Flavor dependence of partonic transverse momentum

Topics:

- Nucleon tomography -
- Strange distribution and fragmentation functions - Quark hadronization - Exotic strange mesons - Advances in RICH technologies

Marco Radici INFN - Pavia
based on Master Th. A. Signori (now at VU, Amsterdam) supervisor A. Bacchetta (Univ. Pavia)
preprint (with also G. Schnell) arXiv: 1309.3507 [hep-ph]

Semi-Inclusive DIS with unpolarized final hadron " h "

SIDIS cross section @leading twist :

8 TMD PDF

Semi-Inclusive DIS with unpolarized final hadron " h "

SIDIS cross section @leading twist :

8 TMD PDF

2 TMD FF

only unpolarized obiects, but with memory of (poorly known) \perp kinematics

why worrying about the unpolarized cross section ?

spin asymmetry

$$
A_{\vec{e} \vec{N}}^{f\left(\phi_{h}, \phi_{S}\right)} \propto \frac{F_{\vec{e} \vec{N}}^{f\left(\phi_{h}, \phi_{S}\right)}}{F_{U U}} \propto \frac{\sum_{q} e_{q}^{2} \text { TMD_PDF }^{q} \otimes_{w} \text { TMD_FF }^{q}}{\sum_{q} e_{q}^{2} f_{1}^{q} \otimes D_{1}^{q}}
$$

why worrying about the unpolarized cross section ?

spin asymmetry

$$
A_{e N}^{f\left(\phi_{n}, \phi_{s}\right)} \propto \frac{F_{e \bar{\prime}}^{f\left(\phi_{n}, \phi_{s}\right)}}{F_{U U}} \propto \frac{\sum_{q} e_{q}^{2} \text { TMD_PDF }^{q} \otimes_{w} \text { TMD_FF }}{}
$$

unpolarized TMDs affect spin asymmetries A \Rightarrow they influence the extraction of polarized TMDs

exp. observable: multiplicity

SIDIS process

$$
\ell(l)+N(P) \rightarrow \ell\left(l^{\prime}\right)+h\left(P_{h}\right)+X,
$$

$$
m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=\frac{d \sigma_{N}^{h} /\left(d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}\right)}{d \sigma_{\mathrm{DIS}} /\left(d x d Q^{2}\right)} \approx \frac{\pi F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)}{F_{T}\left(x, Q^{2}\right)}
$$

exp. observable: multiplicity

SIDIS process

$$
\ell(l)+N(P) \rightarrow \ell\left(l^{\prime}\right)+h\left(P_{h}\right)+X,
$$

hadron species

$$
\underset{m_{N}^{h}}{m_{N}}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=\frac{d \sigma_{N}^{h} /\left(d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}\right)}{d \sigma_{\mathrm{DIS}} /\left(d x d Q^{2}\right)} \approx \frac{\pi F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)}{F_{T}\left(x, Q^{2}\right)}
$$

exp. observable: multiplicity

SIDIS process

$$
\ell(l)+N(P) \rightarrow \ell\left(l^{\prime}\right)+h\left(P_{h}\right)+X,
$$

hadron species

target

1. $M^{2}, \boldsymbol{P}_{\mathrm{hT}}{ }^{2} \ll \mathrm{Q}^{2}$: leading twist TMD
2. $O\left(\boldsymbol{\alpha}_{s}{ }^{0}\right)$: parton model
3. Φ_{h} integrated : acceptance in systematic error

involved transverse momenta

involved transverse momenta

involved transverse momenta

notation as in "Seattle convention" arXiv:1108.1713

parton model

$$
\begin{aligned}
F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2} ; Q^{2}\right) & =\sum_{q} e_{q}^{2} x \int d \boldsymbol{k}_{\perp} d \boldsymbol{P}_{\perp} \delta\left(z \boldsymbol{k}_{\perp}+\boldsymbol{P}_{\perp}-\boldsymbol{P}_{h T}\right) f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}, Q^{2}\right) D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right) \\
& =\sum_{q} e_{q}^{2}\left[f_{1}^{q} \otimes D_{1}^{q \rightarrow h}\right]
\end{aligned}
$$

