2nd Workshop on Probing Strangeness in Hard Processes

RICH Technology and the LHCb experience

Clara Matteuzzi INFN and Universita' di Milano-Bicocca

1

The Ring Imaging Cherenkov technology

Ring Imaging CHerenkov detectors are the most adequate to satisfy a large spectrum of physics applications for Particle Identification. The technology choices are made by considering:

★ Kind of physics measurements

★ Momentum range to be covered

Machine environments

Particle density in the final state, operation frequency,.....

C. Matteuzzi

geometry and technologies choices to achieve a given angular resolution $\sigma(\theta_C)$

keep all the contributions to the resolution under control during the whole lifetime of the experiment

Frascati 13/11/2013

A long list of applications of RICH detectors

Hadronic environment

ALICE LHCb PANDA NA62 COMPASS e+e- environment

BaBar, BELLE BELLE upgrade

Space experiments (on satellite and baloon) AMS (measures flux of charged particles and light nuclei) CREAM

> Underground ANTARES, NESTOR, NEMO, KM3net, AMANDA,ICECUBE

Nuclear physics ALICE JLAB

Frascati 13/11/2013

To measure the Čherenkov angle θ_C

Main contributions to angular resolution $\sigma(\theta_c)$ from :

Čherenkov detectors performance

The angular resolution per photon:

$$\sigma(\theta_{c}) = \sqrt{\sigma(\theta_{rad})^{2} + \sigma(\theta_{PD})^{2} + \sigma(\theta_{geom})^{2} + \sigma(\theta_{tr})^{2}}$$

 $\sigma_{ring}(\theta_{C}) = \frac{\sigma(\theta_{C})}{\sqrt{N_{pe}}} \qquad \qquad \text{And the separating power:} \\ N_{\sigma} \approx \frac{(m_{1}^{2} - m_{2}^{2})}{(2 \text{ p}^{2} \sqrt{n^{2} - 1} \sigma(\theta_{c}))}$

The number of photo-electrons N_{pe:}

$$N_{pe} = 370 L \int \epsilon \sin^2 \theta_c dE = L N_0 \sin^2 \theta_c$$
Usually N_o between ~ 20 and 100
General rule: minimize $\sigma(\theta_c)$

Frascati 13/11/2013

maximize N_{pe}

RICH detectors by angular resolution

$\sigma(\theta_{\rm C}) \approx O(10 \text{ mrad})$ Ex: ALICE, BELLE, BELLE upgrade, JLAB,.... BaBar and HERMES (closed)

differ by machine environment, particle density, BUT momentum range similar

σ(θ_C)≈ O(1 mrad) Ex.: COMPASS, LHCb, NA62

Examples of RICH detectors with $\sigma(\theta_c) \approx O(1 \text{ mrad})$

\star LHCb operate at LHC \rightarrow more detailed description

NA62 starting to operate end of 2014 at SPS

Physics aims: measure $BR(K^+ \rightarrow \pi^+ \nu \nu)$

Dominant Background : $K^+ \rightarrow \mu^+ \nu$ (K_{µ2} largest BR: 63.4%) 3 $\sigma \pi$ - μ separation (15-35 GeV/c)

Need ~ 10^{-12} rejection factor of which from Particle ID: 10^{-2} (Kinematics: 10^{-5} and Muon Veto: 10^{-5})

★ Main physics measurements: *b* and *c* rare decays and CP asymmetries

★ Momentum range of particles: B hadrons produced with ≈ 70 GeV

decay products from 2 to 100 GeV

★ Hadron machine environment (LHC) high particle density in the final state Run at 7 and 8 TeV, at 13 TeV in 2015

Physics aims:

separate K / π /p in the range 2-100 GeV/c to reconstruct rare (and less rare) B and D decays (ex. B $\rightarrow \mu\mu$, B \rightarrow KK and K π , B \rightarrow D_s K and D_s π , ...)

Environment:

At LHC, very high particle density, high background Works at 1 MHz Must reject pion (the most abundant particle type) < the percent level

Geometry:

focussed, 2 RICHes with 3 different radiators

The RICH of LHCb: the radiators

Frascati 13/11/2013

The RICH of LHCb: the geometry

The RICH of LHCb: the occupancy

The RICH of LHCb: the resolution

To get the designed resolution $\sigma(\theta_C)$ needs to control:

Radiators:

Composition of gas radiators (some air, N2, CO2 contamination) gas composition measured by chromotography to calibrate n-1 Control P and T continuously for correcting automatically the density ρ_{gas}

Geometry:

Mirror alignment with data. Down to 0.1 mrad

Spatial precision:

Monitor ageing of PD (HPD) Corrections for magnetic distorsion Alignment of HPDs

Tracking:

 $\sigma(\theta_c)$ relies on track information also for alignment.

