(S)
=
©®
14
(=]
(=]

= = ki
- o I umu i ﬁl R Pl
w0 2

NVIDIA Tegra 3 (quad Arm
Corex A9 cores + GPU) An Intel MIC processor

NVIDIA GTX 480 processor

Intel labs 48 core SCC processor

GPUs and the Heterogeneous

programming problem
Tim Mattson (Intel Labs)

Cell Broadband Engine Processor

System
. 41 Agent &
g e = =) Memory |
,Proce§sor - : A Controller |
. Graphics

including
DM, Display
and Misc. /0

=

Intel Labs 80 core Research .
processor Intel “Sandybridge” processor IBM Cell Broadband engine processor

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

Disclaimer @

READ THIS ... its very important

e The views expressed in this talk are those of the
speakers and not their employer.

e This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

e This was a team effort, but if we say anything really
stupid, it's our fault ... don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 ... A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

Alt intro to GPU hardware

Data Parallelism Pattern

B Use when:

—Your problem is defined in terms of collections of data
elements operated on by a similar (if not identical)
sequence of instructions; i.e. the concurrency is in the
data.

B Solution

— Define collections of data elements that can be updated in
parallel.

— Define computation as a sequence of collective operations
applied together to each data element.

! l_l_l_l !

|Data1 | [Data2 | [Data3 | |.. | |patan |

SIMD Architecture

ﬁ

Inter-PE Connection Network

- pe [+ e o pe [+ e o pe [e o e [e

M
e

Array
Controller

Contro| >
Data M
e

M M M M
e e e e

S0 =

® Single Instruction Multiple Data (SIMD)

® Central controller broadcasts instructions to multiple processing elements
(PESs)

— Only requires one controller for whole array
— Only requires storage for one copy of program
— All computations fully synchronized

A classic SIMD Massively Parallel Processor:
Thinking machines CM-200:

® Connection machine CM200 ... late 80’s early 90’s

® A Workstation hosted SIMD
machine.

® A node consists of a two
processor chip pair (32 PEs) and
an optional floating point
accelerator.

® Topology --- The nodes are
connected as a hypercube.

® Performance --- peak
performance of 40 GFLOPS for

the largest CM-200 (65536 PEs)
with floating point accelerators.

® Scalability --- 2K, 4K, 8K, 16K,
32K or 64K processors. Machines
may be partitioned

Modern Data-Parallel Machines

SIMD in CPUs: The CPU pipeline is the "frontend", executing a
sequential program and issuing commands to the SSE or AVX
processor "array"

SIMD in CPU-GPU systems: The CPU Host is the "frontend
machine", issuing SIMD Kernel commands to the GPU "array" of
Streaming Multiprocessors

SIMD in GPUs: The Warp Scheduler issues commands to the SIMD
arrays of Scalar Processors

In none of these cases is the physical SIMD width (4-32) as large as
the Connection machine (16K)

7/38

I.I-eudo SIMD: (Poor-Man's SIMD?)

» Scalar processing + SIMD processing (Intel)
- traditional mode - with SSE / SSE2
- one operation produces - one operation produces
one result multiple results

X x3
+
Y y3
X+Y | x3+y3

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

8/19/2013 John Kubiatowicz Parallel Architecture: 8

| III General-Purpose GPUs (GP-GPUs

Input Assembler

E’hmd Execution Manager
P ¥ ¥ ¥
rea - rs

w ¥
read Processors| ll Thread Procesz=zors il Thread Processo od Processors| B {Threa d Proces=ors C
[| o | I I || | o | S
11 [1 g e T1rgEeED 000 5]
] | o [CO COg=0 B
) |- (SRR S| I i | | o
ata Paraliel Data Farallel Data ‘ Parallel Data ‘ Parallel Data aralle

Global Memory

+ In 2006, Nvidia introduced GeForce 8800 GPU supporting a
new programming language: CUDA
- "Compute Unified Device Architecture”
- OpenCL is a vendor-neutral version of same ideas.

* Idea: Take advantage of GPU computational performance
and memory bandwidth to accelerate some kernels for
general-purpose computing

» Attached processor model: Host CPU issues data-parallel

kernels to GP-GPU for execution
8/19/2013 John Kubiatowicz Parallel Architecture: 9

Intel i860 Custom ASIC

RISC CPU for processor
System Bus —~ Interconnect

Command
Processor

geometry

Geometry
e ——
Engines

Triangle Bus —*

Fragment .
Generators

Image

Engines

raster memory board raster memory board

display generator board I =’ » video

Silicon Graphics RealityEngine GPU - 860 billed as a "Cray-on-a-chip’

0.80 micron technology

1993 i
2.5M transistors 10/38

Programming GPUs

Graphics
programming
* OpenGL
= DirectX

General purpose
applications on GPUs
* |[t’s been done since

the mid-90s

= Why hot now?

1. Reasonable
programming models

2. Devices cost $300
instead of $3M

Accelerated Volume Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware

Brian Cabral, Nancy Cam, and Jim Foran
Silicon Graphics Computer Systems*

Abstract

Volume rendering and reconstruction centers around solving two
related integral i a volume ing integral (a g I
ized Radon transform) and a filtered back projection integral (the
inverse Radon transform). Both of these equations are of the same
mathematical form and can be dimensionally decomposed and ap-
proximated using Riemann sums over a series of resampled images.
When viewed as a form of texture mapping and frame buffer accu-
mulation, enormous hardware enabled performance acceleration is
possible.

