COMPASS Review on PDF observables

Nour Makke for COMPASS Collaboration

University of Trieste and INFN section of Trieste

Probing strangeness in hard processes

Laboratori Nazionale di Frascati November 11-13

The COMPASS Experiment

Common Muon and Proton Apparatus for Structure and Spectroscopy

The COMPASS Experiment

Common Muon and Proton Apparatus for Structure and Spectroscopy

Longitudinal spin decomposition

$$\frac{S_z^N}{\hbar} = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z^q + L_z^g$$

in this talk

Inclusive Deep Inelastic scattering cross-section

Structure functions

unpolarised $F_1(x,Q^2)$, $F_2(x,Q^2) \rightarrow$ unpol . PDFs q(x)Polarised $g_1(x,Q^2)$, $g_2(x,Q^2) \rightarrow$ pol. PDFs $\Delta q(x)$

New $A_1^{p}(x) \& g_1^{p}(x)$ from 2011 200 GeV data

NEW 2011 COMPASS proton data with 200 GeV muon beam

Inclusive Deep Inelastic scattering cross-section

Structure functions

unpolarised $F_1(x,Q^2)$, $F_2(x,Q^2) \rightarrow$ unpol . PDFs q(x)Polarised $g_1(x,Q^2)$, $g_2(x,Q^2) \rightarrow$ pol. PDFs $\Delta q(x)$

Longitudinal spin decomposition

$$\frac{S_z^N}{\hbar} = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z^q + L_z^g$$

How do different flavors contribute ?

$$\begin{array}{cccc}
\ell & \ell' & & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & \\
\downarrow & & & & & & \\
\downarrow & & & & & & \\
\downarrow & & & & & \\
\downarrow & & & & & \\
\downarrow & & & & & & \\
\downarrow & & & & &$$

Hadron Asymmetries in SIDIS

PLB 680 (2009) 217-224

Deuteron

Hadron Asymmetries in Semi-Inclusive DIS

→ First Kaon SIDIS asymmetries on a proton target Soon: new results on 2011 proton data

N. Makke

Good agreement between COMPASS data and DSSV parametrization, but what about Δs ?

$$\int_0^1 \Delta s(x) + \Delta \bar{s}(x) dx = 2\Delta S$$

> Inclusive DIS ($\int g_1(x) dx$, SU(3) flavor symmetry + axial charged of baryons)

 $2\Delta S = -0.08 \pm 0.01_{stat.} \pm 0.02_{syst.}$ PLB 647(2007) 8-17

Semi-Inclusive DIS $2\Delta S = -0.02 \pm 0.02_{stat.} \pm 0.02_{syst.}$ PLB 693 (2010) 227-235

 \rightarrow Strong dependence on the choice of fragmentation functions $R_{SF} = D_{str}^{K}/D_{u}^{K}$

Large sensitivity of ΔS to strange to favored FF ratio \rightarrow Try to extract from Kaon multiplicities

- Describe the collinear transition of a parton i into a final-state hadron h carrying momentum fraction z
- \succ $D^{h}_{i(q,g)}$ gives the density of hadrons produced after partons hard scattering

- Relevant any time a hadron is emitted in a high energy collision
 - Flavor separation of polarised parton distribution
 - extraction of polarised gluon density
 - ➢ Key role in single spin asymmetries, transversity
 - Heavy ion studies of QGP
- Universal Determinable from global fits on different observables/reactions
- > Depend on *energy fraction* of the fragmenting parton transferred to the hadron

$$z = E_h / E_i$$

> Energy conservation sum rule: $\sum_{h} \int_{0}^{1} zD_{i}^{h}(z, Q^{2})dz = 1$

- Describe the collinear transition of a parton i into a final-state hadron h carrying momentum fraction z
- \succ $D^{h}_{i(q,q)}$ gives the density of hadrons produced after partons hard scattering

e+e- annihilation into hadrons

- > Precise data from LEP (+ new prel. Results from BELLE & BABAR)
- Clean process (sole dependence on FFs)
- Narrow scale coverage (far from target scales)
- > Only sensitive to singlet combination ($D_u + D_d + D_s + ...$)

Hadron-hadron collisions

- Large sensitivity to gluon FF
- Larger theoretical uncertainties
- Strong dependence on PDFs

Semi-inclusive DIS, $\ell N \rightarrow \ell' h X$

- Allows flavor/charge separation
- Wider scale coverage
- > Access to larger z
- Non-negligible dependence on PDFs
- Poorly known strange parton distribution
- study the hadronisation process in nuclear medium (using different targets)

Relevant observables: Hadron Multiplicities

$$M^{h}(x,Q^{2},z) \equiv \frac{dN^{h}/dz}{N_{\text{DIS}}} = \frac{\sum_{q} e_{q}^{2} \left[q(x,Q^{2}) D_{q}^{h}(z,Q^{2}) + \bar{q}(x,Q^{2}) D_{\bar{q}}^{h}(z,Q^{2}) \right]}{\sum_{q} e_{q}^{2} \left[q(x,Q^{2}) + \bar{q}(x,Q^{2}) \right]}$$