The magnetic field corrections

HPD are sensitive to the magnetic field fringes

Projection of test pattern with and without magnetic field to extract correction parameters

The magnetic field corrections

Plot the distances from the measured light spot to the test point:

(same behaviour along y coordinate)

Frascati 13/11/2013

C. Matteuzzi

The alignment

Alignment of many components at different level: whole detector, detector halves, mirror segments, HPD

Use reconstructed Cherenkov angle of $\beta = 1$ tracks

Misalignment is observed as a shift of track projection point w.r.t the center of the corresponding Cherenkov ring

The RICH of LHCb: the angular resolution

The RICH of LHCb: the stability

RICH-1

RICH-2

About 8 months period

The RICH of LHCb: the PID performance

The RICH of LHCb : *photoelectrons counting*

Methodology

 \rightarrow Use 2 categories of events (in data):

- ★ Tracks from $D^0 \rightarrow K^-\pi^+$ calibration sample (from the D^{*+} → D⁰π⁺) with β ≈ 1
- ★ Muons from events $pp \rightarrow pp \mu^+\mu^-$
- For each selected charged particle track, measure N $_{pe}$ from the hits that lie within a range $\pm 5\sigma$

 \rightarrow see figure

The RICH of LHCb : photoelectrons counting

Tracks per 1.7 photons 008 1.7 photons 008 000 suotoud 1200 **RICH-1 RICH-2** LHCb LHCb F C_4F_{10} CF_4 1200 √s=7 TeV data √s=7 TeV data 1000 Tracks per 1 800 600 400 200 200 0 50 50 0 0 Track Photon Yield Track Photon Yield

	N_{pe} from data		N_{pe} from simulation	
Radiator	tagged $D^0 \to K^- \pi^+$	$pp \rightarrow pp \ \mu^+\mu^-$	Calculated $N_{\rm pe}$	true $N_{\rm pe}$
Aerogel	5.0 ± 3.0	4.3 ± 0.9	8.0 ± 0.6	6.8 ± 0.3
C_4F_{10}	20.4 ± 0.1	24.5 ± 0.3	28.3 ± 0.6	29.5 ± 0.5
CF_4	15.8 ± 0.1	17.6 ± 0.2	22.7 ± 0.6	23.3 ± 0.5

The RICH of LHCb: the PID performance

Methodology (I)

Construct a global log-likelihood algorithm considering ALL the photons, ALL the tracks and for ALL radiators:

 \star First step: consider all tracks as a pions

Second step: change the hypothesis for each track in turn to electron, muon, kaon and proton and recalculate likelihood values for each hypothesis

Third step: select the combination that gives the larger global likelihood value

The RICH of LHCb: the PID performance

Methodology (II)

The final mass assignments are differences in the log-likelihood values Δ log L which give for each track the change in the overall event log-likelihood when that track is changed from the pion hypothesis to each of the e, µ, K, p hypotheses.

To determine Identification probability and mis-identification rate, need PURE SAMPLES of each particle type selected via kinematics cuts alone

Exploit typical decays:

Also $\Phi(1020)$ and photon conversion

The RICH of LHCb: PID performance calibration

Lнср

The RICH of LHCb: *PID performance*

LHCb

LHCb ГНСр

Identification probability and mis-ID for protons

Frascati 13/11/2013

29

The RICH of LHCb: the PID performance

Performance depends on track or primary vertices multiplicity

The RICH of LHCb: the performance

Most of LHCb analysis use extensively particle identification from RICH for decays and tagging.

An example: study of the decay $B \rightarrow \pi + \pi$ -. Must separate all the components $B \rightarrow h+h$ - where $h = \pi$, h = K if wants to measure CP asymmetry.

Signal: $B^0 \rightarrow \pi + \pi$ - (tourquoise dotted line) Other contributions are eliminated ($B^0 \rightarrow K\pi, B^0 \rightarrow 3-body, B_s \rightarrow KK, B_s \rightarrow K\pi, \Lambda_b \rightarrow pK, \Lambda_b \rightarrow p\pi$)

Concluding comments

RICH technique is extremely powerful and widely used for PID in different environments

- Choices of technologies make flexible RICH designs for different applications. Stability is often to be favoured.
- BUT: RICH detectors are in general sophisticated tools and need important effort to keep under control the different components of the Čherenkov angle resolution

The LHCb RICH is very successful detector and is one of the key ingredients for the many important and fundamental physics measurements performed by the LHCb experiment.

The RICH of LHCb The European Physical Journal

volume 73 · number 5 · may · 2013

Performance of the LHCb RICH detector at LHCb

Particles and Fields

Eur. Phys. J. C (2013) 73:2431

Frascati 13/11/2013

Spare slides

The RICH of LHCb

The RICH of LHCb: the PID performance

