Probing Strangeness in Hard Processes

Laboratori Nazionali di Frascati November 11-13, 2013

Harut Avakian (JLab)

- Collinear PDFs
- 3D structure TMDs
- Multidimensional analysis
- Dihadrons
- 3D structure GPDs and OAM
- Kaons in Medium
- Conclusions

12 GeV Approved Experiments by Physics Topics

Торіс	Hall A	Hall B	Hall C	Hall D	Other	Total
The Hadron spectra as probes of QCD (GluEx and heavy baryon and meson spectroscopy)		1		2		3
The transverse structure of the hadrons (Elastic and transition Form Factors)	4	3	2	1		10
The longitudinal structure of the hadrons (Unpolarized and polarized parton distribution functions)	2	2	6			10
The 3D structure of the hadrons (Generalized Parton Distributions and Transverse Momentum Distributions)	5	10	4			19
Hadrons and cold nuclear matter (Medium modification of the nucleons, quark hadronization, N-N correlations,	4	2	6		1	13
hypernuclear spectroscopy, few-body experiments)						
Low-energy tests of the Standard Model and Fundamental Symmetries	2			1	1	4
Total	17	18	18	4	2	59

Nucleon structure

H. Avakian, PSHP-2013, Nov 13

1D Structure of the Nucleon (+twist-3)

3D structure of the nucleon

Jefferson Lab

Polarized Strangeness from NNPDFpol1.0

Polarized strangeness is practically unknown, even sign is not defined SIDIS analysis depends on s->K fragmentation function

Strangeness from SIDIS on Deuteron

J.C. Peng

S(x) is consistent with recent predictions of the NNPDF.

The shape of S(x) makes extraction of intrinsic strangeness very challenging.

M. Contalbrigo

Jefferson Lab

Sea polarization

H. Avakian, PSHP-2013, Nov 13

 $\vec{p} + p \rightarrow W^{\pm} + X \rightarrow l^{\pm} + X$

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = \frac{1}{P} \frac{N_+ - RN_-}{N_+ + RN_-}$$

New fit points towards rather sizable

 $\Delta \mathbf{\bar{u}}(\mathbf{x}) - \Delta \mathbf{\bar{d}}(\mathbf{x})$

8

Measurements of the Collins function

Spin-orbit correlations: kaons vs pions

azimuthal moments/asymmetries contain in the denominator the unpolarized x-section

Expect similar effects for all favored (and unfavored) azimuthal moments/ asymmetries for unpolarized and longitudinally polarized quarks (D₁)

Hermes/Belle measurements for pions indicate

$$H_1^{\perp fav} \approx -H_1^{\perp unfav} \longrightarrow$$

Expect opposite sign for azimuthal moments/ asymmetries of favored unfavored hadrons for transversely polarized quarks (H₁)

- Spin-azimuthal asymmetries bigger for K⁺ compared to π^+
- Spin-azimuthal asymmetries for K⁻ vs K⁺ do not follow the trend of π⁻ vs π⁺ ("Kaon puzzle")

Collins asymmetry: kaons vs pions

Independent, high precision measurement at large x is crucial

Sivers asymmetry: kaons vs pions

Independent, high precision measurement in a wide Q² range is crucial

Beam SSA: comparing pions

Jefferson Lab

H. Avakian, PSHP-2013, Nov 13

Flavor and spin dependence of k_T -distributions

Nucleons 3D structure is complex, with weight of different type of partons changing with k_T Final states, with different sensitivity to different parton types will be critical to separate contributions

Hadronization effects

$$f_1^q(x,k_T) \otimes D_1^{q \to h}(z,p_T) \; \frac{D_1^{u \to \pi^+}(z,p_T)}{D_1^{u \to K^+}(z,p_T)}$$

•Widths of fragmentation functions are flavor dependent. (H. Matevosyan, A. W. Thomas & W. Bentz)

Flavor dependence of transverse momentum

Extraction of TMDs: f₁

H. Avakian, PSHP-2013, Nov 13

Extraction of TMDs: Sivers/Transversity

Gaussian parametrization of the unpolarized PDF & FF:

➢Parametrization of Transversity function:

 $h(k_{\perp}) = \sqrt{2e} \, \frac{k_{\perp}}{M_{\star}} \, e^{-k_{\perp}^2/M_1^2}$

S.Melis

and/or Drell-Yan data.

