
1 1

A “Hands-on” Introduction to
OpenMP*

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson
Intel Corp.

timothy.g.mattson@intel.com
�

2 2

Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the
speakers and not their employer.

• This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

• This was a team effort, but if we say anything really
stupid, it’s our fault … don’t blame our collaborators.

Third party names are the property of their owners.

Acknowledgements

•  This course is based on a long series of tutorials presented at
Supercomputing conferences. The following people helped prepare
this content:
–  J. Mark Bull (the University of Edinburgh)
–  Rudi Eigenmann (Purdue University)
–  Barbara Chapman (University of Houston)
–  Larry Meadows, Sanjiv Shah, and Clay Breshears (Intel Corp).

•  Some slides are based on a course I teach with Kurt Keutzer of UC
Berkeley. The course is called “CS194: Architecting parallel
applications with design patterns”. These slides are marked with the
UC Berkeley ParLab logo:

3

Introduction

•  OpenMP is one of the most common parallel programming
models in use today.

•  It is relatively easy to use which makes a great language to
start with when learning to write parallel software.

•  Assumptions:
– We assume you know C. OpenMP supports Fortran and C++, but

we will restrict ourselves to C.
– We assume you are new to parallel programming.
– We assume you have access to a compiler that supports OpenMP

(more on that later).

4

5

Preliminaries:

•  Our plan ... Active learning!
– We will mix short lectures with short exercises.

•  Download exercises and reference materials.
•  Please follow these simple rules

– Do the exercises we assign and then change things around and
experiment.
–  Embrace active learning!

– Don’t cheat: Do Not look at the solutions before you complete an
exercise … even if you get really frustrated.

6

Agenda
•  Getting started with OpenMP
•  Working with threads
•  Synchronization in OpenMP
•  Loop and single worksharing constructs
•  OpenMP Data Environment
•  OpenMP tasks
•  Closing Comments

7

OpenMP* Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

§ A set of compiler directives and library routines
for parallel application programmers

§ Greatly simplifies writing multi-threaded (MT)
programs in Fortran, C and C++
§ Standardizes last 20 years of SMP practice

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

8

OpenMP Basic Defs: Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variables Pr

og
.

La
ye

r

Application

End User

U
se

r
la

ye
r

Shared Address Space

Proc3 Proc2 Proc1 ProcN

H
W

9

OpenMP core syntax
•  Most of the constructs in OpenMP are compiler directives.

#pragma omp construct [clause [clause]…]
– Example

#pragma omp parallel num_threads(4)
•  Function prototypes and types in the file:

#include <omp.h>
•  Most OpenMP* constructs apply to a “structured block”.

– Structured block: a block of one or more statements with one point of
entry at the top and one point of exit at the bottom.

–  It’s OK to have an exit() within the structured block.

10

Compiler notes: Intel on Windows

•  Launch SW dev environment
•  cd to the directory that holds

your source code

l  Build software for program foo.c
u  icl /Qopenmp foo.c

l  Set number of threads
environment variable

u  set OMP_NUM_THREADS=4
l  Run your program

u  foo.exe

11

Compiler notes: Visual Studio

•  Start “new project”
•  Select win 32 console project

– Set name and path
– On the next panel, Click “next” instead of finish so you can select an

empty project on the following panel.
– Drag and drop your source file into the source folder on the visual

studio solution explorer
– Activate OpenMP

– Go to project properties/configuration properties/C.C++/language
… and activate OpenMP

•  Set number of threads inside the program
•  Build the project
•  Run “without debug” from the debug menu.

12

Compiler notes: Other

•  Linux and OS X with gcc:
> gcc -fopenmp foo.c
> export OMP_NUM_THREADS=4
> ./a.out

•  Linux and OS X with PGI:
> pgcc -mp foo.c
> export OMP_NUM_THREADS=4
> ./a.out

for the Bash shell

Shared memory Computers

•  Shared memory computer : any computer composed of
multiple processing elements that share an address space.
Two Classes:
– Symmetric multiprocessor (SMP): a shared address space with

“equal-time” access for each processor, and the OS treats every
processor the same way.

– Non Uniform address space multiprocessor (NUMA): different
memory regions have different access costs … think of memory
segmented into “Near” and “Far” memory.

