end{array}$ [-0.3,0.1] [0,2] randomly chosen in (\Leftrightarrow loosely bound)

$$D_1^{q \to h}(z, \boldsymbol{P}_{\perp}^2) = D_1^{q \to h}(z) \Big|_{Q^2 = 2.4 \,\mathrm{GeV}^2} \, \frac{e^{-\boldsymbol{P}_{\perp}^2/\langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}}{\pi \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}$$

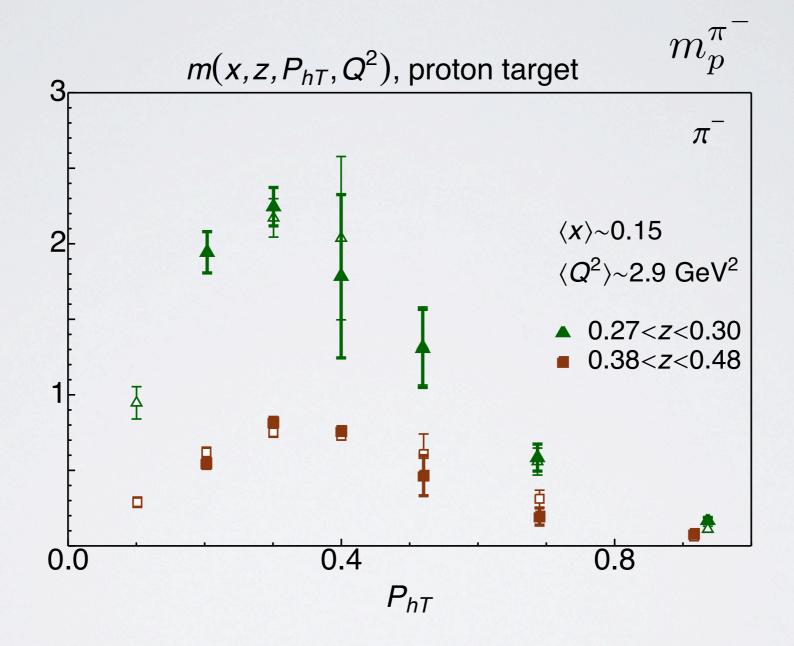
z-dependent width $\langle \boldsymbol{P}_{\perp,\,q\to h}^2 \rangle(z) = \langle \widehat{\boldsymbol{P}_{\perp,\,q\to h}^2} \rangle \, \frac{(z^\beta + \delta) \, (1-z)^\gamma}{(\hat{z}^\beta + \delta) \, (1-\hat{z})^\gamma}$ $\langle \widehat{\boldsymbol{P}^2}_{\perp,a \to h} \rangle = \langle \boldsymbol{P}^2_{\perp,a \to h} \rangle (\hat{z} = 0.5)$ 7 parameters

used in transversity extraction m_p^{π} $m(x, z, P_{hT}, Q^2)$, proton target (see Aurore's talk) 3 π^{-} ł $\langle x \rangle \sim 0.15$ Ŧ 2 $\langle Q^2 \rangle \sim$ 2.9 GeV² 0.27<*z*<0.30 ቀ 0.38<*z*<0.48 1 Ŧ ł 준 호 0.0 0.4 0.8 P_{hT}

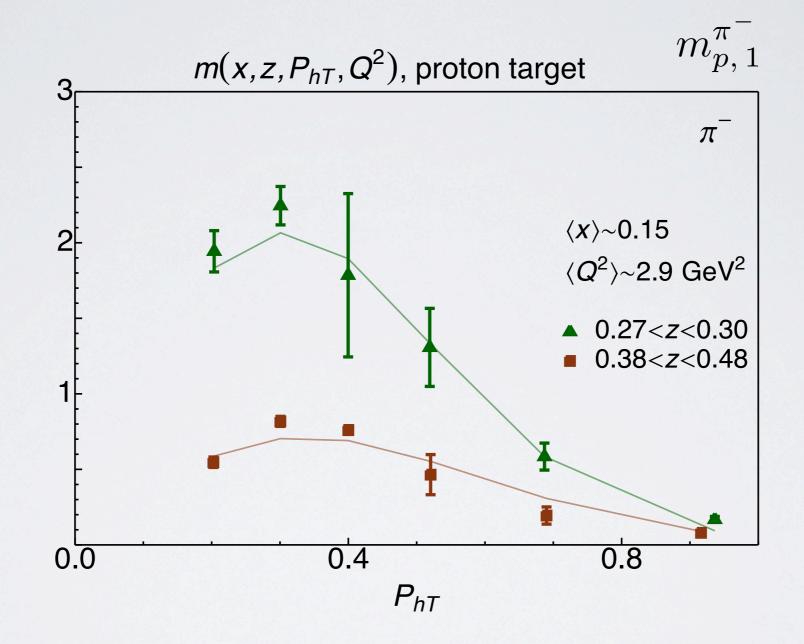
inspired by NNPDF

(see Nocera's talk)

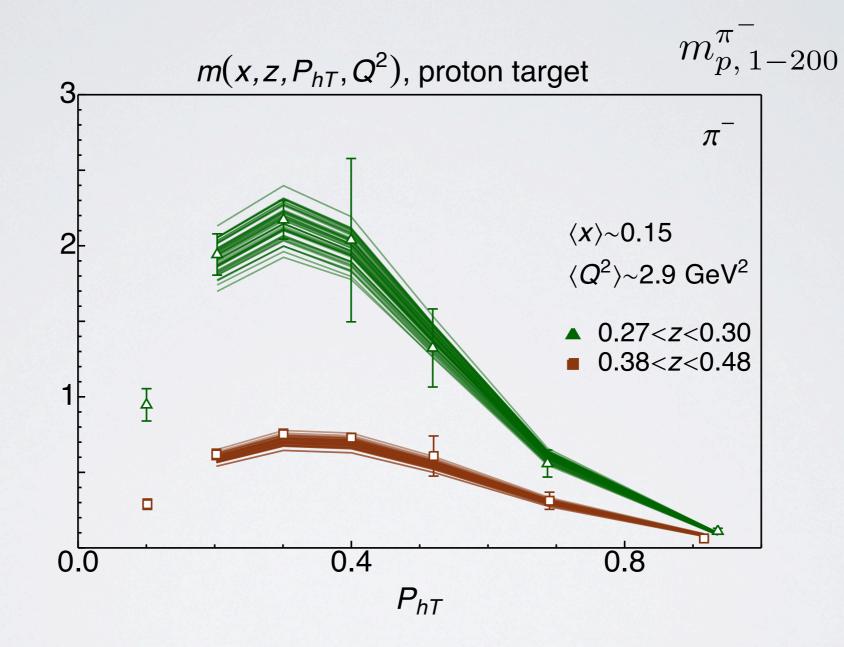
sample of original data



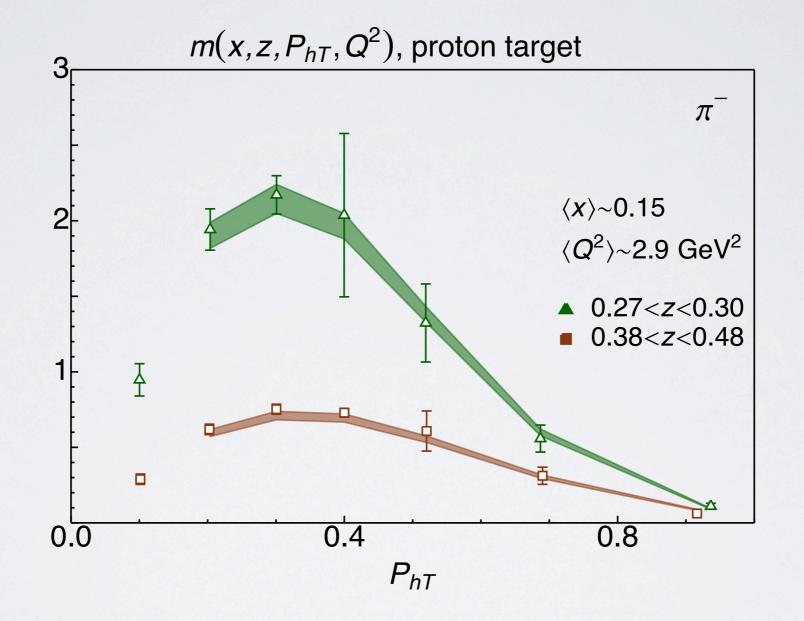
data are replicated with Gaussian noise (within exp. variance)