usual assumption : flavor independent Gaussian shape for transverse momenta

TMD PDF

TMD FF

$$
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; Q^{2}\right)=f_{1}^{q}\left(x ; Q^{2}\right) \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle} \quad D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right)=D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle}
$$

usual assumption : flavor independent Gaussian shape for transverse momenta

TMD PDF

TMD FF

$$
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; Q^{2}\right)=f_{1}^{q}\left(x ; Q^{2}\right) \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle} \quad D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right)=D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle}
$$

usual assumption : flavor independent Gaussian shape for transverse momenta

TMD PDF

TMD FF

$$
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; Q^{2}\right)=f_{1}^{q}\left(x ; Q^{2}\right) \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle} \quad D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right)=D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle}
$$

- not well supported by data

usual assumption : flavor independent Gaussian shape for transverse momenta

TMD PDF

TMD FF

$$
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; Q^{2}\right)=f_{1}^{q}\left(x ; Q^{2}\right) \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle} \quad D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right)=D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle}
$$

- not well supported by data
- also hints of flavor dependence

$$
h^{+} \neq h^{-}
$$

evidence of flavor dependence from :

unpolarized (collinear) PDFs

example :
Owens, Accardi, Melnitchouk (CJ12)
P.R. D87 (13) 094012

similar evidences in
Jimenez-Delgado, Reja (JR09), P. R. D80 (09) 114011
Alekhin et al. (ABKM09), P. R. D81 (10) 014032
Lai et al. (CT10), P. R. D82 (10) 074024
Alekhin, Blümlein, Moch (ABM11), P. R. D86 (12) 054009
Ball et al. (NNPDF13), N. P. B867 (13) 244

evidence of flavor dependence from :

unpolarized (collinear) PDFs

example :
Owens, Accardi, Melnitchouk (CJ12)
P.R. D87 (13) 094012

similar evidences in
Jimenez-Delgado, Reja (JR09), P. R. D80 (09) 114011
Alekhin et al. (ABKM09), P. R. D81 (10) 014032
Lai et al. (CT10), P. R. D82 (10) 074024
Alekhin, Blümlein, Moch (ABM11), P. R. D86 (12) 054009
Ball et al. (NNPDF13), N. P. B867 (13) 244
why not for
\mathbf{k}_{\perp} dependence of TMDs ?

evidence of flavor dependence from :

lattice QCD

valence picture of proton : \#u / \#d = 2
ratio of
number densities
(moments of $f_{1} q$)
depends upon $\left|\mathbf{k}_{\perp}\right|$

evidence of flavor dependence from :

lattice QCD

valence picture of proton : \#u / \#d = 2
ratio of
number densities
(moments of $f_{1} q$)
depends upon $\left|\mathbf{k}_{\perp}\right|$

"less" up at large $\left|\mathbf{k}_{\perp}\right|$

evidence of flavor dependence from :

models of TMD PDFs

example :

chiral quark soliton model
Schweitzer, Strikman, Weiss
JHEP 1301 (13) 163

evidence of flavor dependence from :

models of TMD PDFs

example :

chiral quark soliton model
Schweitzer, Strikman, Weiss
JHEP 1301 (13) 163

similarly in other models like diquark spectator (Bacchetta, Conti, Radici, P. R. D78 (08) 074010) statistical approach (Bourrely, Buccella, Soffer, P. R. D83 (11) 074008)

evidence of flavor dependence from :

models of TMD FFs

example: NJL-jet model
Matevosyan et al.,
P. R. D85 (12) 014021

evidence of flavor dependence from :

models of TMD FFs

example: NJL-jet model
Matevosyan et al.,
P. R. D85 (12) 014021

$\left.<\mathbf{P}_{h T^{2}}\right\rangle>$ larger for unfavored / K fragmentation than for favored π fragmentation

our work :

can we find evidence of
 flavor dependence in \mathbf{k}_{\perp} shape of TMDs from experimental data on SIDIS ?