Proc3 Proc2 Proc1 ProcN

Shared Address Space

Programming shared memory
computers

funcA() var1
 var2

main()
 funcA()
 funcB()

array1
array2

Stack

text

data

heap

Process
•  An instance of a

program execution.
•  The execution

context of a running
program … i.e. the
resources
associated with a
program’s
execution.

Process ID
User ID
Group ID

Files
Locks
Sockets

Stack Pointer
Program Counter
Registers

Programming shared memory
computers

funcA() var1
 var2

main()
 funcA()
 funcB()

array1
array2

Thread
0
Stack

text

data

heap

funcB() var1
 var2
 var3

Process ID
User ID
Group ID

Files
Locks
Sockets

Stack Pointer
Program Counter
Registers

Stack Pointer
Program Counter
Registers

Thread
1
Stack

Threads:
•  Threads are "light

weight processes”
•  Threads share

Process state
among multiple
threads … this
greatly reduces the
cost of switching
context.

A shared memory program

§  An instance of a program:"
§  One process and lots of

threads."
§  Threads interact through

reads/writes to a shared
address space."

§  OS scheduler decides
when to run which
threads … interleaved
for fairness."

§  Synchronization to
assure every legal order
results in correct results."

thread

Private

thread

Private

thread

Private

thread

Private

thread

Private

Shared Address
Space

17

OpenMP Overview:
How do threads interact?

•  OpenMP is a multi-threading, shared address model.
–  Threads communicate by sharing variables.

•  Unintended sharing of data causes race conditions:
–  race condition: when the program’s outcome changes as the threads are

scheduled differently.

•  To control race conditions:
– Use synchronization to protect data conflicts.

•  Synchronization is expensive so:
– Change how data is accessed to minimize the need for synchronization.

18

Exercise 1, Part A: Hello world
Verify that your environment works
•  Write a program that prints “hello world”.

int main()
{

 int ID = 0;

 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);

}

19

Exercise 1, Part B: Hello world
Verify that your OpenMP environment works
•  Write a multithreaded program that prints “hello world”.

int main()
{

 int ID = 0;

 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);

}

#pragma omp parallel

{

}

#include <omp.h>
Linux and OS X gcc -fopenmp
PGI Linux pgcc -mp
Intel windows icl /Qopenmp
Intel Linux and OS X icpc –openmp

20

Agenda
•  Getting started with OpenMP
•  Working with threads
•  Synchronization in OpenMP
•  Loop and single worksharing constructs
•  OpenMP Data Environment
•  OpenMP tasks
•  Closing Comments

21

OpenMP Programming Model:

Fork-Join Parallelism:
u Master thread spawns a team of threads as needed.

u Parallelism added incrementally until performance goals
are met: i.e. the sequential program evolves into a
parallel program.

Parallel Regions
Master
Thread
in red

A Nested
Parallel
region

Sequential Parts

22

Thread Creation: Parallel Regions

•  You create threads in OpenMP* with the parallel construct.
•  For example, To create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID,A);
}

l Each thread calls pooh(ID,A) for ID = 0 to 3!

Each thread
executes a
copy of the
code within
the
structured
block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

23

Thread Creation: Parallel Regions

•  You create threads in OpenMP* with the parallel construct.
•  For example, To create a 4 thread Parallel region:

double A[1000];

#pragma omp parallel num_threads(4)
{

 int ID = omp_get_thread_num();
 pooh(ID,A);
}

l Each thread calls pooh(ID,A) for ID = 0 to 3!

Each thread
executes a
copy of the
code within
the
structured
block

clause to request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

Thread Creation: Parallel Regions

•  Each thread executes
the same code
redundantly.

	
double A[1000];
#pragma omp parallel num_threads(4)
{

 int ID = omp_get_thread_num();
 pooh(ID, A);
}
 printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A is
shared
between all
threads.

Threads wait here for all threads to finish
before proceeding (i.e. a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

OpenMP: what the compiler does

#pragma	
 omp	
 parallel	
 num_threads(4)	

{	

	
 	
 	
 	
 foobar	
 ();	

}	

void	
 thunk	
 ()	

{	

	
 	
 	
 	
 foobar	
 ();	

}	

	

pthread_t	
 tid[4];	

for	
 (int	
 i	
 =	
 1;	
 i	
 <	
 4;	
 ++i)	

	
 pthread_create	
 (

	
 	
 	
 	
 	
 	
 	
 	
 &tid[i],0,thunk,	
 0);	

thunk();	

	

for	
 (int	
 i	
 =	
 1;	
 i	
 <	
 4;	
 ++i)	

	
 	
 	
 	
 pthread_join	
 (tid[i]);	

§  The OpenMP compiler generates code
logically analogous to that on the right
of this slide, given an OpenMP pragma
such as that on the top-left"

§  All known OpenMP implementations
use a thread pool so full cost of threads
creation and destruction is not incurred
for reach parallel region."