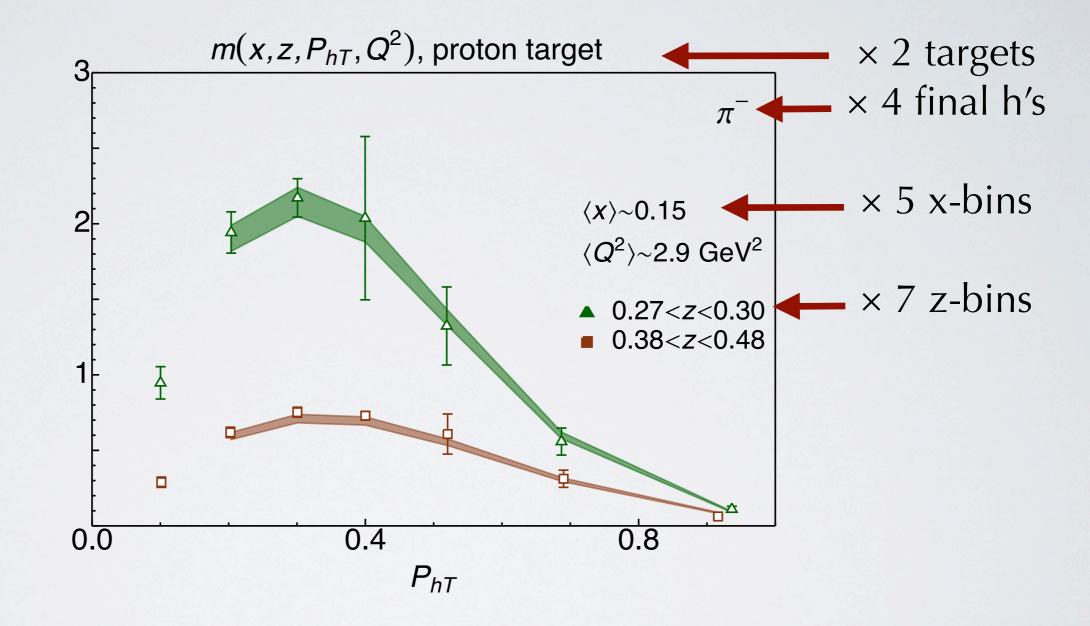
fit the replicated data



procedure repeated 200 times (until reproduce mean and std. deviation of original data)



for each point, a central 68% confidence interval is identified (distribution is not necessarily Gaussian)



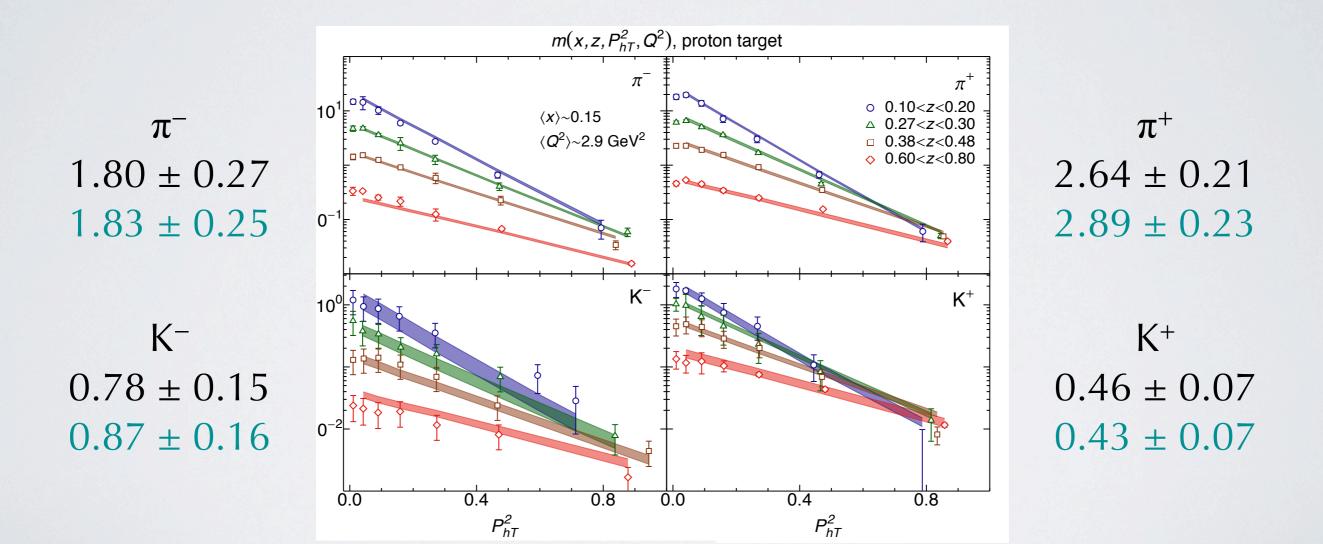
for each point, a central 68% confidence interval is identified (distribution is not necessarily Gaussian)

quality of the fit

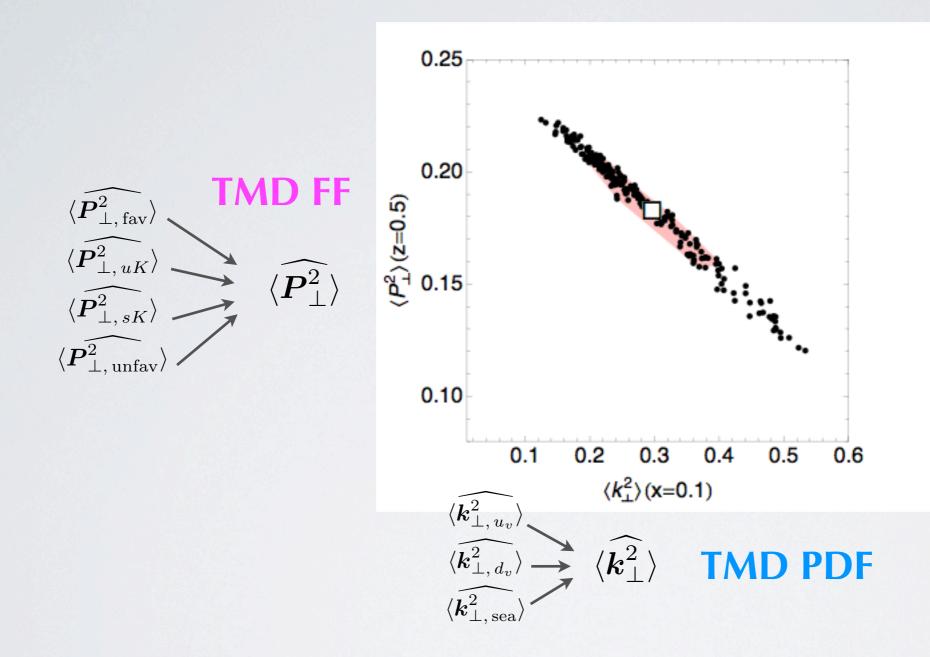
proton target global χ^2 / d.o.f. = 1.63 ± 0.12 no flavor dep. 1.72 ± 0.11

quality of the fit

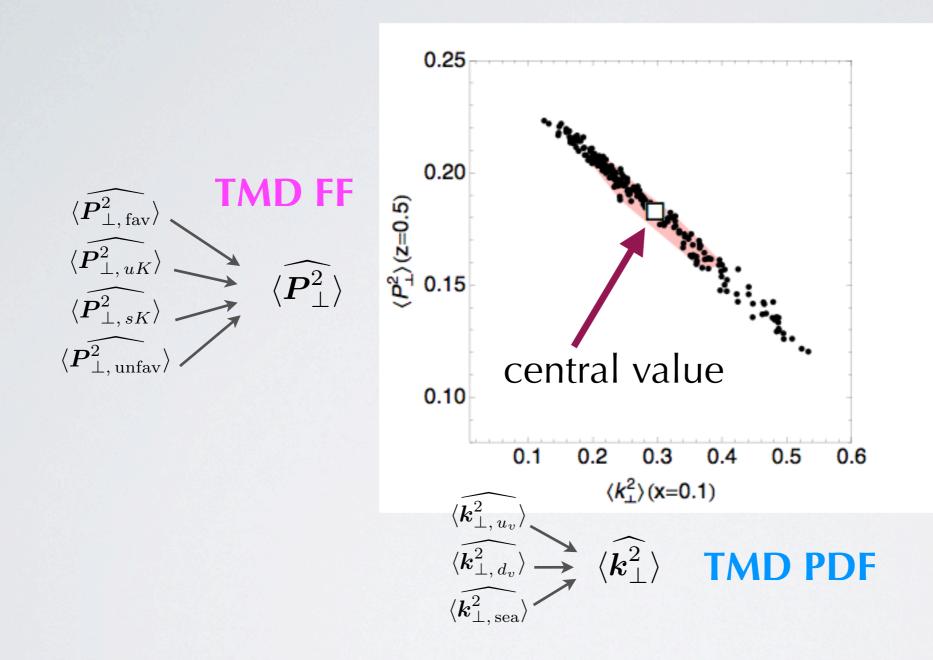
proton target global χ^2 / d.o.f. = 1.63 ± 0.12 no flavor dep. 1.72 ± 0.11

