COMPASS-II

Taipei (AS)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-SPSC-2010-014 SPSC-P-340 May 17, 2010

 DVCS (GPD) and simultaneously 		
SIDIS on proton (FF, TMDs)	2016/17,	
• TMDs in $\pi^- + p^+$ Drell-Yan:	2014/15,	
 Pion (and kaon) polarizabilities 	2012	

COMPASS-II Proposal

Approved by CERN RB in December 2010

The COMPASS Collaboration

www.compass.cern.ch/compass/proposal/compass-II_proposal.pdf

PSHP 2013

Anna Martin

Anna Martin

Π

GPD program at COMPASS

 Transverse target asymmetry for exclusive ρ⁰ production with polarized NH3 target
 2007, 2010 data

Transverse spin asymetry for exclusive ρ⁰ production with polarized NH3 target

NEW RESULTS

GPD program at COMPASS

 Transverse target asymmetry for exclusive ρ⁰ production with polarized NH3 target
 2007, 2010 data

DVCS and Hard Exclusive Meson Production with proton (NH₃) target + RPD and μ^{+↓}, μ^{-↑} 160 GeV beams to constrain GPD E

Kinematic domain (Q², x_B) for GPDs

COMPASS unique for GPDs

- **CERN** muon beam
 - 100 190 GeV
 - $\mu^{+\downarrow}$ and $\mu^{-\uparrow}$ available
 - 80% Polarisation
 - 4.6 10⁸ μ⁺
 - →Lumi= 10³² cm⁻² s⁻¹ with 2.5m LH2 target

explore the intermediate x_{Bj} region uncovered region between ZEUS+H1 & HERMES + Jlab before new colliders may be available

Anna Martin

experimental apparatus

CAMERA recoil proton detector surrounding the 2.5m long LH2 target

test run 2012

al with the

ECAL0

ECAL2

SIDIS

SIDIS

2	Measurements of unpolarised PDFs and TMD effects in SIDIS			
	2.1	2.1 Strange quark distribution function and quark fragmentation functions .		
		2.1.1	Strange quark distribution function	38
		2.1.2	Quark fragmentation functions	39
		2.1.3	Expected statistical precision	40
	2.2	Trans	verse-momentum-dependent effects in SIDIS	41

i.e. hadron multiplicities vs z and p_t² dihadron multiplicities and azimuthal asymmetries

ш

PSHP 2013

unpolarised deuteron

SIDIS

2	Measurements of unpolarised PDFs and TMD effects in SIDIS			
	2.1	2.1 Strange quark distribution function and quark fragmentation functions .		
		2.1.1	Strange quark distribution function	38
		2.1.2	Quark fragmentation functions	39
		2.1.3	Expected statistical precision	40
	2.2	Trans	verse-momentum-dependent effects in SIDIS	41

i.e. hadron multiplicities vs z and p_t² dihadron multiplicities and azimuthal asymmetries

on the 2.5 m long LH₂ target

taking advantage of the spectrometer consolidation and upgrades which are ongoing *trackers, RICH*

SIDIS

160 GeV/c, 2.5 m long LH₂ target

1 week of data taking

polarised Drell - Yan

test run in 2009

PSHP 2013

Anna Martin

Π

complementary to SIDIS:

cross-sections:

SIDIS: convolution of a TMD PDFs with FFs

DY: convolution of 2 TMD PDFs

$$\pi^{-}p^{\uparrow} \to \mu^{+}\mu^{-}X \quad \Rightarrow \quad \sigma^{DY} \propto f_{\overline{u}|\pi^{-}} \otimes f_{u|p}^{\prime}$$

$$\begin{array}{l} \text{collins Sopper frame} \\ \hline \text{collins Sopper frame} \\ \hline \frac{d\sigma}{d^4 q d\Omega} = \left[\frac{\alpha^2}{Fq^2} \left(F_{UU}^1 + F_{UU}^1 \right) \left(1 + A_{UU}^1 \cos^2 \theta \right) \right] \times \\ \begin{bmatrix} 1 + \cos \varphi \times D_{[\sin 2\theta]} A_{UU}^{\cos \varphi} + \cos(2\varphi) \\ S_L \left[\sin \varphi \times D_{[\sin 2\theta]} A_{UU}^{\cos \varphi} + \sin(2\varphi) \times D_{[\sin^2 \theta]} A_{UU}^{\sin(2\varphi)} \right] + \\ \hline \\ & \left[\frac{\sin \varphi_S}{\sin \varphi} \left(D_{[1]} A_{UT}^{\sin \varphi_S} + D_{[\cos^2 \theta]}^{-5urg} \right) + \\ \sin(\varphi - \varphi_S) \times \left(D_{[\sin 2\theta]} A_{UT}^{\sin((\varphi - \varphi_S)} \right) + \\ \sin(\varphi - \varphi_S) \times \left(D_{[\sin 2\theta]} A_{UT}^{\sin((\varphi - \varphi_S)} \right) + \\ \hline \\ & \sin(2\varphi - \varphi_S) \times \left(D_{[\sin^2 \theta]} A_{UT}^{\sin((\varphi - \varphi_S)} \right) + \\ \hline \\ & \sin(2\varphi - \varphi_S) \times \left(D_{[\sin^2 \theta]} A_{UT}^{\sin((\varphi - \varphi_S)} \right) + \\ \hline \\ & \sin(2\varphi - \varphi_S) \times \left(D_{[\sin^2 \theta]} A_{UT}^{\sin((\varphi - \varphi_S)} \right) + \\ \hline \\ & \sin(2\varphi - \varphi_S) \times \left(D_{[\sin^2 \theta]} A_{UT}^{\sin((\varphi - \varphi_S)} \right) + \\ \hline \\ & \left[(B-M.)_\pi \otimes (\text{Transv.})_p \right] \\ \hline \\ & (B-M.)_\pi \otimes (\text{Pretz.})_p \end{array}$$