§  Only three threads are created because
the last parallel section will be invoked
from the parent thread. "

26

Exercises 2 to 4:
Numerical Integration

∫ 	
4.0
(1+x2) dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

Where each rectangle has
width Δx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X 0.0

27

Exercises 2 to 4: Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

28

Exercise 2

• Create a parallel version of the pi program using a
parallel construct (#pragma omp parallel).

• Pay close attention to shared versus private
variables.

•  In addition to a parallel construct, you will need the
runtime library routines
– int omp_get_num_threads();
– int omp_get_thread_num();
– double omp_get_wtime();

Time in Seconds since a fixed
point in the past

Thread ID or rank

Number of threads in the
team

29

Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

30

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel
 {

 int i, id,nthrds;
 double x;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }

 }
 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;

}

Example: A simple Parallel pi program
Promote scalar to an
array dimensioned by
number of threads to
avoid race condition.

This is a common
trick in SPMD
programs to create
a cyclic distribution
of loop iterations

Only one thread should copy
the number of threads to the
global value to make sure
multiple threads writing to the
same address don’t conflict.

31

Algorithm strategy:
The SPMD (Single Program Multiple Data) design pattern

•  Run the same program on P processing elements where P
can be arbitrarily large.

•  Use the rank … an ID ranging from 0 to (P-1) … to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support
most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is
probably the most commonly used pattern in the history of
parallel programming.

Results*

32
*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st
SPMD

1 1.86

2 1.03

3 1.08

4 0.97

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

33

Why such poor scaling? False sharing
•  If independent data elements happen to sit on the same cache line, each

update will cause the cache lines to “slosh back and forth” between threads
… This is called “false sharing”.

•  If you promote scalars to an array to support creation of an SPMD
program, the array elements are contiguous in memory and hence share
cache lines … Results in poor scalability.

•  Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM

34

#include <omp.h>
static long num_steps = 100000; double step;
#define PAD 8 // assume 64 byte L1 cache line size
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS][PAD];

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel
 { int i, id,nthrds;
 double x;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum[id][0] += 4.0/(1.0+x*x);
 }

 }
 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;

}

Example: eliminate False sharing by padding the sum array

Pad the array
so each sum
value is in a
different
cache line

Results*: pi program padded accumulator

35

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

1 1.86 1.86

2 1.03 1.01

3 1.08 0.69

4 0.97 0.53

Do we really need to pad our arrays?

•  Padding arrays requires deep knowledge of the cache
architecture. Move to a machine with different sized cache
lines and your software performance falls apart.

•  There has got to be a better way to deal with false sharing.

36

37

Agenda
•  Getting started with OpenMP
•  Working with threads
•  Synchronization in OpenMP
•  Loop and single worksharing constructs
•  OpenMP Data Environment
•  OpenMP tasks
•  Closing Comments

38

OpenMP Overview:
How do threads interact?

• OpenMP is a multi-threading, shared address model.
– Threads communicate by sharing variables.

• Unintended sharing of data causes race conditions:
– race condition: when the program’s outcome

changes as the threads are scheduled differently.
• To control race conditions:

– Use synchronization to protect data conflicts.
• Synchronization is expensive so:

– Change how data is accessed to minimize the
need for synchronization.

Recall our high level
overview of OpenMP?

Synchronization:
•  Synchronization: bringing one or more threads to a well

defined and known point in their execution.
•  The two most common forms of synchronization are:

Mutual exclusion: Define a block of code that only
one thread at a time can execute.

Barrier: each thread wait at the barrier until all
threads arrive.

40

Synchronization

• High level synchronization:
– critical
– atomic
– barrier
– ordered

• Low level synchronization
– flush
– locks (both simple and nested)

Synchronization is used
to impose order
constraints and to
protect access to shared
data

41

Synchronization: Barrier

•  Barrier: Each thread waits until all threads arrive.