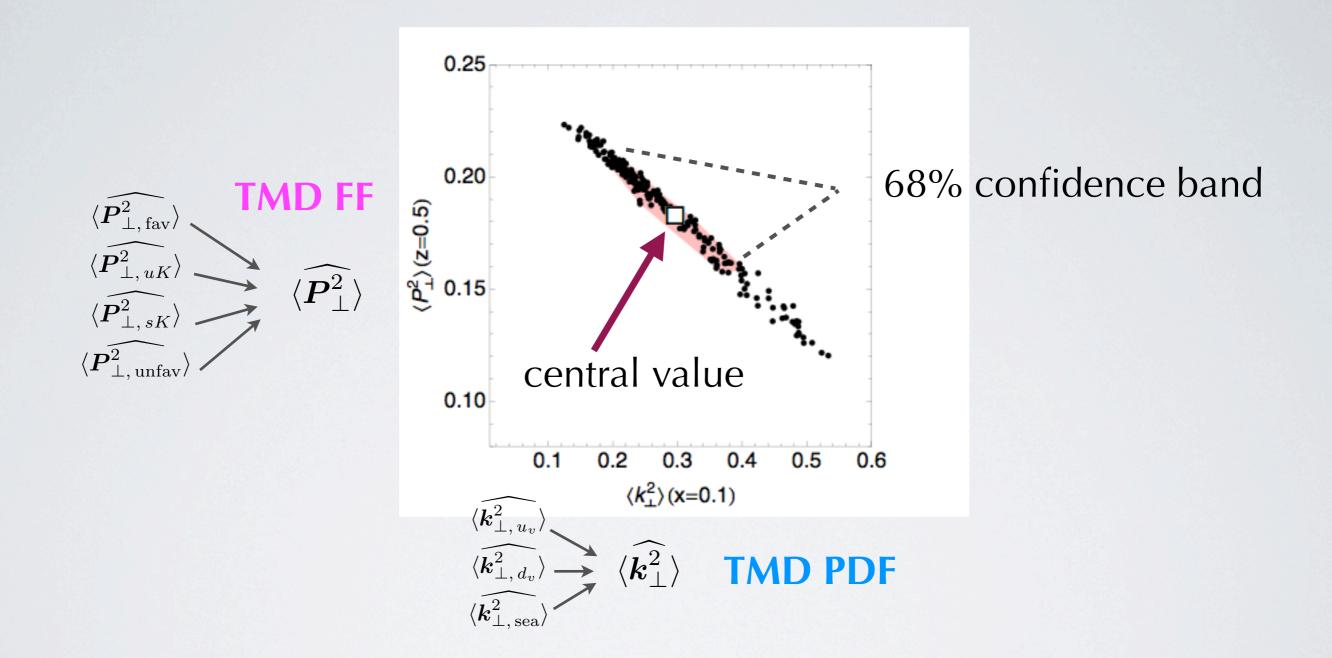


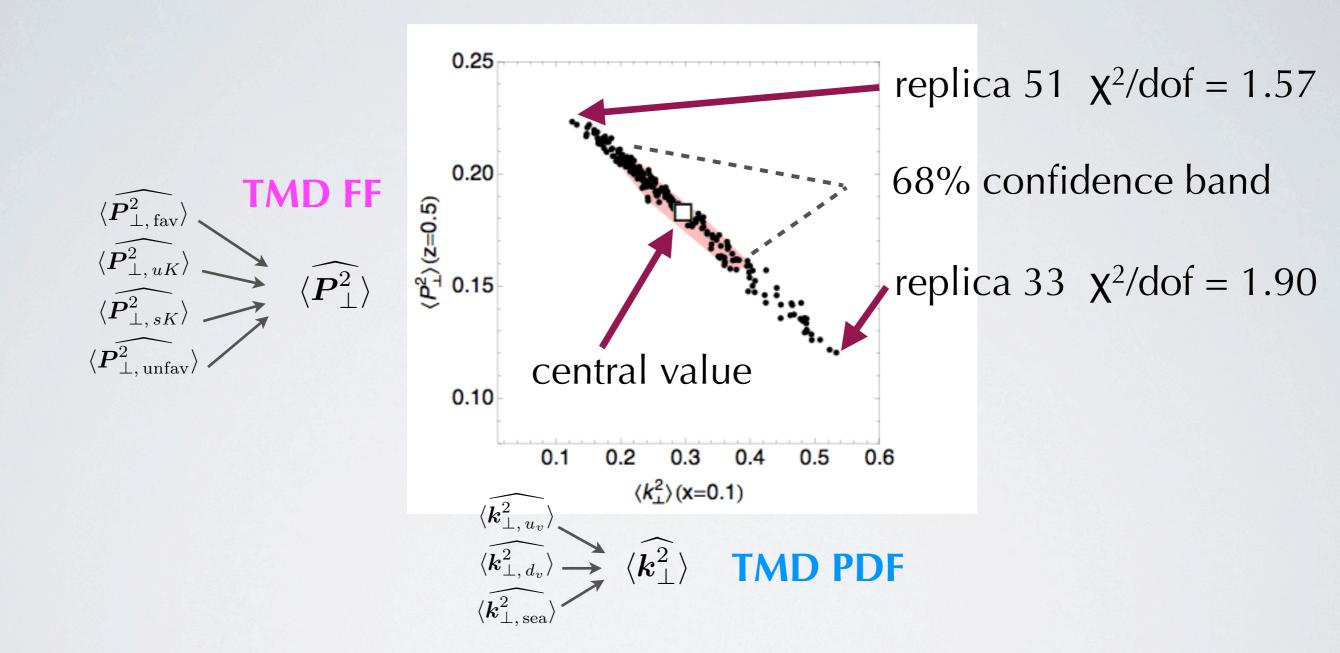
for more details, see arXiv:1309.3507 [hep-ph]