our analysis: flavor dependent Gaussian shape for transverse momenta

TMD PDF

TMD FF

$$
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; Q^{2}\right)=f_{1}^{q}\left(x ; Q^{2}\right) \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle} \quad D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right)=D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}
$$

in the convolution, for each flavor we get a Gaussian with width

$$
\left\langle\boldsymbol{P}_{h T, q}^{2}\right\rangle=z^{2}\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle+\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle
$$

our analysis: flavor dependent Gaussian shape for transverse momenta

TMD PDF

$f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; Q^{2}\right)=f_{1}^{q}\left(x ; Q^{2}\right) \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}$

$$
D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right)=D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}
$$

in the convolution, for each flavor we get a Gaussian with width

$$
\left\langle\boldsymbol{P}_{h T, q}^{2}\right\rangle=z^{2}\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle+\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle
$$

multiplicity

$$
m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2} ; Q^{2}\right)=\frac{\pi}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right)} \sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right) D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{h T}^{2} /\left\langle\boldsymbol{P}_{h T, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{h T, q}^{2}\right\rangle}
$$

first hints on " \mathbf{k}_{\perp} flavor dependence"

Jefferson Lab

Asaturyan et al. (E00-108), P. R. C85 (12) 015202
conclusions

up wider than down
favored wider than unfavored
but not a multidimensional analysis :

- no binning in $x \& z$
- no sea contribution
- no K in final state

first hints on " \mathbf{k}_{\perp} flavor dependence"

Jefferson Lab

Asaturyan et al. (E00-108), P. R. C85 (12) 015202
conclusions

up wider than down
favored wider than unfavored
but not a multidimensional analysis : new data coming from JLab (see Osipenko's talk)

- no binning in $x \& z$
- no sea contribution
- no K in final state

recent data on multiplicities

Airapetian et al., P.R. D87 (13) 074029

- target: proton, deuteron
- final state: $\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$
just published! Adolph et al., E.P.J. C73 (13) 2531, arXiv: 1305.7317

large statistics \& kin. coverage, but
- target: deuteron
- final state: $\mathrm{h}^{+}, \mathrm{h}^{-}$unidentified
(at the time of this work)
now also $\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$(see Makke's talk)

recent data on multiplicities

Airapetian et al., P.R. D87 (13) 074029

ideal for flavor analysis

- target: proton, deuteron
- final state: $\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$
just published! Adolph et al., E.P.J. C73 (13) 2531, arXiv:1305.7317

large statistics \& kin. coverage, but
- target: deuteron
- final state: $\mathrm{h}^{+}, \mathrm{h}^{-}$unidentified
(at the time of this work)
now also $\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$(see Makke's talk)

selection of data

limited ($\mathrm{x}, \mathrm{Q}^{2}$) range:	6 bins	x
$0.1 \leq \mathrm{z} \leq 0.9$	8 bins	x
$0.1 \leq\left\|\mathbf{P}_{\mathrm{hT}}\right\| \leq 1 \mathrm{GeV}$	7 bins	x
p, D	2 targets	x
$\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$	4 final h's	

total 2688 points

selection of data

$$
\begin{array}{cll}
\text { limited }\left(\mathrm{x}, \mathrm{Q}^{2}\right) \text { range: } & 6 \text { bins } & \mathrm{x} \\
0.1 \leq \mathrm{z} \leq 0.9 & 8 \text { bins } & \mathrm{x} \\
0.1 \leq\left|\mathbf{P}_{\mathrm{hT}}\right| \leq 1 \mathrm{GeV} & 7 \text { bins } \quad \mathrm{x} \\
\mathrm{p}, \mathrm{D} & 2 \text { targets } & \mathrm{x} \\
\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-} & 4 \text { final h's }
\end{array}
$$

total 2688 points

- TMDs valid for $\mathbf{P}_{\mathrm{ht}^{2}}$ < Q^{2} : cut first bin $\mathrm{Q}^{2}=1.4 \mathrm{GeV}^{2}$ (\leftrightarrow lowest x)
- cut last bin $z=0.9$ as in DSS (and use VM subtracted set)
- cut $\left|\mathbf{P}_{\mathrm{ht}}\right|<0.15 \mathrm{GeV} \Leftarrow$ problem to be fixed total analyzed 1538 points $\approx 60 \%$ of 2688

