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Disclaimer 
READ THIS … its very important 

• The views expressed in this talk are those of the 
speakers and not their employer. 

• This is an academic style talk and does not address 
details of any particular Intel product.  You will learn 
nothing about Intel products from this presentation.   

• This was a team effort, but if we say anything really 
stupid, it’s our fault … don’t blame our collaborators. 

 

Slides marked with this symbol were produced-with Kurt 
Keutzer and his team for CS194 … A UC Berkeley course 
on Architecting parallel applications with Design Patterns. 

Third party names are the property of their owners. 



AN INTRODUCTION TO OPENCL 



Industry Standards for Programming 
Heterogeneous Platforms 

OpenCL – Open Computing Language 
 

Open, royalty-free standard for portable, parallel programming of 
heterogeneous parallel computing CPUs, GPUs, and other processors 

 

CPUs 
Multiple cores driving 
performance increases 

GPUs 
Increasingly general 

purpose data-parallel 
computing 

Graphics 
APIs and 
Shading 

Languages 

Multi-
processor 

programming – 
e.g. OpenMP 

Emerging 
Intersection 

Heterogeneous 
Computing 



The origins of OpenCL 
AMD 

ATI 

NVIDIA 

Intel 

Apple 

Merged, needed 
commonality 
across products 

GPU vendor – 
wants to steal 
market share 
from CPU 

CPU vendor – 
wants to steal 
market share 
from GPU 

Was tired of recoding for 
many core, GPUs. 
Pushed vendors to 
standardize. 

Wrote a rough draft 
straw man API 

Khronos Compute 
group formed 

ARM 
Nokia 
IBM 
Sony 
Qualcomm 
Imagination 
TI 

Third party names are the property of their owners. 

+ many 
more 



OpenCL: From cell phone to 
supercomputer 

•  OpenCL Embedded profile for 
mobile and embedded silicon 
–  Relaxes some data type and 

precision requirements 
–  Avoids the need for a separate 

“ES” specification 
•  Khronos APIs provide 

computing support for 
imaging & graphics 
–  Enabling advanced applications 

in, e.g., Augmented Reality 

•  OpenCL will enable parallel 
computing in new markets 
–  Mobile phones, cars, avionics 

A camera phone with GPS 
processes images to 

recognize buildings and 
landmarks and provides 

relevant data from internet 



OpenCL Platform Model 

•  One Host and one or more OpenCL Devices 
–  Each OpenCL Device is composed of one or more 

Compute Units 
•  Each Compute Unit is divided into one or more Processing Elements 

•  Memory divided into host memory and device memory 

Processing 
Element 

OpenCL Device 

… … 
… 

… 
… … 

… 
… 

… … 
… 

… 
… … 

… 
Host 

Compute Unit 



The BIG idea behind OpenCL 
•  Replace loops with functions (a kernel) executing at each 

point in a problem domain 
–  E.g., process a 1024x1024 image with one kernel invocation per 

pixel or 1024x1024=1,048,576 kernel executions 

Traditional loops Data Parallel OpenCL 
void !
mul(const int n,!
    const float *a,!
    const float *b,!
          float *c)!
{!
  int i;!
  for (i = 0; i < n; i++)!
    c[i] = a[i] * b[i];!
}!

__kernel void!
mul(__global const float *a,!
    __global const float *b,!
    __global       float *c)!
{!
  int id = get_global_id(0);!
  c[id] = a[id] * b[id];!
}!
// execute over n work-items!



An N-dimensional domain of work-items 
•  Global Dimensions: 

–  1024x1024 (whole problem space) 
•  Local Dimensions: 

–  128x128 (work-group, executes together) 

•  Choose the dimensions that are “best” for 
your algorithm 

1024 

10
24

 

Synchronization between 
work-items possible only 

within work-groups: 
barriers and memory fences 

Cannot synchronize 
between work-groups 

within a kernel 



OpenCL Memory model 
•  Private Memory 

–  Per work-item 

•  Local Memory 
–  Shared within a 

 work-group 

•  Global Memory /
Constant Memory 
–  Visible to all 

 work-groups 

•  Host memory 
–  On the CPU 

Memory management is explicit:  
You are responsible for moving data from 

 host → global → local and back 



Context and Command-Queues 
•  Context:  

–  The environment within which kernels 
execute and in which synchronization 
and memory management is defined.  

•  The context includes: 
–  One or more devices 
–  Device memory  
–  One or more command-queues 

•  All commands for a device (kernel 
execution, synchronization, and 
memory operations) are submitted 
through a command-queue.   

•  Each command-queue points to a 
single device within a context. 

Queue 

Context 

  
Device 

Device Memory 



Execution model (kernels) 
•  OpenCL execution model … define a problem 

domain and execute an instance of a kernel for 
each point in the domain 

__kernel void times_two(!
    __global float* input,!
    __global float* output)!
{!
   int i = get_global_id(0);!
   output[i] = 2.0f * input[i];!
}!

get_global_id(0)!
10 

Input 

Output 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 



__kernel void !
horizontal_reflect(read_only image2d_t src,!
                   write_only image2d_t dst) !
{!
  int x = get_global_id(0);  // x-coord  !
  int y = get_global_id(1);  // y-coord  !
  int width = get_image_width(src);  !
  float4 src_val = read_imagef(src, sampler, !
                       (int2)(width-1-x, y));  !
  write_imagef(dst, (int2)(x, y), src_val);!
}!