ĥ

Test of universality

the T-odd Boer-Mulders and Sivers functions are process dependent

and are expected to change sign

Boer-Mulders

$$h_{1}^{\perp}(SIDIS) = -h_{1}^{\perp}(DY)$$

Sivers
 $f_{1T}^{\perp}(SIDIS) = -f_{1T}^{\perp}(DY)$

polarised Drell - Yan

acceptance

polarised Drell - Yan

and many ideas for other measurements in 2015 and after

the phase spaces of the two processes overlap → consistent extraction of TMD DPFs in the same region

PSHP 2013

Anna Martin

COMPASS-II

a lot of interesting results are expected in few years !!

With DVCS and exclusive ρ production

DVCS

can be separated from BH and constrain the GPD *H* e.g. using cross-sections for different lepton (μ) beam charge & spin (e_u & P_u)

DVCS & transverse proton size

distance $\langle r_{\perp}^2 \rangle$ between struck quark and spectator c.m. given by *t*-slope of DVCS cross-section σ_0 (as function of x_{Bi} , LO)

$$\frac{\mathrm{d}\sigma_0^{\mathrm{DVCS}}}{\mathrm{d}t} \propto \exp(-B(x_B)|t|)$$

$$\langle r_{\perp}^2(x_B) \rangle \approx 2B(x_B)$$

- **Reminder** $S = 2(d\sigma^{BH} + d\sigma_0^{DVCS} + ImI)$
- Subtract BH from ${\cal S}$, integrate over $\varphi \, \rightarrow \, \sigma_0$
- H1 found 0.65 \pm 0.02 fm at $x_{\rm Bi} \approx 10^{\text{-3}}$

Parametrisation

$$B(x_B) = B_0 + 2\alpha' \log \frac{x_0}{x_B}$$

DVCS & transverse proton size

- COMPASS-II projection, 2 years of data taking
 , pilot run 2012
- x_B region unique to COMPASS
- transition from HERA \rightarrow HERMES/JLab

Deeply Virtual Compton Scattering

$$d\sigma_{(\mu p \to \mu p \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol}$$

+ $e_{\mu} a^{BH} \Re e A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$

$$\mathcal{D}_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto \begin{bmatrix} c_0^{Int} + c_1^{Int} \cos \phi \\ d\sigma^{BH} + c_0^{DVCS} + K \cdot s_1^{Int} \sin \phi \end{bmatrix} c_{0,1}^{Int} \sim \mathcal{R}e(F_1 \mathcal{H})$$

$$S_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto d\sigma^{BH} + c_0^{DVCS} + K \cdot s_1^{Int} \sin \phi \end{bmatrix} s_1^{Int} \sim Im(F_1 \mathcal{H})$$

 $\xi \sim x_{\rm B} / (2 - x_{\rm B})$

> Im
$$\mathcal{H}(\xi,t) = \mathbf{H}(x=\xi,\xi,t)$$

> $\mathcal{Re} \mathcal{H}(\xi,t) = \mathcal{P} \int dx \mathbf{H}(x,\xi,t) / (x-\xi)$

Note: dominance of H at COMPASS kinematics

Deeply Virtual Compton Scattering

$$d\sigma_{(\mu \rho \to \mu \rho \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol}$$
$$+ e_{\mu} a^{BH} \mathcal{R}e A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

$$\mathcal{D}_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto \begin{bmatrix} c_0^{Int} + c_1^{Int} \cos \phi \\ c_{0,1}^{Int} \sim \mathcal{R}e(\mathcal{F}_1 \mathcal{H}) \end{bmatrix}$$

$$\mathcal{S}_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto \begin{bmatrix} d\sigma^{BH} + c_0^{DVCS} + K.s_1^{Int} \sin \phi \\ s_1^{Int} \sim Im(\mathcal{F}_1 \mathcal{H}) \end{bmatrix}$$

Angular decomposition of sum and diff of the DVCS cross section

will provide umambiguous way to separate the *Re* and *Im* of the *Compton Form Factors* from higher twist contributions

Beam Charge and Spin Difference (using $\mathcal{D}_{CS,U}$)

Beam Charge and Spin Difference over the kinematic domain

