## FTK tracking for $\tau$ triggering

<u>Takashi Kubota</u><sup>a</sup>, Vassili Kazanine<sup>b</sup> <sup>a</sup> The University of Melbourne, <sup>b</sup> Budker Institue of Nuclear Physics

30 July 2013





◆□> ◆□> ◆目> ◆目> ●目 ● のへで

### <u>Outline</u>

- FTK is a novel system in the ATLAS triggering: Delivers a lot of advantages enabling ultra-fast track reconstruction right after L1 thus providing all tracks information to L2
  - In this talk we focus on the advantage of having all track infomation at L2 for au triggering
- The signature of hadronically decaying tau:
  - a jet with (mostly) 1 or 3 charged tracks
  - in a narrow geometrical cone
- At L2, the rejection mostly comes from the information of the number of FTK tracks reconstructed in cones of given sizes
  - The number of tracks in the signal cone
  - The number of tracks in the isolated cone (or ring)
- In this talk, I show some results for defining the best cone sizes



#### **Conditions**

We have build a framework which integrates several codes that has been used for the TDR etc. (link to the TDR: https://cds.cern.ch/record/1552953/files/ATLAS-TDR-021.pdf?version=4)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○

3/11

- Two types of datasets are used (provided by Viviana, the same one as in the TDR):
  - $\tau$  jets sample (VBF  $H \rightarrow \tau \tau$ )
  - QCD jets sample ( $WH \rightarrow uu$ )
- The following cuts are applied on FTK tracks
  - ▶ *p*<sub>T</sub> > 2 GeV
  - ▶ d<sub>0</sub> < 2.0 mm
  - ▶ z<sub>0</sub> < 100 mm

#### FTK track density

FTK track density in terms of ΔR from the center of L1\_Roi that pass L1\_HA8

- $\tau$  jets (in VBF  $H \rightarrow \tau \tau$ )
- QCD jets (in  $WH \rightarrow uu$ )

 $\rightarrow$  the difference is visible but not significant: boost of the W boson for the QCD sample?

 $\rightarrow$  we need QCD di-jet samples in near future to remove this bias



## $\Delta R$ (L1\_Roi - leading $p_{\rm T}$ track)

- $\Delta R$  from the center of L1\_Roi that pass L1\_HA8 to the highest- $p_T$  FTK track in the Roi
- suggest  $\Delta R \sim 0.2$  for leading track finding?



# $\Delta R$ (L1\_Roi - leading $p_{\rm T}$ track) (cont'd)

- $\Delta R$  from center of L1\_Roi that pass L1\_HA8 to the highest- $p_T$  FTK track in the Roi
- 1-prong and 3-prong separately
  - ▶ 1-prong: # of FTK ( $\Delta R < 0.1$ ) = 1 & # of FTK ( $0.1 < \Delta R < 0.3$ ) ≤ 2
  - ▶ 2,3-prong: # of FTK ( $\Delta R < 0.1$ ) = 2 or 3 & # of FTK ( $0.1 < \Delta R < 0.3$ ) ≤ 2



### $\Delta R$ (L1\_Roi - nearest track)

ΔR from center of L1\_Roi that pass L1\_HA8 to the nearest FTK track

- 0-prong: # of FTK ( $\Delta R < 0.1$ ) = 0 & # of FTK ( $0.1 < \Delta R < 0.3$ )  $\leq 2$
- 1-prong: # of FTK ( $\Delta R < 0.1$ ) = 1 & # of FTK ( $0.1 < \Delta R < 0.3$ )  $\leq 2$
- ▶ 2,3-prong: # of FTK ( $\Delta R < 0.1$ ) = 2 or 3 & # of FTK ( $0.1 < \Delta R < 0.3$ ) ≤ 2

histograms are not normalized here, to see the relative fraction of 0-prong events



[# of 2,3-prong events : # of 1-prong events : # of 0-prong events ] = [12564 : 33120 : 6399]  $\rightarrow$  worth doing some special treatments to salvage this 0-prong events

### $\Delta R$ (L1\_Roi - farthest track in offline $\tau$ )

•  $\Delta R$  from the center of L1\_Roi that pass L1\_HA8 to the farthest track used for an offline au

- $\tau$  jets (in VBF  $H \rightarrow \tau \tau$ )
- QCD jets (in  $WH \rightarrow uu$ )
- $\Delta R$  for the signal cone should be around from 0.1 to 0.2?



#### The number of FTK tracks

- A trial with the following configuration
  - find the leading  $p_{\rm T}$  track in  $\Delta R \leq 0.2$  from the Roi center
  - signal cone:  $\Delta R \leq 0.1$
  - isolation ring:  $0.1 \le \Delta R \le 0.3$
  - count # of tracks with  $\Delta z_0 < 2.0$  mm from the leading track



separation is visible between black ( $\tau$  signal) and blue (QCD bkg.)

# The number of FTK tracks (cont'd)

- A trial with the following configuration
  - find the leading  $p_{\rm T}$  track in  $\Delta R \leq 0.2$  from the Roi center
  - signal cone:  $\Delta R \leq 0.1$
  - isolation ring:  $0.1 \le \Delta R \le 0.3$
  - count # of tracks with  $\Delta z_0 < 2.0$  mm from the leading track



separation is visible between left ( $\tau$  signal) and right (QCD bkg.)

# Summary

- Studied relations between  $\Delta R$  from the center of L1\_Roi and FTK tracks
- ► Saw the # of FTK tracks distributions with the following configuration:
  - ▶ find the leading  $p_{\rm T}$  track in  $\Delta R \leq$  0.2 from the Roi center
  - signal cone:  $\Delta R \leq 0.1$
  - isolation ring:  $0.1 \le \Delta R \le 0.3$
  - $\rightarrow$  the difference between  $\tau$  jets and QCD jets is visible.
  - ightarrow current QCD jets sample (WH ightarrow uu) may not be ideal, need QCD di-jet samples
  - $\rightarrow$  will found an optimised point in terms of signal efficiency and background rejection