Building Program Objects 
•  The program object encapsulates: 

–  A context 
–  The program source or binary, and 
–  List of target devices and build options 

•  The build process to create a program 
object: 
–  clCreateProgramWithSource()!
–  clCreateProgramWithBinary()!

OpenCL uses runtime 
compilation … because 
in general you don’t 
know the details of the 
target device when you 
ship the program 
 

Compile for 
GPU 

Compile for 
CPU 

GPU 
code 

CPU 
code 



Example: vector addition 

•  The “hello world” program of data parallel 
programming is a program to add two vectors 

  
C[i] = A[i] + B[i] for i=0 to N-1!

•  For the OpenCL solution, there are two parts 
– Kernel code 
– Host code 



Vector Addition - Kernel 

__kernel void vadd(__global const float *a,!
! ! ! !     __global const float *b,!
! ! ! !     __global       float *c)!
 {!
     int gid = get_global_id(0);!
     c[gid]  = a[gid] + b[gid];!
 }!
!



Exercise 1:  
Running the Vector Add kernel 

•  Goal:  
–  To inspect and verify that you can run an OpenCL kernel 

•  Procedure:  
–  Take the Vadd program we provide you. It will run a 

simple kernel to add two vectors together.  
–  Look at the host code and identify the API calls in the 

host code. Compare them against the API descriptions on 
the OpenCL reference card. 

–  There are some helper files which time the execution, 
output device information neatly and check (some) 
errors. 

•  Expected output: 
–  A message verifying that the vector addition completed 

successfully 



UNDERSTANDING THE HOST 
PROGRAM 



The basic platform and runtime APIs 
in OpenCL 

arg [0] 
value 

arg [1] 
value 

arg [2] 
value 

arg [0] 
value 

arg [1] 
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arg [2] 
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Order 
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Order 
Queue 
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__kernel void 
dp_mul(global const float *a, 
       global const float *b, 
       global float *c) 
{ 
  int id = get_global_id(0); 
  c[id] = a[id] * b[id]; 
} 

dp_mul 
CPU program binary 

dp_mul 
GPU program binary 

Programs 
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Vector Addition – Host 
•  The host program is the code that runs on the host to: 

–  Setup the environment for the OpenCL program 
–  Create and manage kernels 

•  5 simple steps in a basic host program: 
1.  Define the platform … platform = devices+context+queues 
2.  Create and Build the program (dynamic library for kernels) 
3.  Setup memory objects 
4.  Define the kernel (attach arguments to kernel function) 
5.  Submit commands … transfer memory objects and execute 

kernels 
As we go over the next set of slides, cross reference  
content on the slides to your reference card.  This 
will help you get used to the reference card and 
how to pull information from the card and express 
it in code.  
 



The C++ Interface 
•  Khronos has defined a common C++ header file 

containing a high level interface to OpenCL, cl.hpp 
•  This interface is dramatically easier to work with1 

•  Key features: 
–  Uses common defaults for the  platform and command-

queue, saving the programmer from extra coding for the 
most common use cases 

–  Simplifies the basic API by bundling key parameters with 
the objects rather than requiring verbose and repetitive 
argument lists 

–  Ability to “call” a kernel from the host, like a regular 
function 

–  Error checking can be performed with C++ exceptions 
1 especially for C++ programmers… 



C++ Interface: 
setting up the host program 

•  Enable OpenCL API Exceptions. Do this before 
including the header file 
#define __CL_ENABLE_EXCEPTIONS!
 

•  Include key header files … both standard and custom 
#include <CL/cl.hpp>   // Khronos C++ Wrapper 
API!
#include <cstdio>      // C style IO (e.g. 
printf)!
#include <iostream>    // C++ style IO!
#include <vector>      // C++ vector types!
 

•  Define key namespaces 
using namespace cl;!
using namespace std;!

For information about C++, see 
the appendix: 
“C++ for C programmers”. 



1. Create a context and queue 

•  Grab a context using a device type: 
cl::Context context
(CL_DEVICE_TYPE_DEFAULT);!
!

•  Create a command queue for the first 
device in the context: 
cl::CommandQueue queue(context);!



Command-Queues 
•  Commands include: 

–  Kernel executions 
–  Memory object management 
–  Synchronization 

•  The only way to submit 
commands to a device is 
through a command-queue.   

•  Each command-queue 
points to a single device 
within a context.  

•  Multiple command-queues 
can feed a single device. 
–  Used to define independent 

streams of commands that 
don’t require synchronization 

Queue Queue 

Context 

  
GPU 

  
CPU 



Command-Queue execution details 

•  Command queues can be configured in 
different ways to control how commands 
execute 

•  In-order queues: 
–  Commands are enqueued and complete in the order 

they appear in the program (program-order) 

•  Out-of-order queues: 
–  Commands are enqueued in program-order but can 

execute (and hence complete) in any order. 

•  Execution of commands in the command-
queue are guaranteed to be completed at 
synchronization points 
–  Discussed later 

Queue Queue 

Context 

  
GPU 

  
CPU 



2. Create and Build the program 

•  Define source code for the kernel-program either as a 
string literal (great for toy programs) or read it from a 
file (for real applications). 

•  Create the program object and compile to create a 
“dynamic library” from which specific kernels can be 
pulled: 

cl::Program program(context, KernelSource, true);!