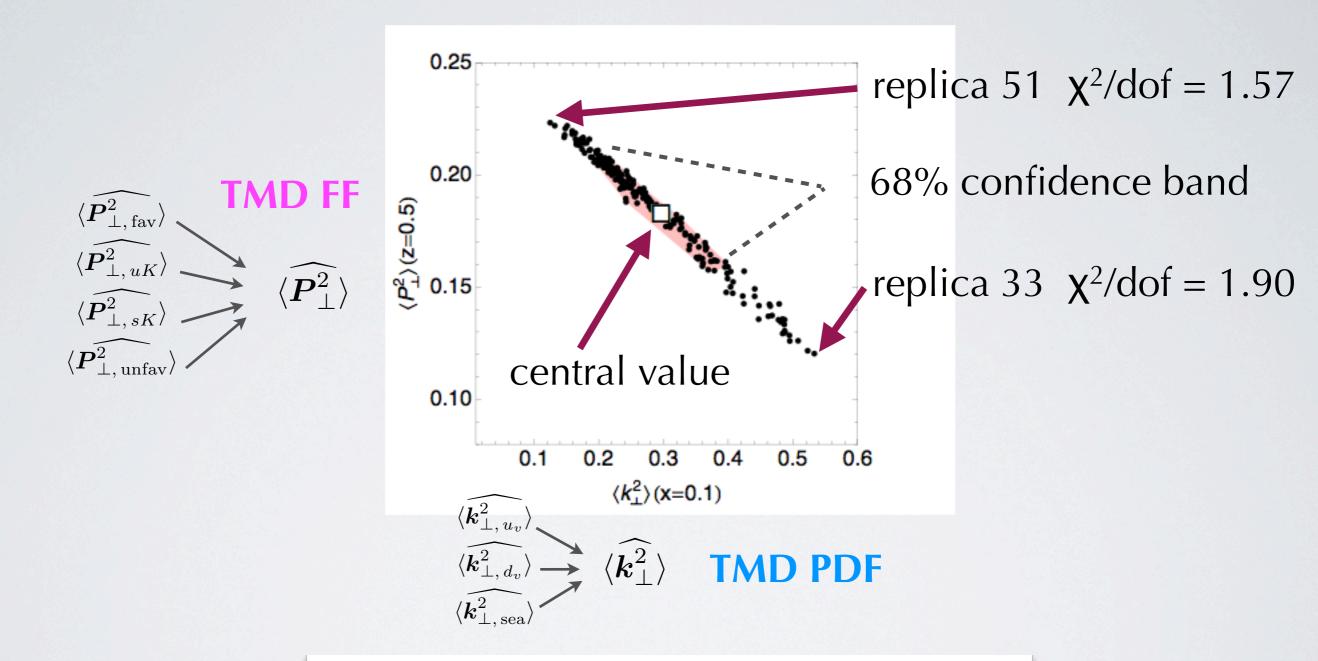


23

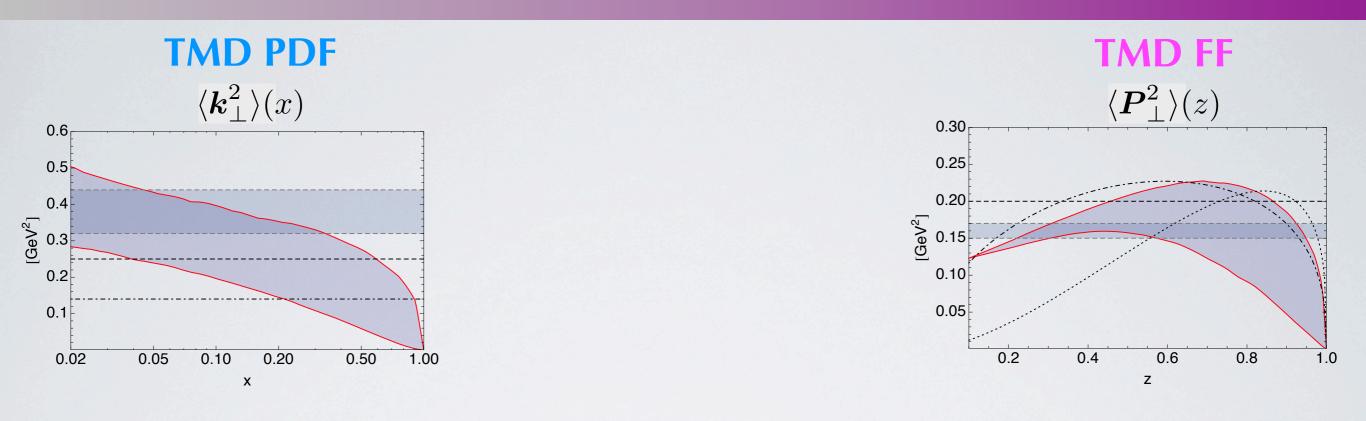


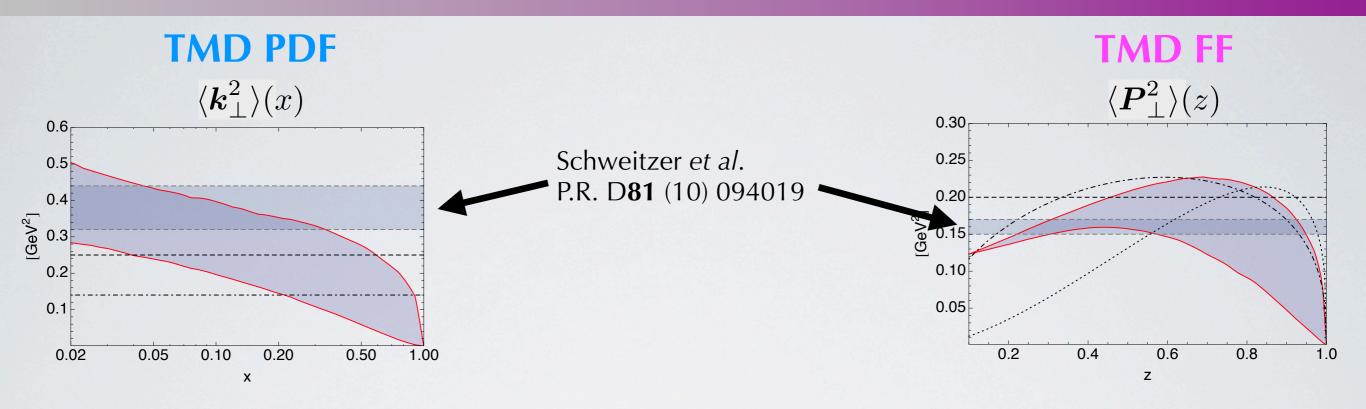


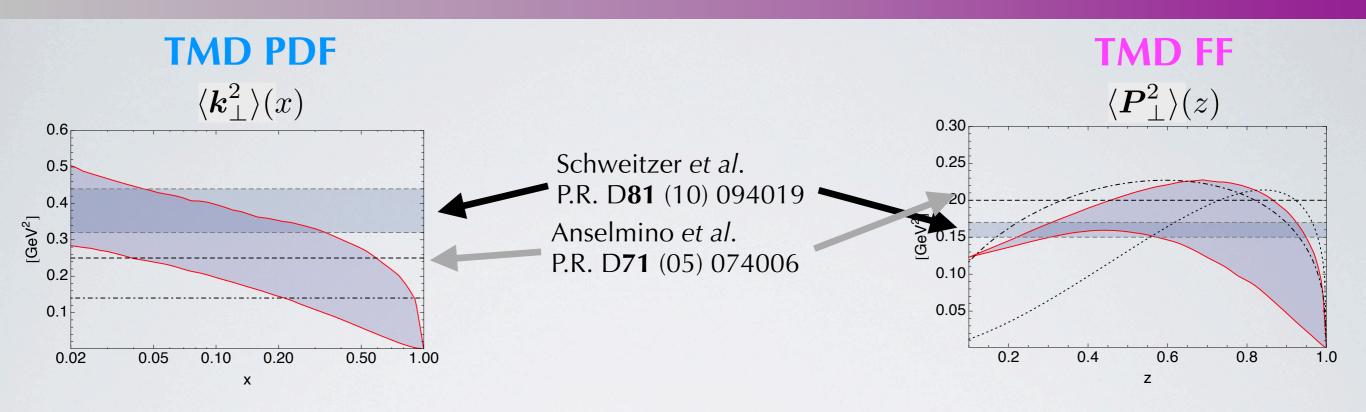


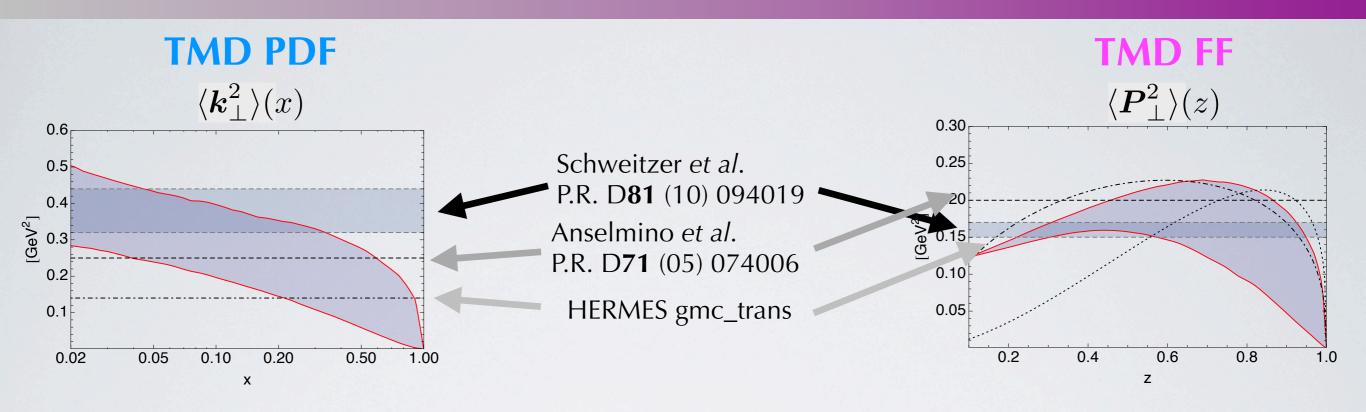


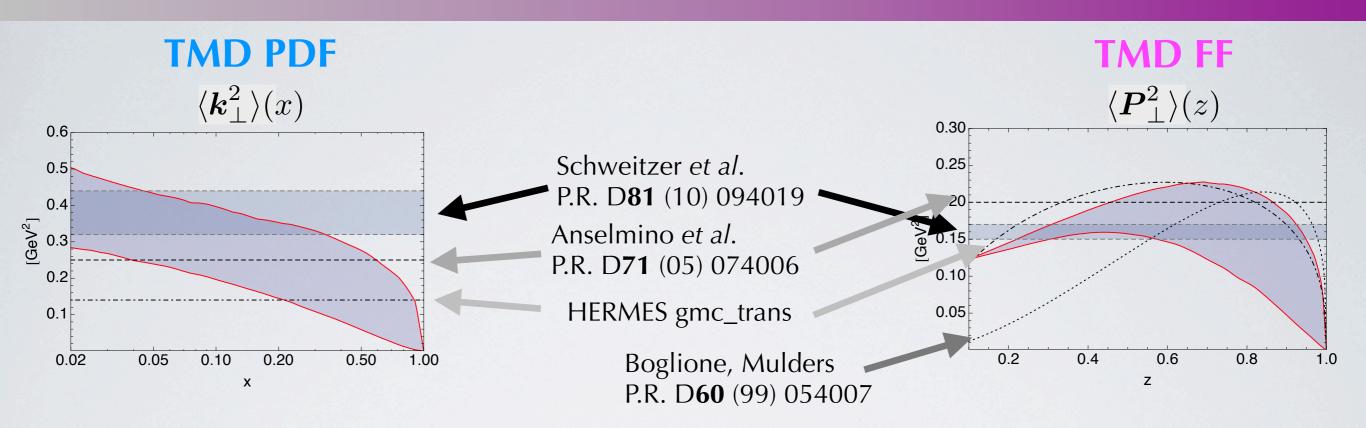
strong anticorrelation between distribution and fragmentation