Knowledge of unpolarised PDFs essential

- u(x), d(x) well known
- s(x) poorly known ⇔ can be accessed from hadron multiplicities

in the kinematic domain Q² > 1 GeV², W > 5 GeV, 0.1 < y < 0.7, 0.004 < *x* < 0.7, 0.2 < z < 0.85

$$M = \frac{N^h}{N_{\rm DIS}\,\Delta z}$$

Acceptance correction

Simulate DIS events with physics generator (LEPTO) => M_{gen}

- Simulate the detector response using GEANT toolkits and reconstruct data => M_{rec}
- Estimate acceptance correction factor for limited geom. and reconstruction efficiency

$$a = M_{rec}/M_{gen}$$

Correct real data:

$$M_{\rm cor} = \frac{M_{\rm raw}}{a}$$

Particle identification

Measure identif./misidentif.
 Probability matrix

$$\begin{pmatrix} I_{\pi} \\ I_{K} \\ I_{p} \end{pmatrix} = \underbrace{\begin{pmatrix} P^{\pi \to \pi} & P^{K \to \pi} & P^{p \to \pi} \\ P^{\pi \to K} & P^{K \to K} & P^{p \to K} \\ P^{\pi \to p} & P^{K \to p} & P^{p \to p} \end{pmatrix}}_{= P} \begin{pmatrix} T_{\pi} \\ T_{K} \\ T_{p} \end{pmatrix}$$

And unfold data

$$\vec{T} = P^{-1}\vec{I}$$

Unidentified hadron multiplicities

Charged pion multiplicities

Charged kaon multiplicities

Kaon multiplicity sum M^{K++K-}

Kaon multiplicity sum M^{K++K-}

N. Makke

PSHP 2013, Frascati, Nov. 10-13

Kaon multiplicity sum M^{K++K-}

Ongoing studies to reduce systematics and increase high x bins

Differential SIDIS cross-section

$$\frac{d^2 n^{h\pm}(z, p_T^2, x_{Bj}, Q^2)}{dz dp_T^2} \bigg|_{\Delta x_{Bj} \Delta Q^2} \approx \frac{\Delta^4 N^{h\pm}(z, p_T^2, x_{Bj}, Q^2) / (\Delta z \Delta p_T^2 \Delta x_{Bj} \Delta Q^2)}{\Delta^2 N^\mu (x_{Bj}, Q^2) / (\Delta x_{Bj} \Delta Q^2)}$$

SIDIS data collected in 2004 with ⁶LiD target

Kinematic range

- $Q^2 > 1 \, \text{GeV}^2$
- 0.1 < *y* < 0.9
- W > 5 GeV

Multi-dimensional analysis: 23 χ , Q^2 intervals 8 z bins and 40 p_T^2 bins

4-dimensional acceptance correction
 5% systematic uncertainties

Hadron Multiplicities vs p_T^2

N. Makke

PSHP 2013, Frascati, Nov. 10-13

Main motivation:

transversity from hadron pair transverse spin asymmetry (measured at COMPASS)

Interference fragmentation functions

$$A_{UT}^{\sin\phi_{RS}} = \frac{|\mathbf{p_1} - \mathbf{p_2}|}{2M_{inv}} \frac{\sum_q e_q^2 h_1^q(x) H_1^{\triangleleft, q}(z, M_{inv}^2, \cos\theta)}{\sum_q e_q^2 f_1^q(x) D_1^q(z, M_{inv}^2, \cos\theta)}$$

Experimentally measured asymmetries

Unpolarised di-hadron fragmentation functions

Dihadron Fragmentation Functions (DiFFs)

Describe the probability that a quark of given flavor (q_f) fragments into a finalstate hadron pair

- First introduced in the late 1970's to study the hadron structure of jets Konishi, Ukawa and Veneziano, Phys. Lett. B 78, 243 (1978)
- Needed in NLO calculations in α_s for hadron pair production in e⁺e⁻ annihilation *Phys. Lett. B* **578**, 139 (2004)
- Useful to investigate the in-medium effects in heavy ion collisions Phys. Lett. L 99, 152301 (2007)
- \blacktriangleright Key element to access transversity distribution of the nucleon (h₁) in SIDIS

DiFFs needed in several high energy processes with final state hadrons

BUT no measurements !

Main motivation:

transversity from hadron pair transverse spin asymmetry (measured at COMPASS)

Based on SIDIS data collected in 2004

Event selection

Hadron selection

- • R_T > 0.07

Main motivation:

transversity from hadron pair transverse spin asymmetry

SPIN2012 Multiplicity $\textbf{M}_{\text{inv}} \in \textbf{[0.75,1.50]}$ $M_{inv} \in \textbf{[0.30,0.52]}$ M_{Inv} ∈ [0.52,0.75] 10⁻² 10⁻³ Q² ∈ [1.0, 1.7] COMPASS 2004 [1.7, 4.0] O^2 preliminary [4.0, 100] 10-4 0.2 0.4 0.6 0.8 0.2 0.8 0.4 0.6 0.8 0.2 0.4 0.6 1 z z z