3. Setup Memory Objects 
•  For vector addition we need 3 memory objects, one each 

for input vectors A and B, and one for the output vector C 

•  Create input vectors and assign values on the host: 
std::vector<float> h_a(LENGTH), h_b(LENGTH), h_c(LENGTH);!
for (i = 0; i < length; i++) {!
    h_a[i] = rand() / (float)RAND_MAX;!
    h_b[i] = rand() / (float)RAND_MAX;!
}!
!

•  Define OpenCL device buffers and copy from host buffers: 
cl::Buffer d_a(context, begin(h_a), end(h_a), true);!
cl::Buffer d_b(context, begin(h_b), end(h_b), true);!
cl::Buffer d_c(context, CL_MEM_WRITE_ONLY,!
                    !        sizeof(float)*count);!
 
 



What do we put in device memory? 

•  Memory Objects:  
–  A handle to a reference-counted region of global 

memory. 
•  There are two kinds of memory object 

–  Buffer object:  
•  Defines a linear collection of bytes. 
•  The contents of buffer objects are fully exposed within kernels 

and can be accessed using pointers 
–  Image object:  

•  Defines a two- or three-dimensional region of memory. 
•  Image data can only be accessed with read and write functions, 

i.e. these are opaque data structures.  The read functions use a 
sampler. 

Used when interfacing with a graphics API such as 
OpenGL.  We won’t use image objects in this tutorial. 



Creating and manipulating buffers 
•  Buffers are declared on the host as object type: 
cl::Buffer!

•  Arrays in host memory hold your original host-side 
data: 
std::vector<float> h_a, h_b;!

•  Create the device-side buffer (d_a), assign read 
only memory to hold the host array (h_a) and copy 
it into device memory: 
cl::Buffer !
 d_a(context, begin(h_a), end(h_a), true);!

 



Creating and manipulating buffers 

•  Can specify device read/write access to the Buffer 
by setting the final argument to false instead of 
true 

•  Submit command to copy the device buffer back to 
host memory in array “h_c”: 
cl::copy(queue, d_c, begin(h_c), end(h_c));!

•  Can also copy host memory to device buffers: 
cl::copy(queue, begin(h_c), end(h_c), d_c);!



4. Define the kernel 
•  Create a kernel functor for the kernels you want 

to be able to call in the program: 

auto vadd =!
 cl::make_kernel!
       <cl::Buffer, cl::Buffer, cl::Buffer>   !
       (program, “vadd”);!

 
•  This means you can ‘call’ the kernel as a ‘function’ 

in your host code to enqueue the kernel.!



5. Enqueue commands 
•  Specify global and local dimensions 

–  cl::NDRange global(1024) 
–  If you don’t specify a local dimension, it is assumed as 

cl::NullRange, and the runtime picks a size for you 

•  Enqueue the kernel for execution (note: non-blocking): 
!
vadd(cl::EnqueueArgs(queue, global), d_a, d_b, d_c);!

•  Read back result (as a blocking operation). We use an in-
order queue to assure the previous commands are 
completed before the read can begin 
!
cl::copy(queue, begin(h_c), end(h_c), d_c);!



!
// Create buffers!
// True indicates CL_MEM_READ_ONLY!
// False indicates CL_MEM_READ_WRITE!
!
d_a = Buffer(context,begin(h_a),end(h_a),true);!
d_b = Buffer(context,begin(h_b),end(h_b),true);!
d_c = Buffer(context,begin(h_c),end(h_c),false);!
!
// Enqueue the kernel!
vadd(EnqueueArgs(queue, NDRange(count)),!
     d_a, d_b, d_c, count);!
!
copy(queue, d_c, begin(h_c), end(h_c));!
!
}!

#define N 1024!
int main(void) {!
!
vector<float> h_a(N), h_b(N), h_c(N);!
// initialize these host vectors…!
!
Buffer d_a, d_b, d_c;!
!
Context!
  context(CL_DEVICE_TYPE_DEFAULT);!
!
CommandQueue queue(context);!
!
Program!
  program(!
    context,!
    loadprogram(“vadd.cl”), true);!
!
// Create the kernel functor!
auto vadd = make_kernel!
  <Buffer, Buffer, Buffer, int>!
  (program, “vadd”);!
!

C++ interface: The vadd host program 

Note: The default context and command queue are used when we do not specify one in the function calls. 
The code here also uses the default device, so these cases are the same. 



Exercise 2: Chaining vector add kernels 

•  Goal:  
–  To verify that you understand manipulating kernel 

invocations and buffers in OpenCL 
•  Procedure:  

–  Start with your VADD program in C++  
–  Add additional buffer objects and assign them to vectors 

defined on the host (see the provided vadd programs for 
examples of how to do this) 

–  Chain vadds … e.g. C=A+B;  D=C+E;  F=D+G. 
–  Read back the final result and verify that it is correct 

•  Expected output: 
–  A message to standard output verifying that the chain of 

vector additions produced the correct result. 

(Sample solution is for C = A + B; D = C + E; F = D + G; return F) 



MODIFYING KERNELS 



Working with Kernels (C++) 

•  The kernels are where all the action is in an OpenCL 
program. 

•  Steps to using kernels: 
1.  Load kernel source code into a program object from a 

file 
2.  Make a kernel functor from a function within the 

program 
3.  Initialize device memory 
4.  Call the kernel functor, specifying memory objects and 

global/local sizes 
5.  Read results back from the device 

•  Note the kernel function argument list must match 
the kernel definition on the host. 



Create a kernel 
•  Kernel code can be a string in the host code (toy codes) 
•  Or the kernel code can be loaded from a file (real codes) 

•  Compile for the default devices within the default context 
program.build();!