1 Introduction

Volume Visualization encompasses not only the viewing but also
the construction of the volumetric data set from the more basic pro-
jection data obtained from sensor sources. Most volumes used in
rendering are derived from such sensor data. A primary example
being Computer Aided Tomographic (CAT) x-ray data. This data
is usually a series of two dimensional projections of a three di-
mensional volume. The process of converting this projection data
back into a volume is called mmogmphic reconstruction.! Once a

volume is hicall d it can be visualized using
volume rendering lechmques (5,7,13,15,16,17]

These two operati have ditionally been d pled, being
handled by two sep ith It is, , highly benefi-
cial to view these two opemuons as having the same mathemaucal
and ithmic form. 1“ ditional volume rend ',, ques can
be ref d into \! gori using hard texture

mapping and summmg buffer. Similarly, the Filtered Back Pro-
jection CT algorithm can be reformulated into an algorithm whnch

also uses texture mapping in bination with an or
summing buffer.
The math ical and algorithmil ity of these two oper-

ations, when reformulated in terms of texture mapping and accu-
mulation, is significant. It means that existing high performance

p phics and imaging can be used to both ren-

*2011 N. Shoreline Blvd., Mountain View, CA 94043

The term tomographic reconstruction or Compmnd Tomognphy (€N[12) is
used to dif iate it from siy
function (signal) from a discrete sampling of that iuncuon

0-8186-7067-385 $4.00 © 1995 IEEE

p(s,8)

r &
[x(), () N

Figure 1: The Radon f a ized line
integral projection of a 2-D (or 3-D) function f(z,y,z) onto a
line or plane.

der and reconstruct volumes at rates of 100 to 1000 times faster than
CPU based techniques.

2 Background: The Radon and Inverse Radon
Transform

‘We begin by developmg the mathematical basis of volume rendering
and The most fi 1 of which is the Radon
transform and its inverse. We will show that volume rendering, as
described in [5, 13, 15, 16, 17), is a generalized form of the Radon
transform. Finally, we will demonstrate efficient hardware texture

based impl ions of both volume rendering and it’s
inverse: volume reconstruction.
The Radon defines a ing b the physical

object space (z,y) and its projection space (s,#), as illustrated in
figure 1. The object is defined in a Canesnn coordinate system by
J(z,y), which describes the x-ray or ion at the
point (z,y) in the object at a fixed z-plane. Since the attenuation is
directly proportional to the volumetric density of the object at that
spanal posluon. a reconstructed image of f(z,y) portrays a two
gative density distril
The Radon transform can be thought of as an operator on the

11/38

= Why did
programmable
graphics evolve on
the desktop?

1. Moore’s Law made it
possible

2. Users demanded
more compelling 3D
graphics

= But maybe Bell’s

Law predicted this

ahead of time...

1965

Moore’s Law - 2005

Pentlum IIIP ce or
Pentium®Il Pro:

& 1965 Data (Moore)
Memory
@ Microprocessor

1970 1975 1980 1985 1990 1995 2000 2005 2010

Source: Intel

12/38

Bell’s Law Of Computer Classes

Technology enables two paths:
1. constant price, increasing performance

Mainframes m

Work

Stations

i i z

1""_ o0
Sy apX

13/38

|
/Beil’s Evolution Of Computer Classes

Technology enables two
paths:

2. constant performance,
decreasing cost
(and form factor)

Log price

Ubiquitous® - : ..+

Time 14/38

\ The Graphics vertex pipeline

struct {
float x,y,z,w;
float r,qg,b,a;
} vertex;

struct {
vertex vO,vl,v2
} triangle;

struct {
short int x,y;
float depth;
float r,qg,b,a;
} fragment;

struct {
int depth;
byte r,qg,b,a;
} pixel;

q

#

q

Application
v

Vertex assembly

v

Vertex operations

v

Primitive assembly

v

v

Rasterization

Primitive operations |

v

Fragment operations i

v

= __Frame buffer _>

v
Display

Thanks to Kurt Akeley

Wouldn’t be cool to
make

these stages of the

~ graphics

pipeline
programmable?

15

Did not do vertex transformations:
these were done in the CPU

« Did do texture mapping, z-buffering.
e 0.5 micron technology

e 1M transistors

Transistor counts and technology node information from:
www.maximumpc.com/article/features/)
graphics_extravaganza_ultimate_gpu_retrospective Kider 16

Slide adapted from Suresh Venkatasubramanian and Joe

« Main innovation: shifting the
transformation and lighting
calculations to the GPU

e DirectX7

e Allowed multi-texturing: giving bump
maps, light maps, and others..

e Faster AGP bus instead of PCl

Image from “7 years of Graphics” e 0.22 micron technology (GeForce 256)

e 23M transistors
| > GPU

Slide from Suresh Venkatasubramanian and Joe Kider 17

AGP

l) ‘\l Generation lll: GeForce3/Radeon 8500(2001)

e For the first time, allowed limited
amount of programmability in the
vertex pipeline

e DirectX 8

GeForce3

e Also allowed volume texturing and
multi-sampling (for antialiasing)

e 0.15 micron technology (GeForce3)
e 57M transistors (GeForce3)