selection of data

$$
\begin{array}{cll}
\text { limited }\left(\mathrm{x}, \mathrm{Q}^{2}\right) \text { range: } & 6 \text { bins } & \mathrm{x} \\
0.1 \leq \mathrm{z} \leq 0.9 & 8 \text { bins } & \mathrm{x} \\
0.1 \leq\left|\mathbf{P}_{\mathrm{hT}}\right| \leq 1 \mathrm{GeV} & 7 \text { bins } & \mathrm{x} \\
\mathrm{P} & 2 \text { targets } & \mathrm{x} \\
\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-} & 4 \text { final } \mathrm{h}^{\prime} \mathrm{s}
\end{array}
$$

total 2688 points

- TMDs valid for $\mathbf{P}_{\mathrm{hT}^{2}} \ll \mathrm{Q}^{2}$: cut first bin $\mathrm{Q}^{2}=1.4 \mathrm{GeV}^{2}$ (\leftrightarrow lowest x)
- cut last bin z = 0.9 as in DSS (and use VM subtracted set)
- cut $\left|\mathbf{P}_{\mathrm{ht}}\right|<0.15 \mathrm{GeV} \Leftarrow$ problem to be fixed total analyzed 1538 points $\approx 60 \%$ of 2688
limited Q^{2} range \Rightarrow safely neglect evolution everywhere

our analysis: assumptions \& parameters

TMD PDF

$f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)=\left.f_{1}^{q}(x)\right|_{Q^{2}=2.4 \mathrm{GeV}^{2}} \frac{e^{\left.-\boldsymbol{k}_{\perp}^{2} / / \boldsymbol{k}_{1, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}$
MSTW08 LO
Martin et al., E.P.J. C63 (09) 189

TMD FF

$$
D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2}\right)=\left.D_{1}^{q \rightarrow h}(z)\right|_{Q^{2}=2.4 \mathrm{GeV}^{2}} \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}
$$

DSS LO
De Florian et al., P.R. D75 (07) 114010

our analysis : assumptions \& parameters

TMD PDF

$f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)=\left.f_{1}^{q}(x)\right|_{Q^{2}=2.4 \mathrm{GeV}^{2}} \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}$
MSTW08 LO
Martin et al., E.P.J. C63 (09) 189

TMD FF

$$
D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2}\right)=\left.D_{1}^{q \rightarrow h}(z)\right|_{Q^{2}=2.4 \mathrm{GeV} 2} \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp}^{2}, q \rightarrow h\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}
$$

DSS LO
De Florian et al., P.R. D75 (07) 114010
x-dependent width

$$
\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle(x)=\left\langle\widehat{\boldsymbol{k}_{\perp, q}^{2}}\right\rangle \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}
$$

$$
\left\langle\widehat{\boldsymbol{k}_{\perp, q}^{2}}\right\rangle=\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle(\hat{x}=0.1)
$$

5 parameters
$\frac{\mathrm{u}_{\mathrm{v}}}{\left\langle\boldsymbol{k}_{\perp, u_{v}}^{2}\right\rangle} \underset{\left\langle\widehat{\left.\boldsymbol{k}_{\perp, d_{v}}^{2}\right\rangle}\right\rangle}{\mathrm{d}_{\mathrm{v}}} \underset{\left\langle\overrightarrow{\left.\boldsymbol{k}_{\perp, \text { sea }}^{2}\right\rangle}\right.}{\text { sea }} \quad \alpha \quad \sigma$

our analysis : assumptions \& parameters

TMD PDF

$f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)=\left.f_{1}^{q}(x)\right|_{Q^{2}=2.4 \mathrm{GeV}^{2}} \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}$
MSTW08 LO
Martin et al., E.P.J. C63 (09) 189

TMD FF

$$
D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2}\right)=\left.D_{1}^{q \rightarrow h}(z)\right|_{Q^{2}=2.4 \mathrm{GeV}^{2}} \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}
$$

DSS LO
De Florian et al., P.R. D75 (07) 114010
x-dependent width

$$
\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle(x)=\left\langle\widehat{\boldsymbol{k}_{\perp, q}^{2}}\right\rangle \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}
$$

$$
\left\langle\widehat{\boldsymbol{k}_{\perp, q}^{2}}\right\rangle=\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle(\hat{x}=0.1)
$$