•  Define the kernel functor from a function within the program – 
allows us to ‘call’ the kernel to enqueue it 
auto vadd = make_kernel<Buffer, Buffer, Buffer, int> !
                       (program, “vadd”);!

•  Advanced: if you want to query information about a kernel, you 
will need to create a kernel object: 
Kernel ko_vadd(program, “vadd”);!

The build step can be carried out by specifying true 
in the program constructor. If you need to specify 
build flags you must specify false in the constructor 
and use this method instead. 
 

If we set the local dimension 
ourselves or accept the OpenCL 
runtime’s we don’t need this step 
 



Advanced: get info about the kernel 

•  E.g. get default size of local dimension (size of 
a Work-Group) 

::size_t local =!
           ko_vadd.getWorkGroupInfo!
           <CL_KERNEL_WORK_GROUP_SIZE>!
           (Device::getDefault());!

We can use any work-group-info parameter from table 5.15 in the 
OpenCL 1.1 specification. The function will return the appropriate type. 



Call (enqueue) the kernel 

•  Enqueue the kernel for execution with buffer 
objects d_a, d_b and d_c and their length, 
count: 

vadd(!
  EnqueueArgs(queue,!
              NDRange(count),!
              NDRange(local)),  
  d_a, d_b, d_c, count);!

We can include any arguments from the clEnqueueNDRangeKernel 
function including Event wait lists (to be discussed later) and the 

command queue (optional) 



Exercise 3: The D = A + B + C problem 

•  Goal: 
–  To verify that you understand how to control the 

argument definitions for a kernel.   
–  To verify that you understand the host/kernel interface. 

•  Procedure:  
–  Start with your VADD program.   
–  Modify the kernel so it adds three vectors together. 
–  Modify the host code to define three vectors and 

associate them with relevant kernel arguments. 
–  Read back the final result and verify that it is correct. 

•  Expected output: 
–  Test your result and verify that it is correct.  Print a 

message to that effect on the screen.  



We have now covered the basic 
platform runtime APIs in OpenCL 
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INTRODUCTION TO OPENCL 
KERNEL PROGRAMMING 



OpenCL C kernel language 

•  Derived from ISO C99 
– A few restrictions: no recursion, function pointers, 

functions in C99 standard headers ... 
–  Preprocessing directives defined by C99 are 

supported (#include etc.) 

•  Built-in data types 
–  Scalar and vector data types, pointers 
– Data-type conversion functions: 

•  convert_type<_sat><_roundingmode>  

–  Image types: image2d_t, image3d_t and sampler_t 



OpenCL C Language Highlights 
•  Function qualifiers 

–  __kernel qualifier declares a function as a kernel 
•  I.e. makes it visible to host code so it can be enqueued 

–  Kernels can call other kernel-side functions 
•  Address space qualifiers 

–  __global, __local, __constant, __private 
–  Pointer kernel arguments must be declared with an address space 

qualifier 
•  Work-item functions 

–  get_work_dim(),  get_global_id(), get_local_id(), get_group_id() 
•  Synchronization functions 

–  Barriers - all work-items within a work-group must execute the 
barrier function before any work-item can continue 

–  Memory fences - provides ordering between memory operations 



OpenCL C Language Restrictions 

•  Pointers to functions are not allowed 
•  Pointers to pointers allowed within a kernel, 

but not as an argument to a kernel invocation 
•  Bit-fields are not supported 
•  Variable length arrays and structures are not 

supported 
•  Recursion is not supported (yet!) 
•  Double types are optional in OpenCL v1.1, but 

the key word is reserved 
   (note: most implementations support double) 



Matrix multiplication: sequential code 

void mat_mul(int Mdim, int Ndim, int Pdim,!
                        float *A, float *B, float 
*C)!
{!
    int i, j, k;!
    for (i = 0; i < Ndim; i++) {!
        for (j = 0; j < Mdim; j++) {!
            for (k = 0; k < Pdim; k++) { !
                // C(i, j) = sum(over k) A(i,k) * B
(k,j)!
                C[i*Ndim+j] += A[i*Ndim+k] * B
[k*Pdim+j];!
            }!
        }!
    }!
}!

We calculate C=AB, dimA = (N x P), dimB=(P x M), dimC=(N x M) 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each 
element of C 



Matrix multiplication performance 

•  Serial C code on CPU (single core). 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 
using the gcc compiler. 

Third party names are the property of their owners. 

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system. 
 



Matrix multiplication: sequential code 

void mat_mul(int Mdim, int Ndim, int Pdim,!
                        float *A, float *B, float 
*C)!
{!
    int i, j, k;!
    for (i = 0; i < Ndim; i++) {!
        for (j = 0; j < Mdim; j++) {!
            for (k = 0; k < Pdim; k++) { !
                // C(i, j) = sum(over k) A(i,k) * B
(k,j)!
                C[i*Ndim+j] += A[i*Ndim+k] * B
[k*Pdim+j];!
            }!
        }!
    }!
}!

We turn this into an OpenCL kernel! 



Matrix multiplication: OpenCL kernel (1/2) 

void mat_mul(int Mdim, int Ndim, int Pdim,!
                         float *A, float *B, float 
*C)!
{!
    int i, j, k;!
    for (i = 0; i < Ndim; i++) {!
        for (j = 0; j < Mdim; j++) {!
            // C(i, j) = sum(over k) A(i,k) * B(k,j)!
            for (k = 0; k < Pdim; k++) {  !
                C[i*Ndim+j] += A[i*Ndim+k] * B
[k*Pdim+j];!
            }!
        }!
    }!
}!