#pragma omp parallel

{
 int id=omp_get_thread_num();
 A[id] = big_calc1(id);

#pragma omp barrier

 B[id] = big_calc2(id, A);
}

42

Synchronization: critical
•  Mutual exclusion: Only one thread at a time can enter a

critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for(i=id;i<niters;i+=nthrds){

 B = big_job(i);

#pragma omp critical
 res += consume (B);

 }
}

Threads wait
their turn – only
one at a time
calls consume
()

43

Synchronization: Atomic (basic form)
•  Atomic provides mutual exclusion but only applies to the

update of a memory location (the update of X in the following
example)

#pragma omp parallel

{
 double tmp, B;

 B = DOIT();

 tmp = big_ugly(B);

 #pragma omp atomic
 X += tmp;

}

Additional forms of atomic were added in OpenMP 3.1.
We will discuss these later.

The statement inside the
atomic must be one of the
following forms:

•  x binop= expr
•  x++
•  ++x
•  x—
•  --x

X is an lvalue of scalar type
and binop is a non-overloaded
built in operator.

44

Exercise 3
•  In exercise 2, you probably used an array to create space

for each thread to store its partial sum.
•  If array elements happen to share a cache line, this leads

to false sharing.
– Non-shared data in the same cache line so each update invalidates the

cache line … in essence “sloshing independent data” back and forth
between threads.

•  Modify your “pi program” from exercise 2 to avoid false
sharing due to the sum array.

#pragma omp parallel
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

Pi program with false sharing*

45
*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st
SPMD

1 1.86

2 1.03

3 1.08

4 0.97

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Recall that promoting sum
to an array made the
coding easy, but led to
false sharing and poor
performance.

46

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

 int i, id,nthrds; double x, sum;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

 #pragma omp critical
 pi += sum * step;

}
}

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel
region … so you must sum it in here. Must
protect summation into pi in a critical region
so updates don’t conflict

No array, so
no false
sharing.

Create a scalar local to
each thread to
accumulate partial
sums.

Results*: pi program critical section

47

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

SPMD
critical

1 1.86 1.86 1.87

2 1.03 1.01 1.00

3 1.08 0.69 0.68

4 0.97 0.53 0.53

48

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

 int i, id,nthrds; double x;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
 x = (i+0.5)*step;

 #pragma omp critical
 pi += 4.0/(1.0+x*x);
 }

}
pi *= step;
}

Example: Using a critical section to remove impact of false sharing

What would happen if
you put the critical
section inside the loop?

Be careful
where you put
a critical
section

49

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

 int i, id,nthrds; double x, sum;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

 sum = sum*step;
 #pragma atomic

 pi += sum ;
}
}

Example: Using an atomic to remove impact of false sharing

Sum goes “out of scope” beyond the parallel
region … so you must sum it in here. Must
protect summation into pi so updates don’t
conflict

No array, so
no false
sharing.

Create a scalar local to
each thread to
accumulate partial
sums.

50

Agenda
•  Getting started with OpenMP
•  Working with threads
•  Synchronization in OpenMP
•  Loop and single worksharing constructs
•  OpenMP Data Environment
•  OpenMP tasks
•  Closing Comments

51

SPMD vs. worksharing

• A parallel construct by itself creates an SPMD or
“Single Program Multiple Data” program … i.e.,
each thread redundantly executes the same code.

• How do you split up pathways through the code
between threads within a team?
– This is called worksharing

– Loop construct
– Sections/section constructs
– Single construct
– Task construct

52

The loop worksharing Constructs

•  The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{ 
#pragma omp for  

 for (I=0;I<N;I++){ 
 NEAT_STUFF(I); 
 } 

}

Loop construct
name:

• C/C++: for
• Fortran: do

The variable I is made “private” to each
thread by default. You could do this
explicitly with a “private(I)” clause

53

Loop worksharing Constructs
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{

 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * N / Nthrds;
 if (id == Nthrds-1)iend = N; for

(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}
}

#pragma omp parallel
#pragma omp for

 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

54

loop worksharing constructs:
The schedule clause

•  The schedule clause affects how loop iterations are mapped
onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.
– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations
have been handled.

–  schedule(guided[,chunk])
– Threads dynamically grab blocks of iterations. The size of the block

starts large and shrinks down to size “chunk” as the calculation
proceeds.