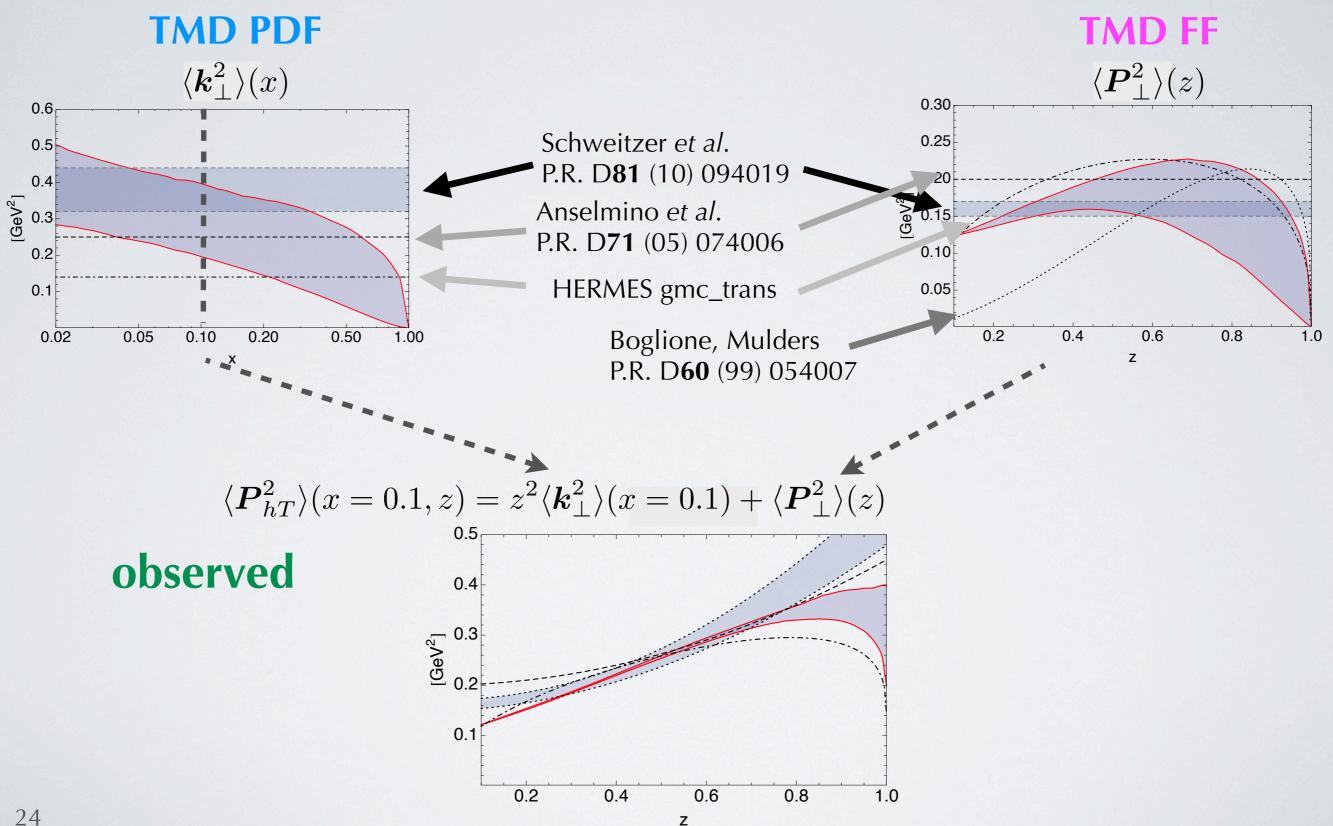


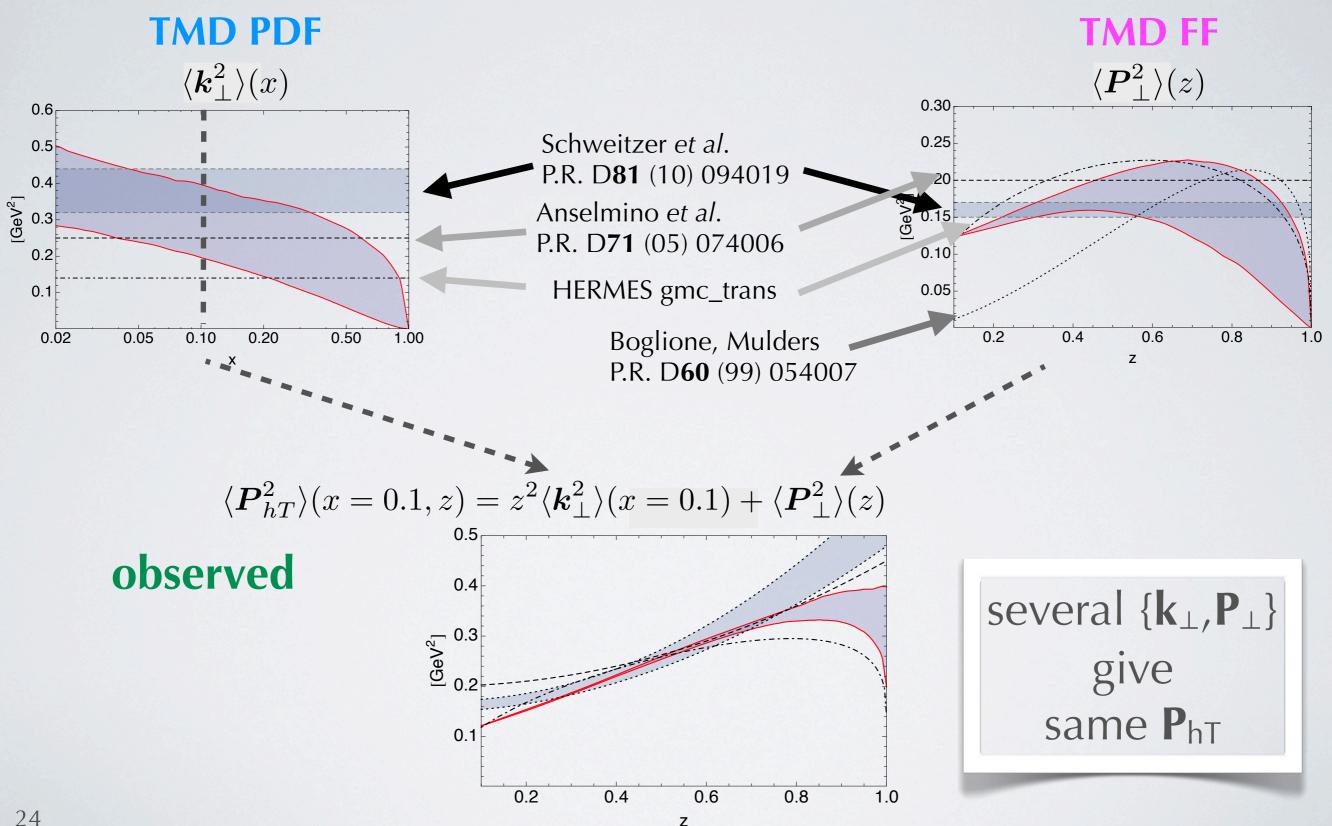


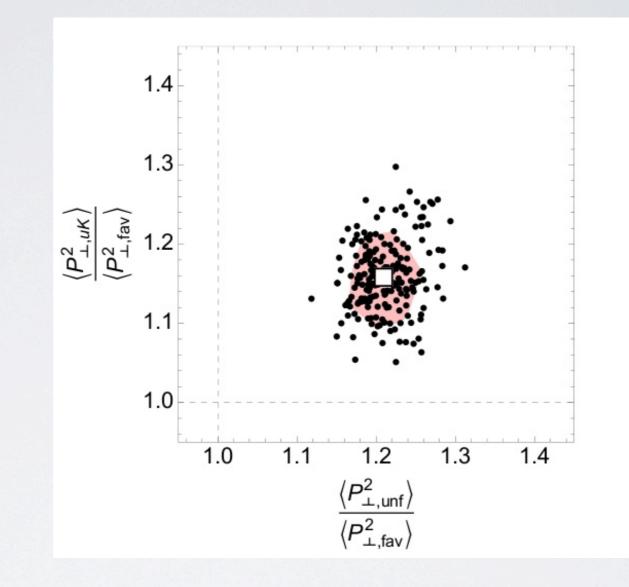


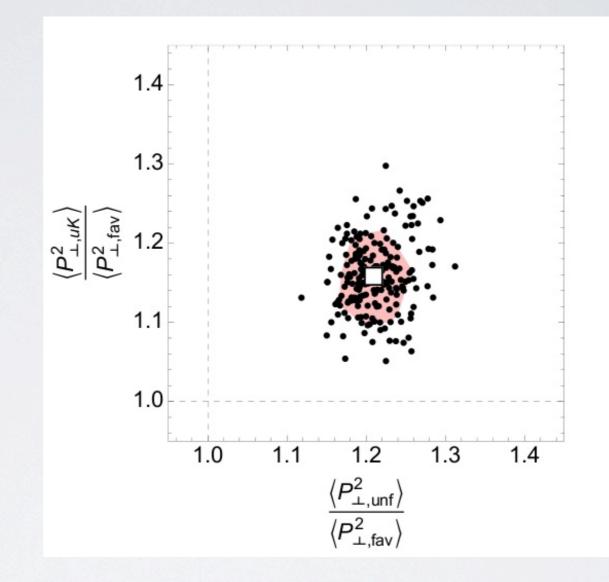




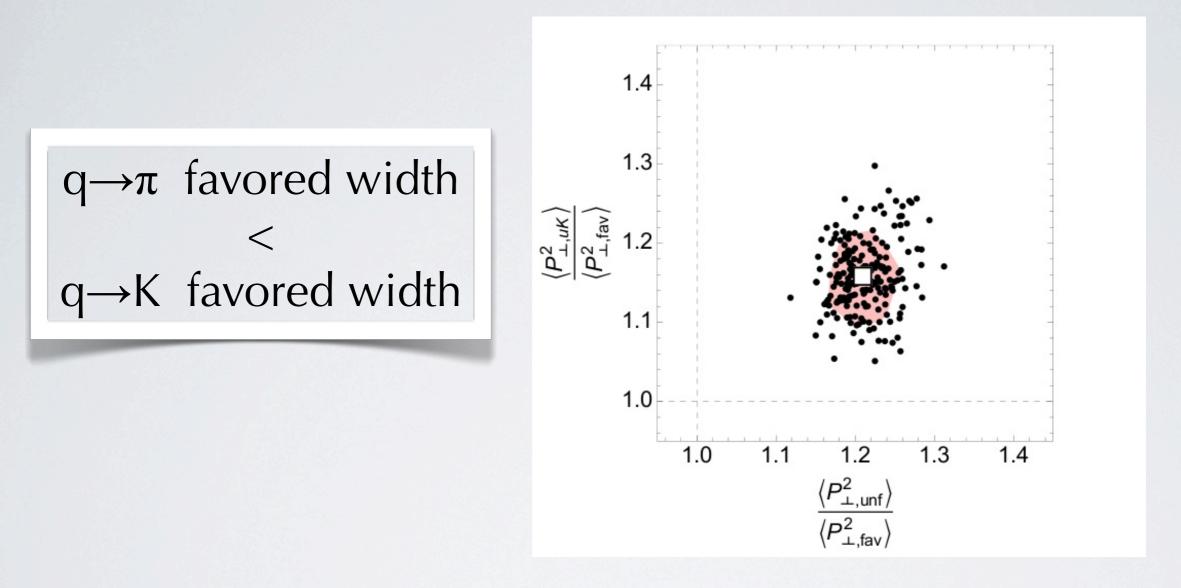




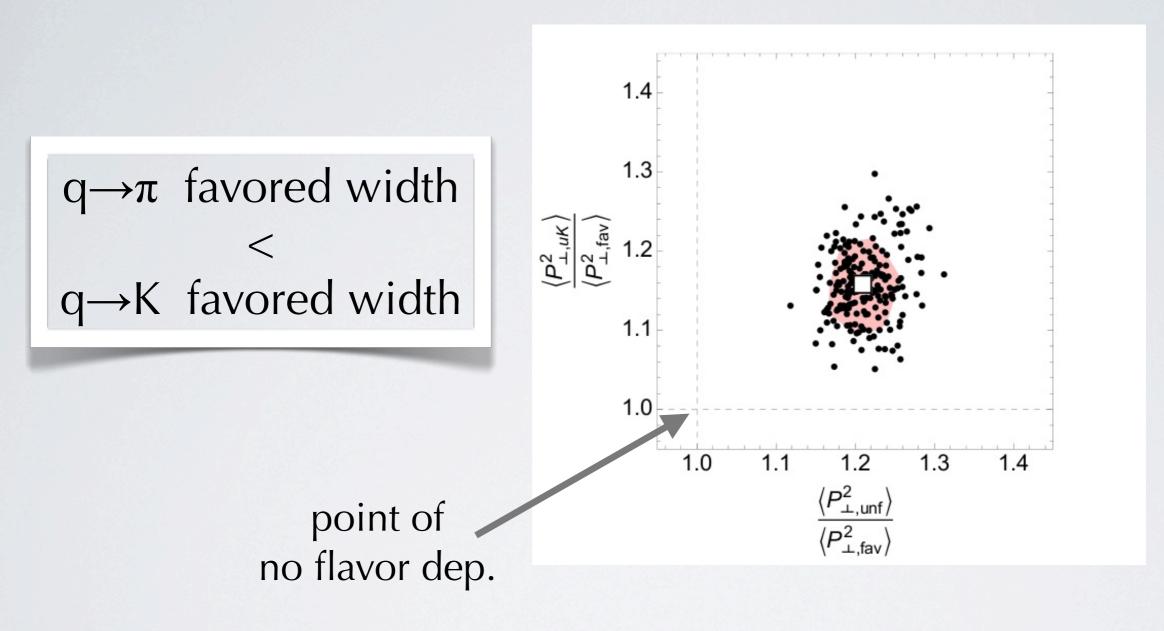




 $q \rightarrow \pi$ favored width < unfavored