__kernel void mat_mul(!
 const int Mdim, const int Ndim, const int Pdim,!
 __global float *A, __global float *B, __global float *C)!

Mark as a kernel function and 
specify memory qualifiers 



__kernel void mat_mul(!
  const int Mdim, const int Ndim, const int Pdim,!
  __global float *A, __global float *B, __global float *C)!
{!
    int i, j, k;!
    for (i = 0; i < Ndim; i++) {!
        for (j = 0; j < Mdim; j++) {!
            for (k = 0; k < Pdim; k++) { !
                // C(i, j) = sum(over k) A(i,k) * B(k,j)!
                C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];!
            }!
        }!
    }!
}!

Matrix multiplication: OpenCL kernel (2/2) 

i = get_global_id(0);!
j = get_global_id(1);!

Remove outer loops and set 
work-item co-ordinates 

!
!



__kernel void mmul(!
   const int Mdim,!
   const int Ndim,!
   const int Pdim,!
   __global float *A,!
   __global float *B,!
   __global float *C)!

Matrix multiplication: OpenCL kernel improved 

{!
  int k;!
  int i = get_global_id(0);!
  int j = get_global_id(1);!
  float tmp = 0.0f;!
  for (k = 0; k < Pdim; k++) !
   tmp += A[i*Ndim+k]*B[k*Pdim+j];!
  }!
  C[i*Ndim+j] += tmp;!
}!

Rearrange a bit and use a local scalar for intermediate C element 
values (a common optimization in Matrix Multiplication functions)  



Matrix multiplication host program (C++ API) 

int main(int argc, char *argv[])!
{!
  std::vector<float> h_A, h_B, h_C; // matrices!
  int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
  int i, err; !
  int szA, szB, szC; // num elements in each matrix!
  double start_time, run_time; // timing data!
  cl::Program program;!
!
  Ndim = Pdim = Mdim = ORDER;!
  szA = Ndim*Pdim; !
  szB = Pdim*Mdim; !
  szC = Ndim*Mdim;!
  h_A   = std::vector<float>(szA);!
  h_B   = std::vector<float>(szB);!
  h_C   = std::vector<float>(szC);!
!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
  // Compile for first kernel to setup program!
  program = cl::Program(C_elem_KernelSource, true);!
  Context context(CL_DEVICE_TYPE_DEFAULT);  !
  cl::CommandQueue queue(context);!
  std::vector<Device> devices =!
      context.getInfo<CL_CONTEXT_DEVICES>();!
  cl::Device device = devices[0]; !
  std::string s =  !
      device.getInfo<CL_DEVICE_NAME>();!
  std::cout << "\nUsing OpenCL Device ”!
            << s << "\n";!

  // Setup the buffers, initialize matrices,!
  // and write them into global memory!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
  cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
  cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
  cl::Buffer d_c = cl::Buffer(context, !
                              CL_MEM_WRITE_ONLY,!
                              sizeof(float) * szC);!
 !
!
  auto naive = cl::make_kernel<int, int, int,!
                   cl::Buffer, cl::Buffer, cl::Buffer> !
                   (program, "mmul");!
!
  zero_mat(Ndim, Mdim, h_C);!
  start_time = wtime();!
!
  naive(cl::EnqueueArgs(queue,!
                        cl::NDRange(Ndim, Mdim)),!
        Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
  cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
  run_time  = wtime() - start_time;!
  results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

Note: To use the default context/queue/device, skip this section 
and remove the references to context, queue and device. 



Matrix multiplication host program (C++ API) 

int main(int argc, char *argv[])!
{!
  std::vector<float> h_A, h_B, h_C; // matrices!
  int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
  int i, err; !
  int szA, szB, szC; // num elements in each matrix!
  double start_time, run_time; // timing data!
  cl::Program program;!
!
  Ndim = Pdim = Mdim = ORDER;!
  szA = Ndim*Pdim; !
  szB = Pdim*Mdim; !
  szC = Ndim*Mdim;!
  h_A   = std::vector<float>(szA);!
  h_B   = std::vector<float>(szB);!
  h_C   = std::vector<float>(szC);!
!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
  // Compile for first kernel to setup program!
  program = cl::Program(C_elem_KernelSource, true);!
  Context context(CL_DEVICE_TYPE_DEFAULT);  !
  cl::CommandQueue queue(context);!
  std::vector<Device> devices =!
      context.getInfo<CL_CONTEXT_DEVICES>();!
  cl::Device device = devices[0]; !
  std::string s =  !
      device.getInfo<CL_DEVICE_NAME>();!
  std::cout << "\nUsing OpenCL Device ”!
            << s << "\n";!

  // Setup the buffers, initialize matrices,!
  // and write them into global memory!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
  cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
  cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
  cl::Buffer d_c = cl::Buffer(context, !
                              CL_MEM_WRITE_ONLY,!
                              sizeof(float) * szC);!
 !
!
  auto naive = cl::make_kernel<int, int, int,!
                   cl::Buffer, cl::Buffer, cl::Buffer> !
                   (program, "mmul");!
!
  zero_mat(Ndim, Mdim, h_C);!
  start_time = wtime();!
!
  naive(cl::EnqueueArgs(queue,!
                        cl::NDRange(Ndim, Mdim)),!
        Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
  cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
  run_time  = wtime() - start_time;!
  results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

Declare and 
initialize 

data 

Setup the 
platform and 
build program 

Setup buffers and write 
A and B matrices to the 

device memory 

Create the kernel functor 

Run the kernel and 
collect results 

Note: To use the default context/queue/device, skip this section 
and remove the references to context, queue and device. 