– schedule(runtime)
– Schedule and chunk size taken from the OMP_SCHEDULE

environment variable (or the runtime library).
– schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be
any of the above).

55

Schedule Clause When To Use

STATIC Pre-determined and
predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED

Special case of dynamic
to reduce scheduling
overhead

AUTO When the runtime can
“learn” from previous
executions of the same
loop

loop work-sharing constructs: 
The schedule clause

Least work at
runtime :
scheduling done
at compile-time

Most work at
runtime :
complex
scheduling logic
used at run-time

Combined parallel/worksharing construct

• OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

 double res[MAX]; int i;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }
}

These are equivalent

 double res[MAX]; int i;
#pragma omp parallel for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }

57

Reduction

•  We are combining values into a single accumulation variable
(ave) … there is a true dependence between loop iterations
that can’t be trivially removed

•  This is a very common situation … it is called a “reduction”.
•  Support for reduction operations is included in most parallel

programming environments.

 double ave=0.0, A[MAX]; int i;
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

l  How do we handle this case?

58

Reduction
•  OpenMP reduction clause:

reduction (op : list)

•  Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending

on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy.
– Local copies are reduced into a single value and combined with

the original global value.

•  The variables in “list” must be shared in the enclosing
parallel region.

 double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

59

OpenMP: Reduction operands/initial-values
•  Many different associative operands can be used with reduction:
•  Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
*� 1
- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0

| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

60

Single worksharing Construct

•  The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

•  A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel
{

 do_many_things();
#pragma omp single

 { exchange_boundaries(); }
 do_many_other_things();

}

61

Exercise 4: Pi with loops

•  Go back to the serial pi program and parallelize it with a
loop construct

•  Your goal is to minimize the number of changes made to
the serial program.

#pragma omp parallel
#pragma omp for reduction(+:var)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

62

Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

63

Example: Pi with a loop and a reduction

#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 double x;
 #pragma omp for reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

 }
 pi = step * sum;

}

Create a scalar local to each thread to hold
value of x at the center of each interval

Create a team of threads …
without a parallel construct, you’ll
never have more than one thread

Break up loop iterations
and assign them to
threads … setting up a
reduction into sum. Note
… the loop indix is local to
a thread by default.

Results*: pi with a loop and a reduction

64

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

SPMD
critical

PI Loop

1 1.86 1.86 1.87 1.91

2 1.03 1.01 1.00 1.02

3 1.08 0.69 0.68 0.80

4 0.97 0.53 0.53 0.68

65

Agenda
•  Getting started with OpenMP
•  Working with threads
•  Synchronization in OpenMP
•  Loop and single worksharing constructs
•  OpenMP Data Environment
•  OpenMP tasks
•  Closing Comments

66

Data environment:
Default storage attributes

• Shared Memory programming model:
– Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called

from parallel regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.

67

 double A[10];
 int main() {

 int index[10];
 #pragma omp parallel

 work(index);
 printf(“%d\n”, index[0]);

 }

extern double A[10];
void work(int *index) {
 double temp[10];
 static int count;
 ...
}

Data sharing: Examples

temp!

A, index, count!

temp! temp!

A, index, count!

A, index and count are
shared by all threads.

temp is local to each
thread

68

Data sharing:
Changing storage attributes

•  One can selectively change storage attributes for constructs
using the following clauses*

– SHARED
– PRIVATE
– FIRSTPRIVATE

•  The final value of a private inside a parallel loop can be
transmitted to the shared variable outside the loop with:

– LASTPRIVATE

•  The default attributes can be overridden with:
– DEFAULT (PRIVATE | SHARED | NONE)

All the clauses on this page
apply to the OpenMP construct
NOT to the entire region.

*All data clauses apply to parallel constructs and worksharing constructs except
“shared” which only applies to parallel constructs.

DEFAULT(PRIVATE) is Fortran only

69

Data Sharing: Private Clause

void wrong() {
 int tmp = 0;
#pragma omp parallel for private(tmp)
 for (int j = 0; j < 1000; ++j)

 tmp += j;
 printf(“%d\n”, tmp);
}

•  private(var) creates a new local copy of var for each thread.
–  The value of the private copies is uninitialized
–  The value of the original variable is unchanged after the region

tmp was not
initialized

tmp is 0 here

Firstprivate Clause

•  Variables initialized from shared variable
•  C++ objects are copy-constructed

70

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

 if ((i%2)==0) incr++;
 A[i] = incr;

}
Each thread gets its own copy
of incr with an initial value of 0

71

Example: Pi program … minimal
changes
#include <omp.h>
static long num_steps = 100000; double step;

void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

Note: we created a
parallel program without
changing any executable
code and by adding 2
simple lines of text!

i private by
default

For good OpenMP
implementations,
reduction is more
scalable than critical.