5 parameters

$$
\frac{\mathrm{u}_{\mathrm{v}}}{\left\langle\left\langle\boldsymbol{k}_{\perp, u_{v}}^{2}\right\rangle\right.} \frac{\mathrm{d}_{\mathrm{v}}}{\left\langle\boldsymbol{k}_{\perp, d_{v}}^{2}\right\rangle} \underset{\langle 0,2]}{\langle-0.3,0.1]}
$$

randomly chosen in
(\Leftrightarrow loosely bound)

our analysis : assumptions \& parameters

TMD PDF

$f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)=\left.f_{1}^{q}(x)\right|_{Q^{2}=2.4 \mathrm{GeV}^{2}} \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}$
MSTW08 LO
Martin et al., E.P.J. C63 (09) 189
x-dependent width

$$
\begin{aligned}
& \left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle(x)=\left\langle\widehat{\boldsymbol{k}_{\perp, q}^{2}}\right\rangle \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}} \\
& \left\langle\widehat{\boldsymbol{k}_{\perp, q}^{2}}\right\rangle=\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle(\hat{x}=0.1)
\end{aligned}
$$

5 parameters

$$
\begin{aligned}
& \frac{\mathrm{U}_{\mathrm{V}}}{\left\langle\boldsymbol{k}_{\perp, u_{v}}^{2}\right\rangle} \frac{\mathrm{d}_{\mathrm{V}}}{\left\langle\boldsymbol{k}_{\perp, d_{v}}^{2}\right\rangle} \\
& \text { [0,2] [-0.3,0.1] }
\end{aligned}
$$

 randomly chosen in (\Leftrightarrow loosely bound)

TMD FF

$$
D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2}\right)=\left.D_{1}^{q \rightarrow h}(z)\right|_{Q^{2}=2.4 \mathrm{GeV}^{2}} \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}
$$

DSS LO
De Florian et al., P.R. D75 (07) 114010
z-dependent width

$$
\begin{aligned}
\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle(z) & =\left\langle\widehat{\boldsymbol{P}_{\perp, q \rightarrow h}^{2}}\right\rangle \frac{\left(z^{\beta}+\delta\right)(1-z)^{\gamma}}{\left(\hat{z}^{\beta}+\delta\right)(1-\hat{z})^{\gamma}} \\
\left\langle\widehat{\boldsymbol{P}_{\perp, q \rightarrow h}^{2}}\right\rangle & =\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle(\hat{z}=0.5)
\end{aligned}
$$

7 parameters

$$
\begin{aligned}
& u \rightarrow \pi^{+}, d \rightarrow \pi^{-} \quad u \rightarrow K^{+} \quad s \rightarrow K^{+} \quad \text { other } \quad \beta, \delta, \gamma \\
& \mathrm{d} \rightarrow \pi^{+}, \overline{\mathrm{u}} \rightarrow \pi^{-} \quad \overline{\mathrm{u}} \rightarrow \mathrm{~K}^{-} \quad \overline{\mathrm{s}} \rightarrow \mathrm{~K}^{-} \\
& \left\langle\widehat{\boldsymbol{P}_{\perp, \text { fav }}^{2}}\right\rangle \quad\left\langle\widehat{\boldsymbol{P}_{\perp, u K}^{2}}\right\rangle\left\langle\widehat{\boldsymbol{P}_{\perp, s K}^{2}}\right\rangle\left\langle\widehat{\boldsymbol{P}_{\perp, \text { unfav }}^{2}}\right\rangle \\
& \downarrow
\end{aligned}
$$

inspired by NNPDF (see Nocera's talk)

our fitting procedure

used in transversity extraction (see Aurore's talk)

sample of original data

our fitting procedure

data are replicated with Gaussian noise (within exp. variance)

our fitting procedure

fit the replicated data

our fitting procedure

procedure repeated 200 times (until reproduce mean and std. deviation of original data)

our fitting procedure

for each point, a central 68% confidence interval is identified (distribution is not necessarily Gaussian)