Matrix multiplication performance 

•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system. 
 



UNDERSTANDING THE OPENCL 
MEMORY HIERARCHY 
 



Optimizing matrix multiplication 
•  MM cost determined by FLOPS and memory movement: 

–  2*n3 = O(n3) FLOPS 
–  Operates on 3*n2 = O(n2) numbers 

•  To optimize matrix multiplication, we must ensure that for 
every memory access we execute as many FLOPS as 
possible. 

•  Outer product algorithms are faster, but for pedagogical 
reasons, let’s stick to the simple dot-product algorithm. 

•  We will work with work-item/work-group sizes and the 
memory model to optimize matrix multiplication 

 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 



An N-dimensional domain of work-items 
•  Global Dimensions: 

–  1024x1024 (whole problem space) 
•  Local Dimensions: 

–  128x128 (work-group, executes together) 

•  Choose the dimensions that are “best” for 
your algorithm 

1024 

10
24

 

Synchronization between 
work-items possible only 

within work-groups: 
barriers and memory fences 

Cannot synchronize 
between work-groups 

within a kernel 



OpenCL Memory model 
•  Private Memory 

–  Per work-item 

•  Local Memory 
–  Shared within a 

 work-group 

•  Global/Constant 
Memory 
–  Visible to all 

 work-groups 

•  Host memory 
–  On the CPU 

Memory management is explicit:  
You are responsible for moving data from 

 host → global → local and back 



OpenCL Memory model 
•  Private Memory 

–  Fastest & smallest: O(10) words/WI 
•  Local Memory 

–  Shared by all WI’s in a work-group 
–  But not shared between work-

groups! 
–  O(1-10) Kbytes per work-group 

•  Global/Constant Memory 
–  O(1-10) Gbytes of Global memory 
–  O(10-100) Kbytes of Constant 

memory 
•  Host memory 

–  On the CPU - GBytes 

Memory management is explicit:  
O(1-10) Gbytes/s bandwidth to discrete GPUs for 
      Host <-> Global transfers 



Private Memory 

•  Managing the memory hierarchy is one of the 
most important things to get right to achieve 
good performance 

•  Private Memory: 
–  A very scarce resource, only a few tens of 32-bit 

words per Work-Item at most 
–  If you use too much it spills to global memory or 

reduces the number of Work-Items that can be run 
at the same time, potentially harming performance* 

–  Think of these like registers on the CPU 

* Occupancy on a GPU 



Local Memory 
•  Tens of KBytes per Compute Unit 

–  As multiple Work-Groups will be running on each CU, this 
means only a fraction of the total Local Memory size is 
available to each Work-Group 

•  Assume O(1-10) KBytes of Local Memory per Work-Group 
–  Your kernels are responsible for transferring data between 

Local and Global/Constant memories … there are optimized 
library functions to help 

–  E.g. async_work_group_copy(), 
async_workgroup_strided_copy(), … 

•  Use Local Memory to hold data that can be reused by all 
the work-items in a work-group 

•  Access patterns to Local Memory affect performance in a 
similar way to accessing Global Memory 
–  Have to think about things like coalescence & bank conflicts 



Local Memory 

•  Local Memory doesn’t always help… 
– CPUs don’t have special hardware for it 
– This can mean excessive use of Local Memory 

might slow down kernels on CPUs 
– GPUs now have effective on-chip caches which 

can provide much of the benefit of Local 
Memory but without programmer intervention 

– So, your mileage may vary! 



The Memory Hierarchy 

Private memory 
O(10) words/WI 

 
Local memory 

O(1-10) KBytes/WG 
 

Global memory 
O(1-10) GBytes 

 
Host memory 
O(1-100) GBytes 

Private memory 
O(2-3) words/cycle/WI 

 
Local memory 

O(10) words/cycle/WG 
 

Global memory 
O(100-200) GBytes/s 

 
Host memory 

O(1-100) GBytes/s 

Speeds and feeds approx. for a high-end discrete GPU, circa 2011 

Bandwidths Sizes 



Memory Consistency 
•  OpenCL uses a relaxed consistency memory model; i.e.  

–  The state of memory visible to a work-item is not guaranteed 
to be consistent across the collection of work-items at all 
times. 

•  Within a work-item: 
–  Memory has load/store consistency to the work-item’s private 

view of memory, i.e. it sees its own reads and writes correctly 
•  Within a work-group: 

–  Local memory is consistent between work-items at a barrier. 
•  Global memory is consistent within a work-group at a 

barrier, but not guaranteed across different work-
groups!! 
–  This is a common source of bugs! 

•  Consistency of memory shared between commands (e.g. 
kernel invocations) is enforced by synchronization 
(barriers, events, in-order queue)  



Optimizing matrix multiplication 

•  There may be significant overhead to manage work-items 
and work-groups. 

•  So let’s have each work-item compute a full row of C 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 



An N-dimension domain of work-items 

•  Global Dimensions: 1024 (1D) 
 Whole problem space (index space) 

•  Local Dimensions:  64 (work-items per work-group) 
 Only 1024/64 = 16 work-groups in total 

•  Important implication: we will have a lot fewer 
work-items per work-group (64) and work-
groups (16). Why might this matter? 