Image from “7 years of Graphics”

AGP&

Slide from Suresh Venkatasubramanian and Joe Kider 18

|

) ‘\l Generation IV: Radeon 9700/GeForce FX (2002)

GeForce FX « This generation is the first generation of
“fully-programmable” graphics cards

o DirectX 9 (shader model 2.0)

o Different versions have different resource
limits on fragment/vertex programs

e 0.13 micron technology node
Image from “7 years of Graphics”)
o 80M transistors

AGP&

Slide from Suresh Venkatasubramanian and Joe Kider 19

Simultaneous rendering to multiple buffers
DirectX 9 (shader model 3.0)

True conditionals and loops

PCle bus

Vertex texture fetch

0.11 micron technology

146M transistors

Slide adapted from Suresh Venkatasubramanian and Joe Kider

20

‘\l Generation V: GeForce8800/HD2900 (2006)

Ground-up GPU redesign

Support for Direct3D 10

Geometry Shaders

Stream out / transform-feedback

Unified shader processors

0.09 micron technology

681M transistors!

Support for General GPU programming
We’re still using generation 5

GPUs today.

—

v

PCle Radically different microarchitecture
than Generation 1 GPU to support
3 programmable stages =>
General purpose data-parallel processor

Slide adapted from Suresh Venkatasubramanian and Joe Kider 21

GPGPU arrives: 2006 LM

€S194: Keutzer/
Mattson

e GeForce 8800/HD2900:
— Ground-up GPU redesign
— Support for Direct3D 10
— Geometry Shaders
— Stream out / transform-feedback
— Unified shader processors

e Support for General GPU programming

Fortunately for NVIDIA, the academic community had been working on
GPGPU programming for almost a decade.

lan Buck at Stanford was wrapping up his dissertation “Stream computing
on Graphics Hardware” and the language “Brook”.

He moved over to NVIDIA and led the effort to create CUDA.

CUDA was extremely influential ... Late in 2008 Apple, AMD, Intel, NVIDIA,
Imagination Technologies and several other companies released a vendor-
neutral, portable standard for stream computing called OpenCL.

Third party names are the property of their owners

Nvidia GPU Architecture

* Nvidia GPUs are a collection of “Streaming Multiprocessors”
— Each SM is analogous to a core of a Multi-Core CPU

 Each SMis a collection of SIMD execution pipelines that share control
logic, register file, and L1 Cache

DRAMIF
dNYYA

diNY™A

|
-
(2]
o)
X

L2

dINYYA

PolyMorph Engine

Veres

dINYYA

The heterogeneous platform:
a Host (CPU) + a huge range of devices

Processing
(101 (]
Element ann)

Compute Unit Compute Device

Integrated
CPU+ FPGA ... and who knows what Many-core CPU
(Intel® Atom™ Processor E6x5C Series) the future W|” brlngr) (M'C & Xeon PthM)

Other names and brands may be claimed as the property of others

24

The BIG idea behind OpenCL intel)
(and CUDA and the others)

e OpenCL execution model ... execute a kernel at each point in a
problem domain.

—-E.g., process a 1024 x 1024 image with one kernel invocation
per pixel or 1024 x 1024 = 1,048,576 kernel executions

Traditional loops Kernel Parallelism OpenCL
void kernel wvoid
trad vadd(int n, vec_add(global const float *a,
const float *a, global const float *b,
const float *b, global float *c)
float *c) *{
{ int id = get global id(0);
int 1i;
for (1=0; i<n; 1i++) c[id] = a[id] + b[id];

c[i] = a[i] + b[1];

} } // execute over “n” work-items

25

Execution Model

* Host defines a command queue and associates it with a context
(devices, kernels, memory, etc).
* Host enqueues commands to the command queue

Kernel execution work-group size S
e X o
commands launch o
work-items: i.e. a work-group (w,, w,) 1
kernel for each pointin .~
an abstract Index Space work-item mork-Res
(W, Sy + sX, WSy +5,) W, S, + X, WS, +5)
called an NDRange A AN
T ~ A
T e work-group size S,
Gy work-item work-item
S e - (W, Sy +sx,w, S +s)) | [(W S, +sx,w,S +5,)
e I B (s,-8,) =(0,S,-1) (5,8, = (S,-1,S,- 1)
éiii:,EEv e ¥
A(G, by G,) G, .
index space Work items execute together as a work-group.

OpenCL vs. CUDA Terminology

* Host defines a command queue
(devices, kernels, memory, etc).

* Host enqueues commands to the command queue

Kernel execution Threads
commands lau
work-items: i.e. a

kernel for each point in

an abstract Index Space
called an NDRange <— Grid

/b

A (G, by G,)
index space

¥

. A

k

nd associates it with a context
CUDA Stream

Thread Block

work-grw%
¥

-

b
- -
-

-

|-
=

work-group (*W;U ‘A";Q)A

work-item

(W, Sy + sX, WSy +5,)
(55,5,) = (0.0)

work-item

(W, Sy +8X, WSy +5,)
(st Sy) = (Sx_l ’0)

work-item

(W, Sy +sx, W, S, +,)
(55 5,) = (0,S,-1)

work-item

(W, Sy + X, WS, +5,)
(Sx, sy) = (Sx_l’ Sy_ l)

WOork-group size Sy

Work items execute together as a work-group.