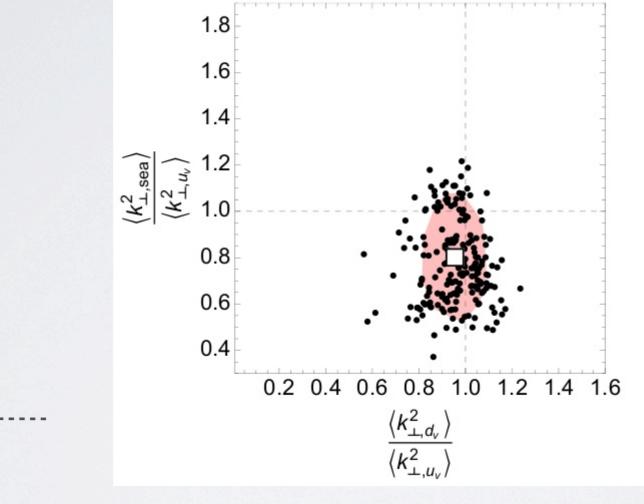


 $q \rightarrow \pi$ favored width < unfavored



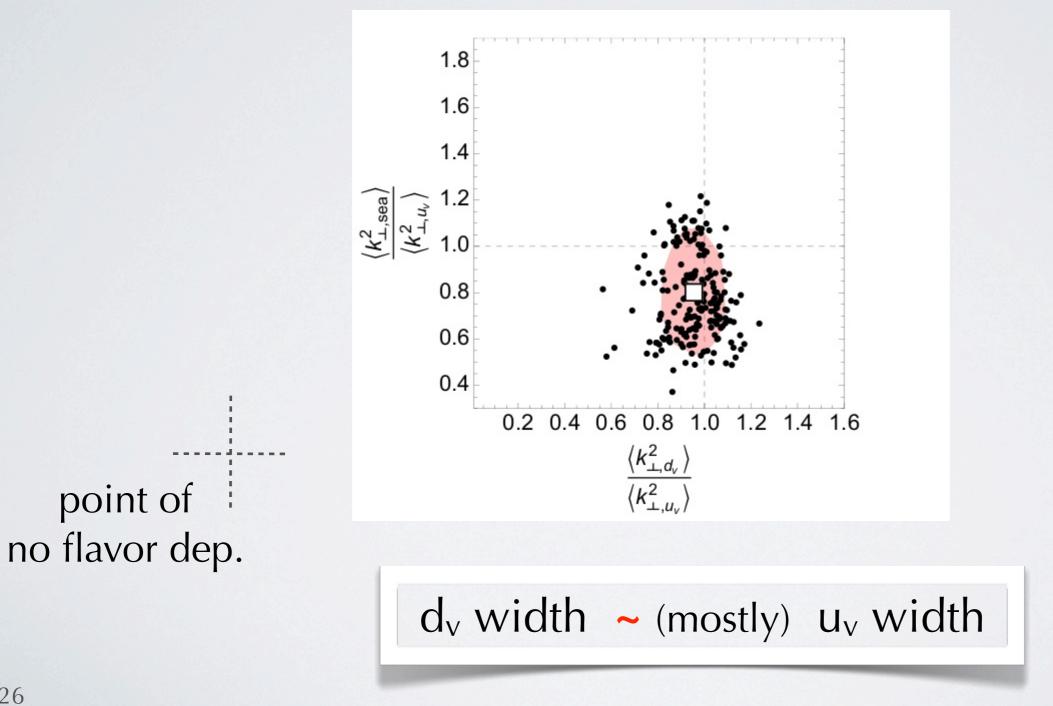
 $q \rightarrow \pi$ favored width < unfavored

Results – Scenario : TMD PDF and no final K

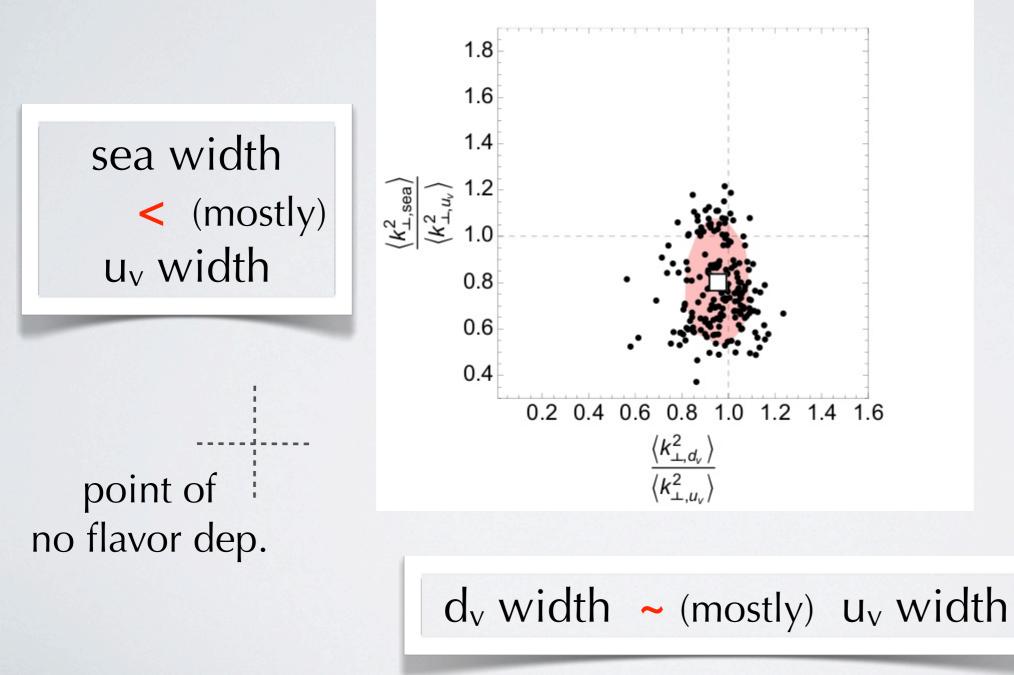


point of in no flavor dep.