10
24

 

64
 



__kernel void mmul(!
 const int Mdim, const int Ndim, const int Pdim,!
 __global float *A, __global float *B, __global float *C)!
{!
    int k, j;!
    int i = get_global_id(0);!
    float tmp;!
    for (j = 0; j < Mdim; j++) {!
        // Mdim is width of rows in C!
        tmp = 0.0f;!
        for (k = 0; k < Pdim; k++)!
            tmp += A[i*Ndim+k] * B[k*Pdim+j];!
        C[i*Ndim+j]  += tmp;!
    }!
}!

Reduce work-item overhead 
Do a whole row of C per work-item 



  // Setup the buffers, initialize matrices,!
  // and write them into global memory!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
  cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
  cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
  cl::Buffer d_c = cl::Buffer(context, !
                              CL_MEM_WRITE_ONLY,!
                              sizeof(float) * szC);!
 !
!
  auto krow = cl::make_kernel<int, int, int,!
                  cl::Buffer, cl::Buffer, cl::Buffer> !
                  (program, "mmul");!
!
  zero_mat(Ndim, Mdim, h_C);!
  start_time = wtime();!
!
  krow(cl::EnqueueArgs(queue,!
                       cl::NDRange(Ndim), !
                       cl::NDRange(ORDER/16)),!
       Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
  cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
  run_time  = wtime() - start_time;!
  results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

int main(int argc, char *argv[])!
{!
  std::vector<float> h_A, h_B, h_C; // matrices!
  int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
  int i, err; !
  int szA, szB, szC; // num elements in each matrix!
  double start_time, run_time; // timing data!
  cl::Program program;!
!
  Ndim = Pdim = Mdim = ORDER;!
  szA = Ndim*Pdim; !
  szB = Pdim*Mdim; !
  szC = Ndim*Mdim;!
  h_A   = std::vector<float>(szA);!
  h_B   = std::vector<float>(szB);!
  h_C   = std::vector<float>(szC);!
!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
  // Compile for first kernel to setup program!
  program = cl::Program(C_elem_KernelSource, true);!
  Context context(CL_DEVICE_TYPE_DEFAULT);  !
  cl::CommandQueue queue(context);!
  std::vector<Device> devices =!
      context.getInfo<CL_CONTEXT_DEVICES>();!
  cl::Device device = devices[0]; !
  std::string s =  !
      device.getInfo<CL_DEVICE_NAME>();!
  std::cout << "\nUsing OpenCL Device ”!
            << s << "\n";!

Matrix multiplication host program (C++ API) 

Changes to host program: 
1.  1D ND Range set to number of rows in the C matrix 
2.  Local Dimension set to 64 so number of work-groups 

match number of compute units (16 in this case) for our 
order 1024 matrices 

krow(cl::EnqueueArgs(queue!
                     cl::NDRange(Ndim),!
                     cl::NDRange(ORDER/16)),!
     Ndim, Mdim, Pdim, a_in, b_in, c_out);!



  // Setup the buffers, initialize matrices,!
  // and write them into global memory!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
  cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
  cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
  cl::Buffer d_c = cl::Buffer(context, !
                              CL_MEM_WRITE_ONLY,!
                              sizeof(float) * szC);!
 !
!
  auto krow = cl::make_kernel<int, int, int,!
                  cl::Buffer, cl::Buffer, cl::Buffer> !
                  (program, "mmul");!
!
  zero_mat(Ndim, Mdim, h_C);!
  start_time = wtime();!
!
  krow(cl::EnqueueArgs(queue,!
                       cl::NDRange(Ndim), !
                       cl::NDRange(ORDER/16)),!
       Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
  cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
  run_time  = wtime() - start_time;!
  results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

int main(int argc, char *argv[])!
{!
  std::vector<float> h_A, h_B, h_C; // matrices!
  int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
  int i, err; !
  int szA, szB, szC; // num elements in each matrix!
  double start_time, run_time; // timing data!
  cl::Program program;!
!
  Ndim = Pdim = Mdim = ORDER;!
  szA = Ndim*Pdim; !
  szB = Pdim*Mdim; !
  szC = Ndim*Mdim;!
  h_A   = std::vector<float>(szA);!
  h_B   = std::vector<float>(szB);!
  h_C   = std::vector<float>(szC);!
!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
  // Compile for first kernel to setup program!
  program = cl::Program(C_elem_KernelSource, true);!
  Context context(CL_DEVICE_TYPE_DEFAULT);  !
  cl::CommandQueue queue(context);!
  std::vector<Device> devices =!
      context.getInfo<CL_CONTEXT_DEVICES>();!
  cl::Device device = devices[0]; !
  std::string s =  !
      device.getInfo<CL_DEVICE_NAME>();!
  std::cout << "\nUsing OpenCL Device ”!
            << s << "\n";!

Matrix multiplication host program (C++ API) 

krow(cl::EnqueueArgs(queue!
                     cl::NDRange(Ndim),!
                     cl::NDRange(ORDER/16)),!
     Ndim, Mdim, Pdim, a_in, b_in, c_out);!



Matrix multiplication performance 

•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system. 
 

This has started to help. 



Optimizing matrix multiplication 

•  Notice that, in one row of C, each element reuses the same 
row of A. 