OpenCL Thread Hierarchy

- >

o
L

A :} :: lllll

i I local id: (4,2)
----- global id: (28,10)

32

-

workgroup id: (3,1)
local size: 8x8=64

dimension: 2
global size: 32x32=1024
num of groups: 16

Parallelism in OpenCL is expressed as a 3-level Hierarchy
An Index Space is a collection of up to 65,535 x 65,535 Work Groups.
A Work Group is a collection of up to 512 [1024 on Fermi] Work Items

e Allthreads in a thread block execute concurrently, and can synchronize
via a barrier intrinsic, communicate via shared memory

Each Work Items executes independently, and communicate with the rest of
the Block

Groups of 32 Work Items execute in SIMD as Warps

Image from http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx

“Single Instruction, Multiple
Thread”

e GPUs use a SIMT model, where individual scalar instruction
streams for each CUDA thread are grouped together for
SIMD execution on hardware (Nvidia groups 32 CUDA
threads into a warp)

MTO pT1 pT2 uT3 pT4 pTS pTe uT7

1d x

Scalar mul a
instruction | 1d y
stream add
¢ sty

<€ >
SIMD execution across warp

Slide thanks to Krste Asanovic

Conditionals in SIMT model

* Simple if-then-else are compiled into predicated
execution, equivalent to vector masking

 More complex control flow compiled into branches
* How to execute a vector of branches?

MTO pT1 pT2 uT3 pT4 pTS pTe uT7

tid=threadid
Scalar If (tid >= n) skip
instruction| Call funcl
stream add
¢ st y
skip:
<€ >

SIMD execution across warp

Slide thanks to Krste Asanovic

Branch divergence

 Hardware tracks which puthreads take or don’t take
branch

* |f all go the same way, then keep going in SIMD fashion
* |If not, create mask vector indicating taken/not-taken

 Keep executing not-taken path under mask, push taken
branch PC+mask onto a hardware stack and execute
later

 When can execution of pthreads in warp reconverge?

Slide thanks to Krste Asanovic

Single Instruction Multiple Data

* |Individual threads of a warp start together at the same
program address

* Each thread has its own instruction address counter and
register state

— Each thread is free to branch and execute independently
— Provide the MIMD abstraction

e Branch behavior

— Each branch will be executed serially
— Threads not following the current branch will be disabled

—

A warp

_ Time
—

Start Branch1 Branch2 Branch3 Converge 32

Our HW future is clear: intel)

e A modern platform has:
- CPU(s)
- GPU(s)
— DSP processors

|

e Current designs put
this functionality - e | : i system
onto a single chip ... | e e e e ey I
mitigates the PCle i Graphics 10" | R S MR S e] Controter
bottleneck in R e | R
GPGPU computing! " ed 3 Cache™ DD '

..’
Pt
|

GMCH = graphics memory control hub, Intel® (Eore“‘" 15-2500K Deskt_op Processor
ICH = Input/output control hub (Sandy Bridge) Intel HD Graphics 3000 (2011)

||

Ganeratlon 7
*:GPLE

[e
R]Wl iﬂHHH i
iR HHHH

® 4 CPU cores + GPU
= All integrated on the same die
= GPU and aggregate CPUs have about the same peak performance
e 256 single-precision Gflops/sec
® GPU is fully programmable with OpenCL
= DirectX 11 too

Thanks to David Kanter of Real World Tech and Intel 34/76

Out-of-Order Execution Engine

Renaming happens at uOP level
— (not original macro-x86 instructions)
4 pops /
Register Alias Table and Allocator
4 pops
| Retirement Register File
P

128 Entry Reorder Buffer (ROB)
ogram Visible State

36 Entry Reservation Station
Port 0 Port 1 Port 5

Thanks to David Kanter of Real World Tech, Intel, and Krste Asanovic of UCB 35/76

I

LA Bridge System Architecture

Ivy Bridge GPU

Hardware load balancing across
d-— S
(e) GPU Core

Equivalent structure on a

. — NVIDIAGPU s called a
“streaming multiprocessor’

GPUs include
special memories
for manipulating
textures (images)

. ————Shared with CPU cores

DDR3 Memory
Controllers

- L T

Thanks to David Kanter of Real World Tech and Intel 2R 36/76

Gen 7 Shader Core

KBL1 Cache shared with 8 other

processing lanes

A

A

8 active threads per processing
lane to tolerate memory latency

Pipeline hazards detected and
respected using a register
scoreboard

A

ﬁnstruction Scoreboard)

2 Instructions

1K General Other Shader Cores
Registers (32KB) Fixed Functions

[321bit] [321bit] \28 32-bit physical registers per thread

EU FMA (about the same as

\ 4]) (Math [4]} the Ivy Bridge CPU)

!