72

Agenda
•  Getting started with OpenMP
•  Working with threads
•  Synchronization in OpenMP
•  Loop and single worksharing constructs
•  OpenMP Data Environment
•  OpenMP tasks
•  Closing Comments

73

Consider simple list traversal

 p=head;
 while (p) {
 process(p);
 p = p->next;
 }

•  Given what we’ve covered about OpenMP, how would you
process this loop in Parallel?

•  Remember, the loop worksharing construct only works with
loops for which the number of loop iterations can be
represented by a closed-form expression at compiler time.
While loops are not covered.

OpenMP Tasks

•  Tasks are independent units of work.
•  Tasks are composed of:

– code to execute
– data environment
–  internal control variables (ICV)

•  Threads perform the work of each task.
•  The runtime system decides when tasks

are executed
– Tasks may be deferred
– Tasks may be executed immediately

Serial Parallel

Task Construct – Explicit Tasks

#pragma omp parallel
{
 #pragma omp single
 {
 node * p = head;
 while (p) {
 #pragma omp task firstprivate(p)
 process(p);
 p = p->next;
 }
 }
}

1. Create
a team of
threads.

2. One thread
executes the single
construct

… other threads
wait at the implied
barrier at the end of
the single construct

3. The “single” thread
creates a task with its own
value for the pointer p

4. Threads waiting at the barrier execute
tasks.

Execution moves beyond the barrier once
all the tasks are complete

#pragma omp parallel
{
 #pragma omp single
 { //block 1
 node * p = head;
 while (p) { // block 2
 #pragma omp task
 process(p);
 p = p->next; //block 3
 }
 }
}

Execution of tasks
Have potential to parallelize irregular patterns and recursive function calls

Block 1

Block 2���
Task 1	

Block 2���
Task 2	

Block 2���
Task 3	

Block 3

Block 3

Tim
e

Single
Threaded

Block 1

Thr1 Thr2 Thr3 Thr4

Block 2���
Task 2	

Block 2���
Task 1	

Block 2���
Task 3	

Time
Saved

Idle

Idle

When are tasks guaranteed to complete
•  Tasks are guaranteed to be complete at thread barriers:

#pragma omp barrier

•  or task barriers
#pragma omp taskwait

77

#pragma omp parallel
{

#pragma omp task
foo();
#pragma omp barrier
#pragma omp single
{

#pragma omp task
bar();

}
}

Multiple foo tasks created
here – one for each thread

All foo tasks guaranteed to
be completed here

One bar task created here

bar task guaranteed to be
completed here

int fib (int n)
{

int x,y;
 if (n < 2) return n;
#pragma omp task
 x = fib(n-1);
#pragma omp task
 y = fib(n-2);
#pragma omp taskwait
 return x+y
}

Data Scoping with tasks: Fibonacci example.

n is private in both tasks

What’s wrong here?

 A task’s private variables are

undefined outside the task

x is a private variable
y is a private variable

This is an instance of the
divide and conquer design
pattern

int fib (int n)
{

int x,y;
 if (n < 2) return n;
#pragma omp task shared (x)
 x = fib(n-1);
#pragma omp task shared(y)
 y = fib(n-2);
#pragma omp taskwait
 return x+y;
}

Data Scoping with tasks: Fibonacci example.

n is private in both tasks

x & y are shared
Good solution
we need both values to
compute the sum

List ml; //my_list
Element *e;
#pragma omp parallel
#pragma omp single
{
 for(e=ml->first;e;e=e->next)
#pragma omp task
 process(e);
}

Data Scoping with tasks: List Traversal example

What’s wrong here?

Possible data race !
Shared variable e
updated by multiple tasks

List ml; //my_list
Element *e;
#pragma omp parallel
#pragma omp single
{
 for(e=ml->first;e;e=e->next)
#pragma omp task firstprivate(e)
 process(e);
}

Data Scoping with tasks: List Traversal example

Good solution – e is
firstprivate

82

Exercise 5: tasks in OpenMP

•  Start with your pi program.
•  Parallelize this program using tasks.