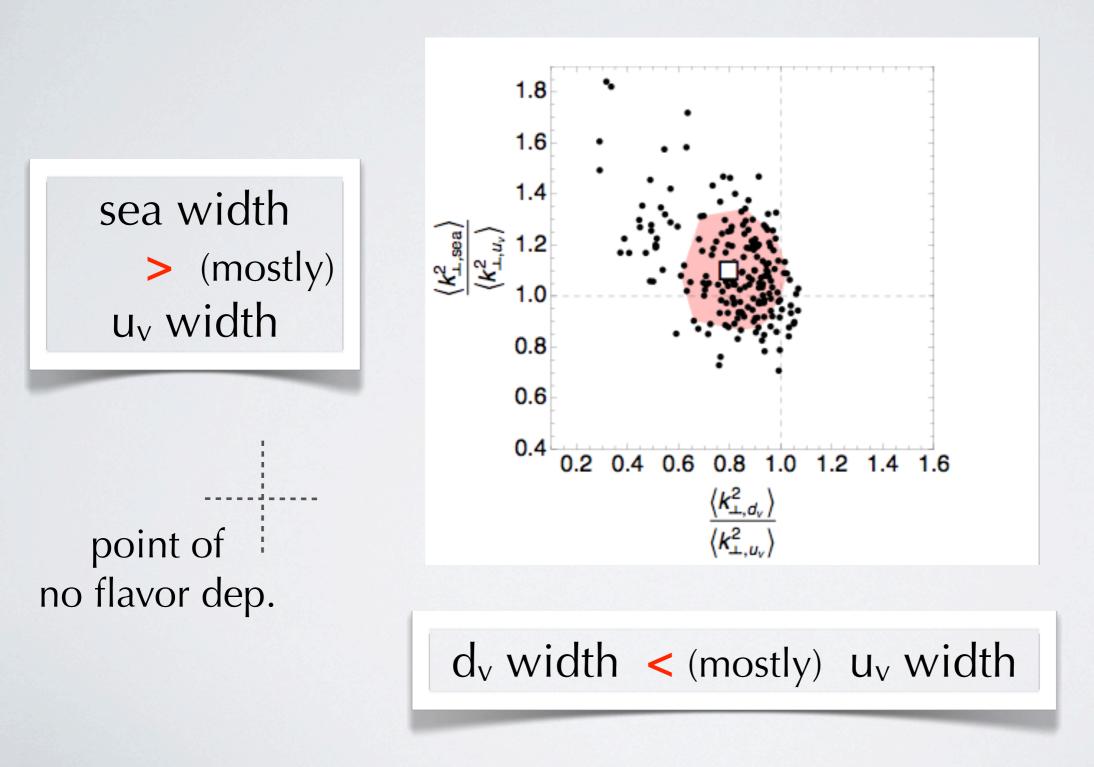
Results – Scenario : **TMD PDF** and **no** final K



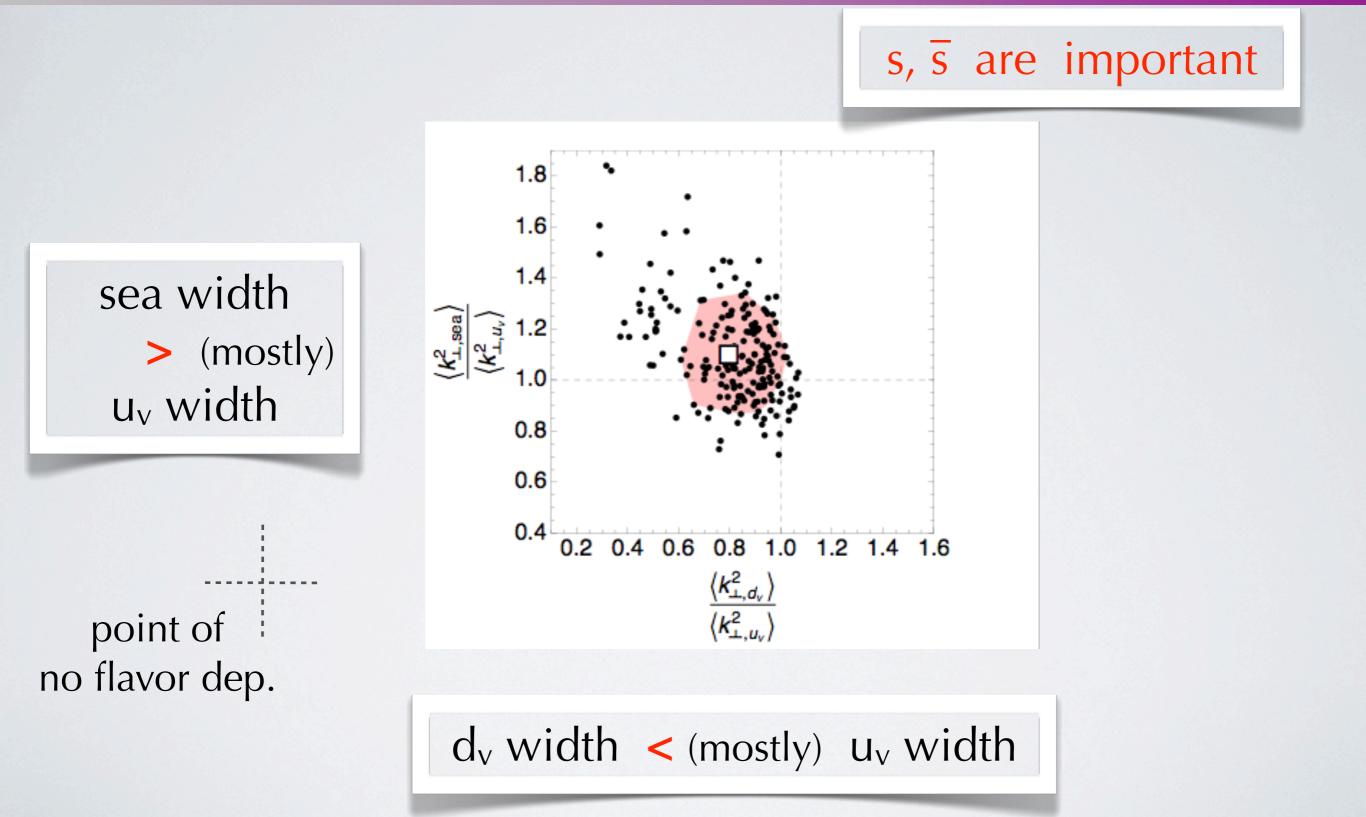
Results – Scenario : TMD PDF and no final K