8-wide execution resources

Thanks to David Kanter of Real World Tech and Intel 27 37/76

OpenACC

Directive driven programming of
Heterogeneous systems

» Portland group (PGl) introduced proprietary directives for
programming GPUs

The Portland Group

* OpenMP (with help from PGI) launched a working group to
define “accelerator directives” In OpenMP. OpenMP

* A subset of the participants grew tired of the cautious, slow
and methodical approach in the OpenMP group ... and split | OpenACC.
off to form their own group (OpenACC) DIRECTIVES FOR ACCELERATORS

— NVIDIA, Cray, PGI, and CAPS

» They launched the OpenACC directive set in November of 2011 at SC11.
« At SC12:
— The OpenACC group released a review draft of OpenACC 2.0
— The OpenACC and OpenMP groups stated their intent to rejoin the 2 efforts.

« Summer 2013 ... OpenMP released OpenMP 4.0 which includes accelerator
directives for functionality analogous to OpenACC.

« Fall’2013 ... gcc annouces work on OpenACC support. Should be ready soon.

Source: John Levesque of Cray
OpenACC.

DIRECTIVES FOR ACCELERATORS
« A common directive programming model for today’s GPUs

— Announced at SC11 conference

— Offers portability between compilers
— Drawn up by: NVIDIA, Cray, PGI, CAPS
— Multiple compilers offer portability, debugging, permanence

— Works for Fortran, C, C++

— Standard available at www.OpenACC-standard.org
— Initially implementations targeted at NVIDIA GPUs

 Current version: 2.0 (November 2012)

« Compiler support:
— Cray CCE: complete support in 2012
— PGl Accelerator: released product in 2012
— CAPS: released product in Q1 2012

g
CAPS CRRANY @J NVIDIA. The Portland Group

THE SUPERCONIPIITEF TOCMPANY

OpenACC: Core concepts

« Pragmas direct the compiler to generate code to run on the host and the

GPU. Basic form of an OpenACC directive:
#pragma acc construct [clause(s)]

« Two core constructs define work that runs on the accelerator (coarse

grained, gang parallelism):
« Parallel construct:

— Tells compiler to create a single kernel to
accelerate the code.

— This is explicit, analogous to the parallel region
in OpenMP.

#pragma acc parallel
for(i=0;i<N;i++)

All] = B[i]+CIil;

— Clauses can be used with the parallel construct
num_gang, num_worker, vector_length

— Kernel construct:

— Tells the compiler to accelerate the code with
one or more kernels.

— This is NOT explicit. If the compiler deems the
code unsafe for execution on the GPU, it will not
execute on the accelerator.

Code in block defines a
kernel which runs in
gang-redundant mode
... one worker and one
vector lane per gang
redundantly executes
the code.

41

OpenACC loop construct

* Typically programmers want to split loops between gangs
(gang partitioned mode). The loop construct does this:

#pragma acc parallel loop
for(i=0;i<N;i++)
Ali] = B[i]+Cli];

Loop iterations spread out
across the units of execution
on the accelerator.

« Can have multiple loop constructs in a single parallel region

#pragma acc parallel

{

#pragma acc loop
for(i=0;i<N;i++)

Ali] = 2*Alil; \>
#pragma acc loop

Warning: there is NO IMPLIED
barrier between loop constructs (i.e.
acts like “nowait” in OpenMP)

For(i=0;i<N;i++)
Ali] = B[i]+CIi[;
}

42

Loop clauses

Clauses can be used to direct loop scheduling ... the parallel
region defines gangs, workers and vectors and these clauses to
the loop construct split up iterations at the indicated level

Gang, worker, vector

Connections between OpenACC scheduling clauses and CUDA

OpenACC CUDA
gang A thread block
worker A warp (32 threads)
vector Threads within a warp

« Reduction clause ... same as OpenMP reduction
reduction(op:vars)

43

OpenACC in a real program: intel)

the “vadd” program
e et’s add two vectors together C=A + B

: : Assure the
void vadd(int n, compiler that ¢ is

const float *a, not aliased with
const float *b, other pointers

float *restrict c)

Host waits here { i i
until the kernel is RS 2L Turn the loop
done. Then the #pragma acc parallel loop into a kernel.
output array ¢ is for (i=0; i<n; i++) \ move data to a
copied back to \ c[i] = a[i] + bI[i]:; device, and
the host. } launch the
int main () { kemel.

float *a, *b, *c; int n = 10000;
// allocate and fill a and b

vadd(n, a, b, c);

44 }

Exercise 1

« Goal
— Verify that you can build and run an OpenACC program.

* Problem
— Write your own simple vector add program
— Insert the OpenACC construct and run on the GPU
— Time the program ... do you see any speedup relative to running
the code on the CPU?
» Extra work
— Experiment with the different scheduling clauses

#include <openacc.h>

#pragma acc parallel loop

#pragma acc parallel loop vector _length(64)
#pragma acc parallel loop reduction (+:var)
*restrict

45

The OpenACC data environment

« Data is moved as needed by the compiler on entry and exit
from a parallel or kernel region.

« Data copy overhead can kill performance.

 Solution?
— A data region to explicitly control data movement.
#pragma acc data

— Data movement is explicit Compiler no longer moves data for
you.
— Key clauses

— Copy, copyin, copyout: move indicated list of variables between host
and device on entry/exit form data region

— Create: create the data on the accelerator.

— Private, firstprivate: same meaning as with OpenMP Scalars are
made private by default.