83

OpenMP PI Program:
Loop level parallelism pattern

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum =0.0;

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction (+:sum)
 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

 pi = sum * step;
}

Results*: pi with tasks

84

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

SPMD
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

85

Agenda
•  Getting started with OpenMP
•  Working with threads
•  Synchronization in OpenMP
•  Loop and single worksharing constructs
•  OpenMP Data Environment
•  OpenMP tasks
•  Closing Comments

86

Summary

•  We have now covered the most commonly used features of
OpenMP.

•  To close, let’s consider some of the key parallel design
patterns we’ve discussed..

87

SPMD: Single Program Mulitple Data

•  Run the same program on P processing elements where P
can be arbitrarily large.

•  Use the rank … an ID ranging from 0 to (P-1) … to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support
most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is
probably the most commonly used pattern in the history of
parallel programming.

88

OpenMP Pi program: SPMD pattern

#include <omp.h>
void main (int argc, char *argv[])
{
 int i, pi=0.0, step, sum = 0.0;
 step = 1.0/(double) num_steps ;
#pragma omp parallel firstprivate(sum) private(x, i)
{ int id = omp_get_thread_num();
 int numprocs = omp_get_num_threads();
 int step1 = id *num_steps/numprocs ;
 int stepN = (id+1)*num_steps/numprocs;
 if (stepN != num_steps) stepN = num_steps;
 for (i=step1; i<stepN; i++)
 { x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);
 }
 #pragma omp critical
 pi += sum *step ;
 }
}

89

Loop parallelism

•  Collections of tasks are defined as iterations of one or more
loops.

•  Loop iterations are divided between a collection of
processing elements to compute tasks in parallel.

This design pattern is heavily used with data parallel design
patterns.
OpenMP programmers commonly use this pattern.

#pragma omp parallel for shared(Results) schedule(dynamic)

for(i=0;i<N;i++){
 Do_work(i, Results);

}

Divide and Conquer Pattern

•  Use when:
– A problem includes a method to divide into subproblems

and a way to recombine solutions of subproblems into a
global solution.

•  Solution
– Define a split operation
– Continue to split the problem until subproblems are

small enough to solve directly.
– Recombine solutions to subproblems to solve original

global problem.
•  Note:

– Computing may occur at each phase (split, leaves,
recombine).

Divide and conquer
•  Split the problem into smaller sub-problems. Continue until

the sub-problems can be solve directly.

n  3 Options:
¨  Do work as you split

into sub-problems.
¨  Do work only at the

leaves.
¨  Do work as you

recombine.

Program: OpenMP tasks (divide and conquer pattern)
#include <omp.h>
static long num_steps = 100000000;
#define MIN_BLK 10000000
double pi_comp(int Nstart,int Nfinish,double step)
{ int i,iblk;
 double x, sum = 0.0,sum1, sum2;
 if (Nfinish-Nstart < MIN_BLK){
 for (i=Nstart;i< Nfinish; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 }
 else{
 iblk = Nfinish-Nstart;
 #pragma omp task shared(sum1)
 sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);
 #pragma omp task shared(sum2)
 sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);
 #pragma omp taskwait
 sum = sum1 + sum2;
 }return sum;
}

92

 int main ()
 {
 int i;
 double step, pi, sum;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 #pragma omp single
 sum = pi_comp(0,num_steps,step);
 }
 pi = step * sum;
 }

93

Learning more about OpenMP:
OpenMP Organizations

• OpenMP architecture review board URL, the
“owner” of the OpenMP specification:

www.openmp.org
• OpenMP User’s Group (cOMPunity) URL:

www.compunity.org

Get involved, join compunity and help
define the future of OpenMP

94

Books about OpenMP

An excellent book about using
OpenMP … though out of date
(OpenMP 2.5)

A book about how to “think
parallel” with examples in
OpenMP, MPI and Java

Background references

95

A general reference that puts
languages such as OpenMP
in perspective (by Sottile,
Mattson, and Rasmussen)

An excellent introduction and
overview of multithreaded
programming (by Clay Breshears)

The OpenMP reference card

http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf

A two page summary of all the OpenMP constructs … don’t write OpenMP code without it.