Many parameters, but shapes not too flexible.

Sivers parameterization

There are indications supporting TMD evolution in SIDIS

H. Avakian, PSHP-2013, Nov 13

10-1

Helicity PDF

 $+\beta_a$

L.Gamberg/D. Boer TMD extraction with Bessel weighting

$$F_{UU}^{\pi^{+}}(P_{T}) \propto \sum e_{q}^{2}H \times f_{1}^{q}(x, k_{T}, ..) \otimes D_{1}^{q \to \pi^{+}}(z, p_{T}, ..)S$$

$$F_{UU,T} = x_{B} \sum_{a} e_{a}^{2} \int \frac{d|b_{T}|}{(2\pi)} |b_{T}| J_{0}(|b_{T}| |P_{h\perp}|) \tilde{f}_{1}(x, z^{2}b_{T}^{2}) \tilde{D}_{1}(z, b_{T}^{2})$$

$$\int_{i}^{i} \int_{i}^{i} \int_{i}^$$

$$\tilde{f}(x, b_T^2) \equiv \int d^2 p_T \, e^{i \boldsymbol{b}_T \cdot \boldsymbol{p}_T} \, f(x, p_T^2) = 2\pi \int d|\boldsymbol{p}_T| |\boldsymbol{p}_T| \, J_0(|\boldsymbol{b}_T||\boldsymbol{p}_T|) \, f(x, p_T^2)$$

$$\tilde{F}_{UU}^{\pi^+}(b_T) \propto \sum e_q^2 H \times \tilde{f}_1^q(x, b_T, ..) \times \tilde{D}_1^{q \to \pi^+}(z, b_T, ..)$$

Experimental procedure requires sum over all events $\tilde{\sigma}^{\pm}(b_T) \simeq S^{\pm} = \sum_{i=1}^{N^{\pm}} J_0(b_T P_{hT,i})$

•the formalism in b_T-space avoids convolutions
•provides a model independent way to study kinematical dependences of TMD
•allows direct comparison with lattice

Collins, Rogers, Stasto: PRD77, 085009, 2009

FIG. 2. The amplitude for $\gamma^* p$ scattering into two jets with fixed masses.

M.Aghasyan

સ્થિ

- The kinematics of the initial and final states must be kept exact.
- The sums over physical final states must be kept explicit.
- To avoid making kinematical approximations in the initial and final states, the factors need to be function of all components of parton four-momentum.
- The hard-scattering matrix element should appear as <u>on-shell</u> parton matrix element in the final factorization formula.

It is not enough to describe things, we need MC to test extraction procedures !

Dihadron production A.Courtoy

Jefferson Lab

Dihadron production

Trend and shape reproduced by LEPTO (no parametrizations yet exist)

First measurement of unidentified hadron pair multiplicities for the perspective of extracting Dihadron fragmentation functions

Dihadron production

H. Avakian, PSHP-2013, Nov 13

JSA 25

Dihadron production

Spin-azimuthal asymmetries in hard exclusive production of photons and pions give access to underlying GPDs

Exclusive kaon production

Jefferson Lab

H. Avakian, PSHP-2013, Nov 13

W. Brooks PT-broadening
Observables: Transverse Momentum Broadening

$$\Delta p_T^2 \equiv \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$$

$$\int_{0.005}^{0.005} \frac{1}{0.005} \frac{1}{0.005$$

PT broadening data - Drell-Yan and DIS

$$\Delta p_T^2 = \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$$

$$\int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \int_{0}^$$

CLAS π^+ : 81 four-dimensional bins in Q², v, z_h, and A

D. Boer $f_1^{(1)} \equiv \int d^2k_T \frac{k_T^2}{2M^2} f_1(x,k_T)$ $\frac{\langle p_T^2 \rangle}{2M^2} = f_1^{(1)}(x)$ f_1^p

Medium modified TMDs

$$f_1^p/g_1^p(x,k_T) \to f_1^A/g_1^A(x,k_T)$$

H. Avakian, PSHP-2013, Nov 13

p_T-broadening

p_T broadening involves a p_T^2 weighting, which theoretically yields divergent quantities, hence usually it is defined as a (finite) difference: $\Delta p_T^2 \equiv \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_p$