46

A more complicated example:

Jacobi iteration: OpenACC (GPU) Turn the loop into a

kernel, move data

: : : to a device, and
while (err>tol && iter < iter masx) { launch the kernel.
err = 0.0; ,

#pragma acc parallel loop reduction (max:err)
for (int j=1; j< n-1; j++){
for (int i=1; i<M-1; i++) {

. Anew[j][i] = 0.25*% (A[j][i+1] + A[j]l[i-1]+
Host wait
h(;?e\ﬁ?ti? A[j-11[1] + A[3J+1][1]);

the kernel err = max(err,abs (Anew[]j][i] - A[j]lI[i]1)) -
is done. \} }

#pragma acc parallel loop
for (int j=1; j< n-1; j++){
for(int i=1; i<M-1; i++){
A[j]l[i] = Anew[]]i];
}

}
iter ++;

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

A more complicated example:
Jacobi iteration: OpenACC (GPU)

while (err>tol && iter < iter max) {

err = 0.0;

#pragma acc parallel loop reduction(max:err)
for (int j=1; j< n-1; j++) {

A, and for(int i=1; i<M-1; i++){
Anew Anew[j] [i] = 0.25* (A[j][i+1l] + A[j][i-1]1+
copied A[F-11[i] + A[F+1]1[i]);

err = max(err,abs(Anew[]j][1i] - A[J][1i]1))
}

between the
host and the

GPU on #fpragma acc parallel loop
each for (int j=1; j< n-1; j++){
iteration for (int i=1; i<M-1; i++) {
A[j]l[1] = Anew[]]i];
}
} Performance was poor
iter ++; due to excess memory

} movement overhead

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

A more complicated example: |Create a data region on
the GPU. Copy A once

Jacobi iteration: OpenACC (GPU) onto the GPU. and

create Anew on the

device (no copy from
host)

#pragma acc data copy(A), create (Anew) «—
while (err>tol && iter < iter max) {

err = 0.0;
#pragma acc parallel loop reduction (max:err)

for (int j=1; j< n-1; j++){
for(int i=1; i<M-1; i++) {
Anew([j][i] = 0.25* (A[j][i+1l] + A[j]l[i-1]1+
A[J-1][1] + A[J+1]I[1])~
err = max(err,abs(Anew[j][i] - A[3j][i]1))

}

}
#pragma acc parallel loop

for (int j=1; j< n-1; Jj++){
for (int i=1; i<M-1; i++) {
A[j][i] = Anew[]j]i];
}
}
iter ++; Copy A back out to host ...
but only once

} <

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

Exercise 2

» Goal
— Parallelize and then optimize the provided jacobi solver.

* Problem
— Start simple ... put “parallel loop” constructs in the right places.
— Test and time the program.
— Modify the data environment to improve performance
« Extra work
— Experiment with the different scheduling clauses

#include <openacc.h>

#pragma acc data copy(A), create(Anew) firstprivate(tmp)
#pragma acc parallel loop reduction (+:var)

*restrict

50

OpenACC vs. OpenMP

« OpenACC suffers from a form of the CUDA™ problem ... it is focused
on GPUs only ... and mostly those from NVIDIA.

 With the purchase of PGI by NVIDIA, the chances of long term cross
platform support is reduced.

* OpenACC is an open standard (which is great) but its only a small
subset of the industry ... not the broad coverage of OpenMP or
OpenCL.

* The OpenMP 4.0 accelerator directives:

— Mesh with the OpenMP directives so you can use both in a single
program.

— They are designed to support many core CPUs (such as MIC),
multicore CPUs, and GPUs.

— Support a wider range of algorithms (though OpenACC 2.0 closes
this gap).

* S0 ... OpenMP directive set will hopefully displace the OpenACC
directives as they are finalized and deployed into the market.

A more complicated example:
Jacobi iteration: OpenMP accelerator directives

Create a data region on

#pragma omp target data map (A, Anew)
while (err>tol && iter < iter max) { \ the GPU. Map A and
Anew onto the target

err = 0.0; |
#pragma target device

#pragma omp parallel for reduction (max:err)
for (int j=1; j< n-1; j++) {
for (int i=1; i<M-1; i++) {
Anew[j] [1i] = 0.25* (A[j][i+1] + A[j][i-1]+
A[j-1]1[i] + A[J+1]1I[i]);
err = max(err,abs(Anew[]j][1i] - A[j][1i]1))

}

}

#pragma omp target Uses existing OpenMP
#pragma omp parallel for <—— constructs such as parallel
for (int j=1; j< n-1; J++){ and for

for (int i=1; i<M-1; i++) {
A[3j]l[i] = Anew[]]1i];
}
}
iter ++; Copy A back out to host ...
} o< but only once

53

Introduction to CUDA

Acknowledgements: CUDA content from comes from
David Sheffield, Michael Anderson, Kurt Keutzer, Mark
Murphy, Bryan Catanzaro of UC Berkeley

What is a CUDA thread?

= Logically, each CUDA thread is its
own very lightweight independent
execution context
= Has its own control flow and PC,

Block (0, 0) Block (1,0) Block (2, 0)

register file, call stack, ... Block (0, 1)" Block (1,1) “Block (2, 1)
= (Can access any GPU memory address
at any time

= |dentifiable uniquely within a grid by
the six integers: threadIdx.
{x,y,z}, blockIdx.{x,y,z}

= Very fine granularity: do not expect plock &,)

any single thread to do a substantial
fraction of an expensive computation
= At full occupancy, each Thread has 21
32-bit registers

= ..1,536 Threads share a 48 KB L1
Cache/ _shared _ mem

54

What is a CUDA warp?