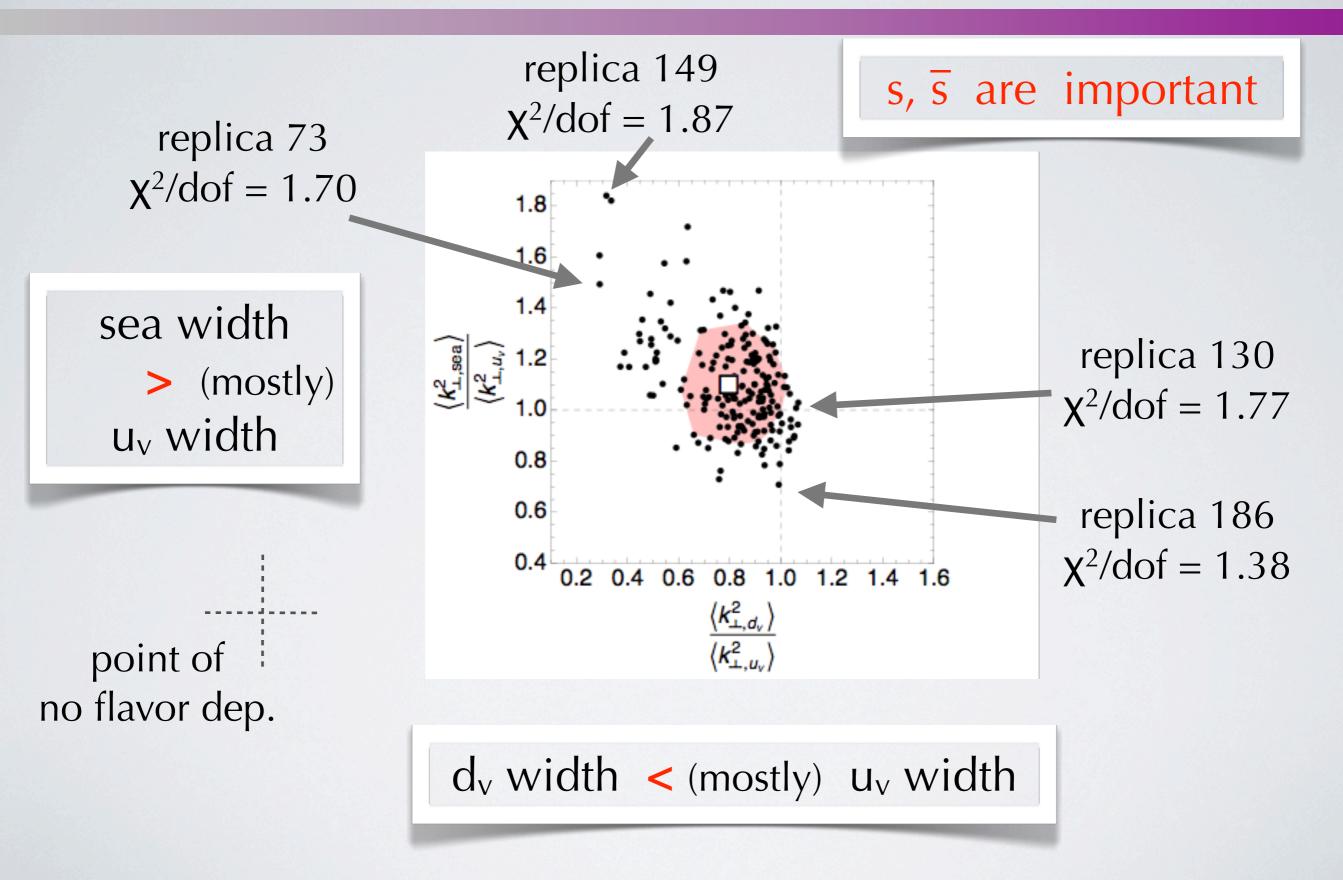
Results – Scenario : TMD PDF full analysis



Results – Scenario : TMD PDF full analysis

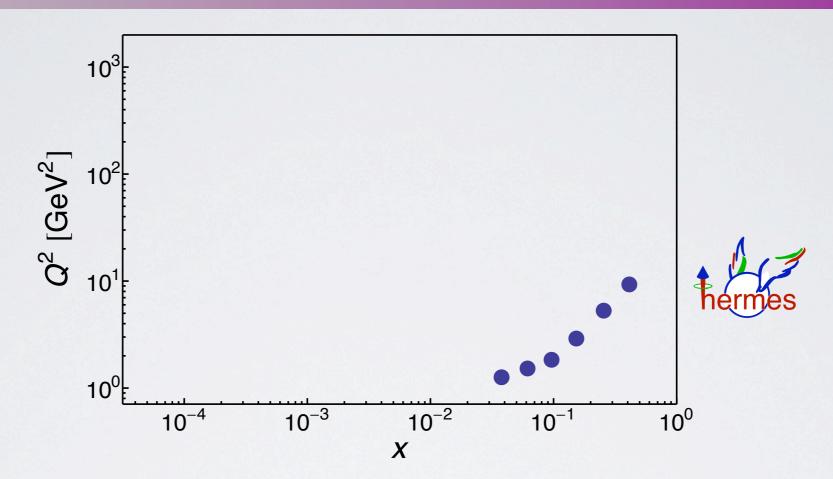


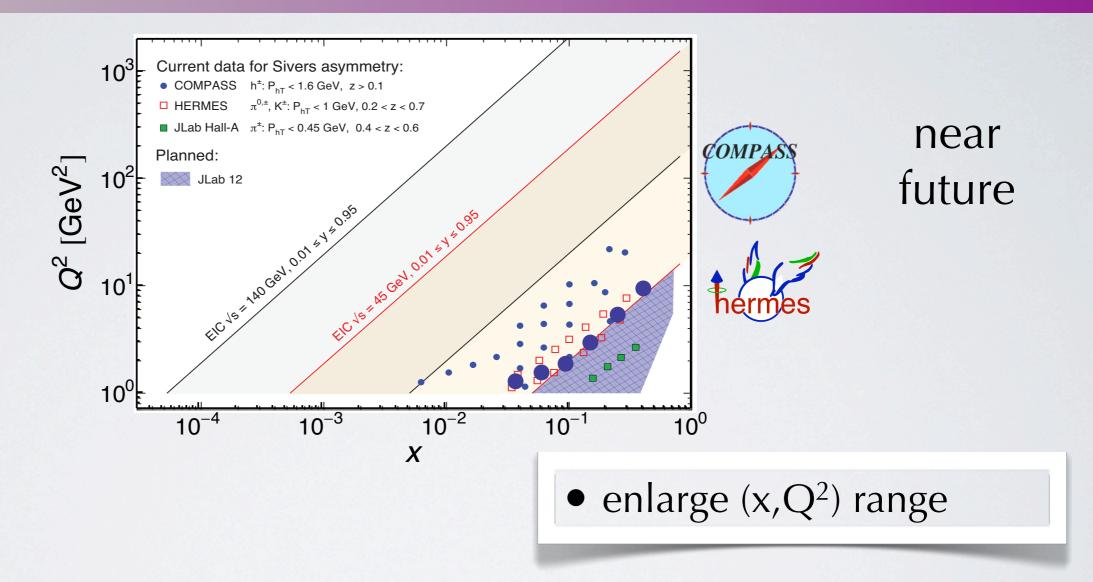
Results – Scenario : TMD PDF full analysis

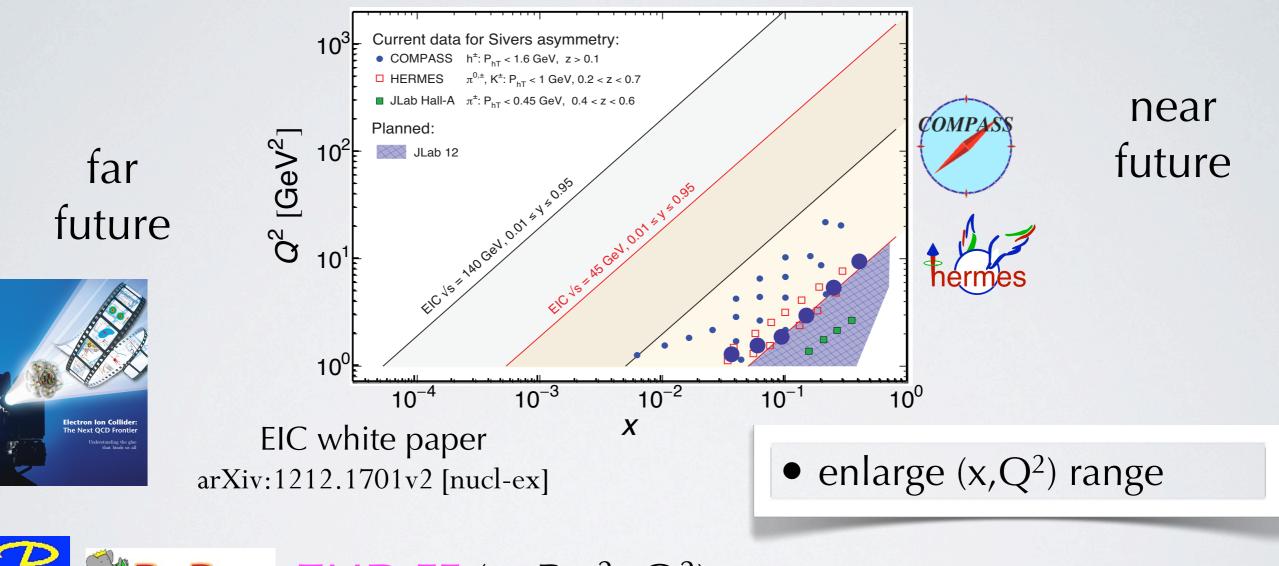


Conclusions

- 1. fitting SIDIS multiplicities from HERMES, first experimental exploration of flavor dependence in TMD PDF and TMD FF
- 2. clear & stable indication in TMD FF that " $q \rightarrow \pi$ favored" width < "unfavored" & " $q \rightarrow K$ favored"
- 3. tendency in TMD PDF to d_v width $< u_v$ width < sea width
- 4. no K in final state : sea width $< d_v \sim u_v$ width \Rightarrow importance of strange
- 5. flavor-independent fit performs worse but not ruled out strong anticorrelation: many intrinsic $\{k_{\perp}, P_{\perp}\}$ give same P_{hT}







BABAR TMD FF $(z, P_{hT}^2; Q^2)$

Drell-Yan...