An alternative is to consider Bessel weighting:

$$\tilde{f}_1^{(1)q/A}(x, \boldsymbol{b}_T^2) - \tilde{f}_1^{(1)q/p}(x, \boldsymbol{b}_T^2) \xrightarrow{\boldsymbol{b}_T^2 \to 0} \Delta p_T^2 \equiv \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_p$$

Converges very slowly, but Δp_T^2 also converges very slowly to 'true' value as function of (experimental or theoretical) cut-off on p_T

A study of the link (in)dependence of pT-broadening would be interesting

$$\tilde{f}_1^{(1)q/A[\mathcal{U}]}(x, \boldsymbol{b}_T^2) - \tilde{f}_1^{(1)q/p[\mathcal{U}]}(x, \boldsymbol{b}_T^2) \xrightarrow{\boldsymbol{b}_T^2 \to 0} \Delta p_T^2[\mathcal{U}] \equiv \langle p_T^2 \rangle_A^{[\mathcal{U}]} - \langle p_T^2 \rangle_p^{[\mathcal{U}]}$$

A well-defined ratio can also be formed, but as b_T gets smaller the interesting information about the A versus p difference is lost, $(\infty + \Delta)/\infty$:

$$R_{\Delta} \equiv \frac{\tilde{f}_1^{(1)q/A}(x, \boldsymbol{b}_T^2)}{\tilde{f}_1^{(1)q/p}(x, \boldsymbol{b}_T^2)} \stackrel{\boldsymbol{b}_T^2 \to 0}{\to} 1$$

D. Boer

R

 $\overline{\left\langle p_T^2 \right\rangle}_{DM2} = f_1^{(1)}(x)$

Going Multidimensional

How we store and visualize the multidimensional data?

Drell-Yan

Conclusions

Measurements with Kaons in semi-inclusive and hard-exclusive processes will be crucial in understanding the underlying dynamics behind spin orbit correlations in hard processes and accomplish the studies of the 3D structure of the nucleons and nuclei

SA 34

Support Slides

Medium modifications of partonic distributions

In terms of the QCD, there are several contributions to P_{τ} distribution of hadrons produced in semi-inclusive DIS:

- primordial transverse momentum,
- •gluon radiation of the struck quark,

•the formation and soft multiple interactions of the "pre-hadron"

•the interaction of the formed hadrons with the surrounding hadronic medium

The sum rule including the OAM

Ji's quark and gluon kinetic angular momentum can be expressed in terms of twist-2 GPDs.

$$J^{q,g} = \frac{1}{2} \int \mathrm{d}x \, x \left[H^{q,g}(x,0,0) + E^{q,g}(x,0,0) \right] \qquad \qquad L^q_z = J^q_z - \frac{\Delta q}{2}, \qquad L^g_z = J^g_z - \Delta g.$$

the **z**-component of the quark kinetic OAM is related to a pure twist-3 GPD (Polyakov et al) $L_z^q = -\int \mathrm{d}x \, x \, G_2^q(x,0,0).$

The genuine spin sum rule in the quark sector is therefore given by

$$\int dx \left\{ x \left[H^q(x,0,0) + E^q(x,0,0) + 2G_2^q(x,0,0) \right] - \tilde{H}^q(x,0,0) \right\} = 0,$$

C.Lorce, B. Pasquini arXiv:1208.3065

 $-\int \mathrm{d}x \, x \, \tilde{E}_{2T}(x,0,0) = L_z^q + 2S_z^q.$

$$\int \mathrm{d}x \left[x \left(H + E + 2\tilde{E}_{2T} \right) + \tilde{H} \right] = 0.$$

describes the vector distribution of quarks inside a longitudinally polarized target ->related to the **z** -component of angular momentum.

 ξ -odd

H. Avakian, PSHP-2013, Nov 13

Quark polarization

Sivers function on the lattice

The first `first-principle' demonstration in QCD that the Sivers function is nonzero It clearly corroborates the sign change relation! $f_{1T}^{\perp[\text{SIDIS}]} = -f_{1T}^{\perp[\text{DY}]}$

compatible with fits and models: up Sivers ($f_{IT^{\perp}}$) of SIDIS < 0 and down Sivers of SIDIS > 0 and smaller