® A group of 32 CUDA threads that execute simultaneously

= Execution hardware is most efficiently utilized when all threads in a
warp execute instructions from the same PC.

= |dentifiable uniquely by dividing the Thread Index by 32

= |f threads in a warp diverge (execute different PCs), then some
execution pipelines go unused

= |f threads in a warp access aligned, contiguous blocks of DRAM, the
accesses are coalesced into a single high-bandwidth access

® The minimum granularity of efficient SIMD execution, and the maximum
hardware SIMD width in a CUDA processor

55

Single Instruction Multiple Data

" Individual threads of a warp start together at the same program address
® Each thread has its own instruction address counter and register state

= Each thread is free to branch and execute independently

= Provide the MIMD abstraction
® Branch behavior

= Each branch will be executed serially

= Threads not following the current branch will be disabled

A warp

_ Time
—

Start Branch1 Branch2 Branch3 Converge 56

A

What is a CUDA thread block?

thread block is a virtualized multi-

threaded core

Configured at kernel-launch to have a
number of scalar processors, registers,
__shared__ memory

Consists of a number (32-1024) of
CUDA threads, who all share the
integer identifier blockIdx.{x,y,z}

.. executing a data parallel task of
moderate granularity

The cacheable working-set should fit
into the register file and the L1 cache

All threads in a block share a (small)
instruction cache and synchronize via
the barrier intrinsic __syncthreads

0

Grid
Block (0, 0) Block (1,0) Block (2, 0)
Block (0, 1" Block (1,1) Block (2, 1)

Block (1, 1)

57

What is a CUDA grid?

= Aset of Thread Blocks performing :
related computations Grid

= All threads in a single kernel call have the Block (0, 0) Block (1,0) | Block (2, 0)
same entry point and function arguments,
initially differing only in blockIdx.
{x,y,z}

= Thread blocks in a grid may execute any Block (0, 1" Block (1,1) ™Block (2, 1)
code they want, e.g. switch
(blockIdx.x) { ... } incursno penalty

= Thereis an implicit global barrier £ ,
between kernel calls / \

= Thread blocks of a kernel call must be / \
parallel sub-tasks ;

* Program must be valid for any
interleaving of block executions

= The flexibility of the memory system
technically allows Thread Blocks to

communicate and synchronize in arbitrary
ways ...

= But there is no guarantee that all Thread
Blocks execute concurrently, and inter-
block communication is risky!

Block (1, 1)

58

CUDA Host Runtime Support

® CUDA is a heterogeneous programming model

= Sequential code runs in the “Host Thread” on a CPU core, and the
“Device” code runs on the many cores of the GPU

= The Host and the Device communicate via a PCl-Express link
» The PCI-E link is slow (high latency, low bandwidth)

e Desirable to minimize the amount of data transferred and the
number of transfers

59

CUDA Host Runtime Support

 Allocation/Deallocation of memory on the GPU:
— cudaMalloc(void**, int), cudaFree(void¥*)

« Memory transfers to/from the GPU:
- cudaMemcpy(void*,void*,int, dir)

- dir can be “cudaMemcpyHostToDevice”
or “cudaMemcpyDeviceToHost”

int main () { Create an array on the
int N = (1024*1024); host CPU and fill with data

// pointers to array on the CPU
float *h_a = new float[N];

for(int i=0; i < N; i++) h_a[i] = i; Allocate array on the GPU
// pointers to array on the GPU

float *g_a; Copy data from host CPU

cudaMalloc (&g a, sizeof(float)*N); upto the GPU

cudaMemcpy(g_a, h_a, sizeof(float)*N,
cudaMemcpyHostToDevice);

60

)) ‘\l Hello World: Vector Addition (C++)

// Compute sum of length-N vectors: C = A + B
void
vecAdd (float* a, float* b, float* c, int N) {
for (int 1 = 0; i < N; i++)
c[i] = a[i] + b[i];

int main () {
int N = ... ;
float *d a, *d b, *d c;
d a = new float[N];
// ... allocate other arrays, fill with data

I
+

vecAdd (d_a, d b, d c, N);

61

)) ‘\l Hello World: Vector Addition (CUDA)

// Compute sum of length-N vectors: C = A + B
void _ _global
vecAdd (float* a, float* b, float* c, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (1 < N) c[i] = a[i] + b[i];

int main () {
int N = ... ;
float *d a, *d b, *d c;
cudaMalloc (&d_a, sizeof(float) * N);
// ... allocate other arrays, fill with data

// Use thread blocks with 256 threads each
vecAdd <<< (N+255)/256, 256 >>> (d _a, d b, d c, N);

62

Vector addition: side by side

// Compute sum of length-N vectors: C = A + B // Compute sum of length-N vectors: C = A + B
void void __global__
vecAdd (float* a, float* b, float* c, int N) { vecAdd (float* a, float* b, float* c, int N) {
for (int i = 0; 1 < N; i++) int i = blockIdx.x * blockDim.x +
c[i] = a[i] + b[i]; threadIdx.x;
} if (1 < N) c[i] = a[i] + b[i];
}
int main () {
int N = ... ; int main () {
float *d_a, *d_ b, *d_c; int N = ... ;
d_a = new float[N]; float *d_a, *d_b, *d_c;
// ... allocate other arrays, fill with data cudaMalloc (&d_a, sizeof(float) * N);