our fitting procedure

for each point, a central 68% confidence interval is identified (distribution is not necessarily Gaussian)

quality of the fit

$$
\begin{array}{cr}
\text { proton target } \begin{array}{c}
\text { global } X^{2} / \text { d.o.f. }
\end{array}=1.63 \pm 0.12 \\
\text { no flavor dep. } & 1.72 \pm 0.11
\end{array}
$$

quality of the fit

$$
\begin{gathered}
\text { proton target } \begin{array}{c}
\text { global } X^{2} / \text { d.o.f. }= \\
\text { no flavor dep. }
\end{array} \quad 1.63 \pm 0.12 \pm 0.11
\end{gathered}
$$

for more details, see arXiv:1309.3507 [hep-ph]

Results - Scenario : no flavor dep.

Results - Scenario : no flavor dep.

strong anticorrelation between distribution and fragmentation

anticorrelation and 68% band

TMD FF

anticorrelation and 68% band

Results - Scenario : flavor dep. in TMD FF

Results - Scenario : flavor dep. in TMD FF

$\mathrm{q} \rightarrow \pi$ favored width < unfavored

Results - Scenario : flavor dep. in TMD FF

$\mathrm{q} \rightarrow \pi$ favored width < unfavored

Results - Scenario : flavor dep. in TMD FF

$$
\mathrm{q} \rightarrow \pi \text { favored width }<\text { unfavored }
$$

Results - Scenario: TMD PDF and no final K

Results - Scenario: TMD PDF and no final K

point of
 no flavor dep.

$$
\mathrm{d}_{\mathrm{v}} \text { width } \sim(\text { mostly }) \mathrm{u}_{\mathrm{v}} \text { width }
$$

Results - Scenario: TMD PDF and no final K

no flavor dep.

$$
\mathrm{d}_{\mathrm{v}} \text { width } \sim(\text { mostly }) u_{v} \text { width }
$$

Results - Scenario : TMD PDF full analysis

$$
\mathrm{d}_{\mathrm{v}} \text { width }<\text { (mostly) } u_{v} \text { width }
$$

Results - Scenario : TMD PDF full analysis

$\mathrm{s}, \overline{\mathrm{s}}$ are important

$$
\mathrm{d}_{\mathrm{v}} \text { width }<\text { (mostly) } \mathrm{u}_{\mathrm{v}} \text { width }
$$

Results - Scenario : TMD PDF full analysis

no flavor dep.

$$
\mathrm{d}_{\mathrm{v}} \text { width }<\text { (mostly) } u_{v} \text { width }
$$

Conclusions

1. fitting SIDIS multiplicities from HERMES, first experimental exploration of flavor dependence in TMD PDF and TMD FF
2. clear \& stable indication in TMD FF that " $\mathrm{q} \rightarrow \mathrm{\pi}$ favored" width < "unfavored" \& " $\mathrm{q} \rightarrow \mathrm{K}$ favored"
3. tendency in TMD PDF to d_{v} width $<\mathrm{u}_{\mathrm{v}}$ width $<$ sea width
4. no K in final state : sea width $<\mathrm{d}_{\mathrm{v}} \sim \mathrm{u}_{\mathrm{v}}$ width \Rightarrow importance of strange
5. flavor-independent fit performs worse but not ruled out strong anticorrelation: many intrinsic $\left\{\mathbf{k}_{\perp}, \mathbf{P}_{\perp}\right\}$ give same \mathbf{P}_{hT}

Future

Future

Future

near
future

- enlarge ($\mathrm{x}, \mathrm{Q}^{2}$) range

Future

arXiv:1212.1701v2 [nucl-ex]

- enlarge ($\mathrm{x}, \mathrm{Q}^{2}$) range

B BaBAR TMD FF $\left(\mathrm{z}, \mathbf{P}_{\mathrm{h} T^{2}}{ }^{2} \mathrm{Q}^{2}\right)$

Drell-Yan...

Future

ribaBar TMD FF $\left(z, \mathbf{P}_{\mathrm{ht}^{2}} ; \mathrm{Q}^{2}\right)$
Drell-Yan...

- uncorrelated $x(z) \& Q^{2}$ bins
- different targets \& final hadrons