Weak Q² dependence

First measurements in M_{inv} , $Z=Z_1+Z_2$, Q^2 bins

Summary

- Preliminary results on hadron multiplicities
 - Broad kinematical ranges
 - 3-Multidimensional binning
 - Identified pions and kaons
- Improved kaon identification with reduced systematic errors with ongoing studies to reduce systematics
- First measurement of unidentified hadron pair multiplicities for the perspective of extracting Dihadron fragmentation functions
- More high precision measurement on the list
 - P_T^2 dependent pion and kaon multiplicities in (x,Q²,z) bins
 - Identified hadron pair multiplicities in (z,Q²,M_{inv}) bins

$g_1^{p,d}$ and related sume rules

 $\ell N \rightarrow \ell'(X)$ $Q^2 > 1 \text{ GeV}^2$ (hard scale)

⇒ Scattering on quasi free partons (Factorisation + pQCD ⇒ parton model)

Relation with axial charges of baryons (SU(3) flavour symmetry)

$$\Gamma_1^{\mathsf{N}} \equiv \frac{1}{2} \left(\Gamma_1^{\mathsf{p}} + \Gamma_1^{\mathsf{n}} \right) \\ = \frac{1}{9} C_1^{\mathsf{S}}(Q^2) \, a_0 + \frac{1}{36} C_1^{\mathsf{NS}}(Q^2) \, a_8$$

- C₁^{S,NS} calculable in pQCD
- ▶ $a_8 = 0.585 \pm 0.025$ from hyperon beta decay
- $a_0 = \Delta \Sigma$ in the MS scheme

$$\Rightarrow \Delta \Sigma (Q^2 = 3(GeV/c)^2) = 0.30 \pm 0.01_{\text{stat}} \pm 0.02_{\text{evol}}$$

g₁^{p,d} and related sume rules

$$g_{1}^{p} = \frac{1}{2} \left[\frac{4}{9} \left(\Delta u + \Delta \overline{u} \right) + \frac{1}{9} \left(\Delta d + \Delta \overline{d} \right) + \frac{1}{9} \left(\Delta s + \Delta \overline{s} \right) \right]$$

$$g_{1}^{d} = \frac{1}{2} \left[\frac{1}{9} \left(\Delta u + \Delta \overline{u} \right) + \frac{4}{9} \left(\Delta d + \Delta \overline{d} \right) + \frac{1}{9} \left(\Delta s + \Delta \overline{s} \right) \right]$$

$$Singlet : \Delta \Sigma = \left[(\Delta u + \Delta \overline{u}) + (\Delta d + \Delta \overline{d}) + (\Delta s + \Delta \overline{s}) \right]$$

$$NS : \Delta q_{3} = \left[(\Delta u + \Delta \overline{u}) - (\Delta d + \Delta \overline{d}) \right]$$

$$NS : \Delta q_{8} = \left[(\Delta u + \Delta \overline{u}) + (\Delta d + \Delta \overline{d}) - 2(\Delta s + \Delta \overline{s}) \right]$$

$$\int g_{1} dx$$

$$\Gamma_{1}^{p} = \int_{0}^{1} g_{1}^{p} (x) dx; \quad \Gamma_{1}^{d} = \int_{0}^{1} g_{1}^{p} (x) dx$$

$$\Rightarrow \text{Moments} \quad \Gamma_{1}^{p} - \Gamma_{1}^{d} = \frac{a_{3}}{6} (1 + \alpha^{2} corr) \quad (Bjorken \ SR)$$

$$+ \quad a_{3} = \quad \Delta \Sigma_{u} - \Delta \Sigma_{d} = F + D = 1.267,$$

$$\mathbf{a}_{8} = \Delta \Sigma_{u} + \Delta \Sigma_{d} - 2\Delta \Sigma_{s} = 3F - D \approx 0.58$$

from neutron and hyperon decays

 $6(\Gamma_1^{p}-\Gamma_1^{n})/(1+\alpha^2 \text{ corr}) = g_A/g_V = 1.28\pm0.07\pm0.10$

Phys. Lett. B 690 (2010) 466

 $\Delta \Sigma = a_0 = 0.30 \pm 0.01 \pm 0.02$

 $(\Delta s + \Delta \overline{s}) = 1/3(a_0 - a_8) = -0.09 \pm 0.01 \pm 0.02$

Phys. Lett. B 647 (2007) 330

NLO: DGLAP links q and g $rac{d}{d\ln Q^2}\Delta q_{NS}(x,Q^2) = rac{lpha_S(Q^2)}{2\pi}P_{qq}^{NS}\otimes\Delta q_{NS}$ $\frac{d}{d\ln Q^2} \left(\begin{array}{c} \Delta \Sigma \\ \Delta G \end{array}\right) = \frac{\alpha_S(Q^2)}{2\pi} \left(\begin{array}{c} Pqq & P_{qg} \\ P_{qg} & P_{qg} \end{array}\right) \otimes \left(\begin{array}{c} \Delta \Sigma \\ \Delta G \end{array}\right)$

Assume SU(3) flavor symmetry: $\Delta u = \Delta d = \Delta s = \Delta s$

Blümlein, Böttcher arXiv 1101.0052