// ... allocate other arrays, fill with data

vecAdd (d_a, d b, d c, N); // Use thread blocks with 256 threads each
} vecAdd <<< (N+255)/256, 256 >>> (d_a, d_b,
d_c, N);
}

63

CUDA Exercise 1

e Goal

— Verify that you really understand the constructs by playing with the
vector add program

 Problem

— Start with the vector addition program we provide, create a CUDA
version of the program.

e Extra work

— Experiment with the different lengths of the vectors. How does
performance depend on the length of the vectors?

64

CUDA memory hierarchy

Thread ® Each CUDA thread has private access to a

configurable number of registers
Per-thread , o -
Local Memory " The 64 KB SM register file is partitioned
among all resident threads

= The CUDA program can trade degree of
thread block concurrency for amount of per-
thread state

Block = Registers, stack spill into “local” DRAM if
necessary
gﬁ%@ g FS)E;Pelng ® Each thread block has private access to a
é%%%é% Memory configurable amount of scratchpad memory

= Pre-Fermi SM’s have 16 KB scratchpad only

= The available scratchpad space is partitioned
among resident thread blocks, providing
another concurrency-state tradeoff

65

Memory, Memory, Memory

® A many core processor = A device for turning a compute bound problem
into a memory bound problem

Control ALU ALU |

NN
RERER
Rl DA =]

—REREEN
REEER
REEER
REEER
REEER

(]
|
e
|
(]
|
e
|

CPU GPU

Lots of processors, only one socket
Memory concerns dominate performance tuning

66

Thread-Block Synchronization

® Intra-block barrier instruction __syncthreads () for synchronizing
accesses to __shared__ memory

= To guarantee correctness threads must __syncthreads() before
reading values written by other threads

= All threads in a block must execute the same __syncthreads() or
the GPU will hang

]

“‘extern __shared " allows

extern __shared__ float T[]; «—— the shared memory block to
device void dynamically sized at run-time

transpose (float* a, int 1lda){
int i = threadIdx.x, j = threadIdx.y;
T[i + lda*j] = a[i + 1lda*j];
__syncthreads();
a[i + 1lda*j] = T[j + 1lda*i];

67

Using per-block shared memory

The per-block shared memory / L1 cache is a crucial resource: without it,
the performance of most CUDA programs would be hopelessly DRAM-
bound

Block-shared variables can be declared statically:
__shared__ int begin, end;
Software-managed scratchpad memory is allocated statically:

__shared__ int scratch[128];
scratch[threadIdx.x] = ... ;

... or dynamically:
extern __shared__ int scratch[];

kernel call <<< grid dim, block dim, scratch_size >>> (...);
Most intra-block communication is via shared scratchpad:
scratch[threadIldx.x] = ...;
__syncthreads();

int left = scratch[threadIdx.x - 1];

68

| ﬂ \ CUDA Memory Hierarchy

® Thread blocks in all Grids share access to a large pool of “Global” memory,
separate from the Host CPU’s memory.

= Global memory holds the application’s persistent state, while the
thread-local and block-local memories are ephemeral

= Global memory is much more expensive than local memories: O(100)x
latency, O(1/50)x (aggregate) bandwidth

= Registers and Cache multiply bandwidth, massive multithreading hides
latency

Kernel o

»

Sequential
Kernels

Per Device
Global Memory

R | | 2% 222 | 4=

69

There are other read-only
components of the Memory
Hierarchy that exist due to the
graphics heritage of CUDA

The 64 KB CUDA Constant Memory
resides in the same address space
DRAM as global memory, but is
accessed via special read-only 8 KB
per-SM caches

The CUDA Texture Memory also
resides in DRAM’s address space and
is accessed via small per-SM read-
only caches, but also includes
interpolation hardware

= This hardware is crucial for
graphics performance, but only
occasionally is useful for general-
purpose workloads

The behaviors of these caches are
highly optimized for their roles in
graphics workloads.

® CUDA is designed to be functionally forgiving
= First priority: make things work. Second: get performance.

" However, to get good performance, one must understand how
CUDA is mapped to Nvidia GPUs

® Threads:
m each thread is a SIMD vector lane

e [1 [1 [1 1 1 7 & [4 [1 [g
=

P o m——————— 2
T ———+———+———+———+——+———+———

" Warps:
= A SIMD instruction acts on a ”warp” f o e —————
= Warp width is 32 elements: LOGICAL SIMD width

" Thread blocks:

= Each thread block is scheduled onto a processor

= Peak efficiency requires multiple thread blocks per processor

71

CUDA Exercise 2

» Goal
— Work with the CUDA memory hierarchy to optimize a matrix
multiplication program.
* Problem

— Start with the matrix multiplication program we provide to compute
C= A*B in parallel

— Parallelize with CUDA using the dot product for each element of C
(I,j) as a CUDA-thread

— Optimize performance by (1) putting rows of the A matrix in thread-
local memory and (2) putting rows of the B matrix in thread-block
shared memory.

72