•  Let’s copy that row of A into private memory of the work-
item that’s (exclusively) using it to avoid the overhead of 
loading it from global memory for each C(i,j) computation. 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Private memory of each 
work-item 



Matrix multiplication: OpenCL kernel (3/3) 

__kernel void mmul(!
    const int Mdim,!
    const int Ndim,!
    const int Pdim,!
    __global float *A,!
    __global float *B,!
    __global float *C)!
{!
  int k, j;!
  int i = get_global_id(0);!
  float Awrk[1024];!
  float tmp;!

!
  for (k = 0; k < Pdim; k++)!
      Awrk[k] = A[i*Ndim+k];!
  for (j = 0; j < Mdim; j++) {!
     tmp = 0.0f;!
     for (k = 0; k < Pdim; k++)!
         tmp += Awrk[k]*B[k*Pdim+j];!
    C[i*Ndim+j] += tmp;!
  }!
}!

Setup a work array for A in private 
memory and copy into it from global 

memory before we start with the matrix 
multiplications. 

(Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory) 



Matrix multiplication performance 

•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

C row per work-item, A row private 3,385.8 8,584.3 

Device is Tesla® M2090 GPU from 
NVIDIA® with a max of 16 
compute units, 512 PEs 
Device is Intel® Xeon® CPU, 
E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system. 
 

Big impact! 



Optimizing matrix multiplication 
•  We already noticed that, in one row of C, each element uses 

the same row of A 
•  Each work-item in a work-group also uses the same columns 

of B 
•  So let’s store the B columns in local memory (which is 

shared by the work-items in the work-group) 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Private memory of each 
work-item Local memory for each 

work-group 



Row of C per work-item, A row private, B columns local 

__kernel void mmul(!
    const int Mdim,!
    const int Ndim,!
    const int Pdim,!
    __global float *A,!
    __global float *B,!
    __global float *C,!
    __local float *Bwrk)!
{!
 int k, j;!
 int i = get_global_id(0);!
 int iloc = get_local_id(0);!
 int nloc = get_local_size(0);!
 float Awrk[1024];!

!
float tmp;!
for (k = 0; k < Pdim; k++)!
  Awrk[k] = A[i*Ndim+k];!
for (j = 0; j < Mdim; j++) {!
  for (k=iloc; k<Pdim; k+=nloc)!
    Bwrk[k] = B[k*Pdim+j];!
  barrier(CLK_LOCAL_MEM_FENCE);!
  tmp = 0.0f;!
  for (k = 0; k < Pdim; k++)!
    tmp += Awrk[k] * Bwrk[k];!
  C[i*Ndim+j] += tmp;!
 }!
}!

Pass in a pointer to local memory.  Work-items 
in a work-group start by copying the columns 

of B they need into their local memory. 



  // Setup the buffers, initialize matrices,!
  // and write them into global memory!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
  cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
  cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
  cl::Buffer d_c = cl::Buffer(context, !
                              CL_MEM_WRITE_ONLY,!
                              sizeof(float) * szC);!
 !
!
!
!
  auto rowcol = cl::make_kernel<int, int, int,!
                  cl::Buffer, cl::Buffer, cl::Buffer> !
                  (program, "mmul");!
!
  zero_mat(Ndim, Mdim, h_C);!
  start_time = wtime();!
!
  rowcol(cl::EnqueueArgs(queue,!
                         cl::NDRange(Ndim), !
                         cl::NDRange(ORDER/16)),!
         Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
  cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
  run_time  = wtime() - start_time;!
  results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

int main(int argc, char *argv[])!
{!
  std::vector<float> h_A, h_B, h_C; // matrices!
  int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
  int i, err; !
  int szA, szB, szC; // num elements in each matrix!
  double start_time, run_time; // timing data!
  cl::Program program;!
!
  Ndim = Pdim = Mdim = ORDER;!
  szA = Ndim*Pdim; !
  szB = Pdim*Mdim; !
  szC = Ndim*Mdim;!
  h_A   = std::vector<float>(szA);!
  h_B   = std::vector<float>(szB);!
  h_C   = std::vector<float>(szC);!
!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
  // Compile for first kernel to setup program!
  program = cl::Program(C_elem_KernelSource, true);!
  Context context(CL_DEVICE_TYPE_DEFAULT);  !
  cl::CommandQueue queue(context);!
  std::vector<Device> devices =!
      context.getInfo<CL_CONTEXT_DEVICES>();!
  cl::Device device = devices[0]; !
  std::string s =  !
      device.getInfo<CL_DEVICE_NAME>();!
  std::cout << "\nUsing OpenCL Device ”!
            << s << "\n";!

Matrix multiplication host program (C++ API) 

cl::LocalSpaceArg localmem =!
                    cl::Local(sizeof(float) * Pdim);!

rowcol(cl::EnqueueArgs(queue,!
                       cl::NDRange(Ndim),           !
                       cl::NDRange(ORDER/16)),!
       Ndim, Mdim, Pdim, d_a, d_b, d_c, localmem);!

Changes to host program: 
1.  Pass local memory to kernels.  

1.  This requires a change to the kernel argument lists … an 
arg of type LocalSpaceArg is needed.  

2.  Allocate the size of local memory 
3.  Update argument list in kernel functor 

auto rowcol = cl::make_kernel<int, int, int,!
!     cl::Buffer, cl::Buffer, cl:::Buffer,!

                cl::LocalSpaceArg>(program, “mmul”);!



  // Setup the buffers, initialize matrices,!
  // and write them into global memory!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
  cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
  cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
  cl::Buffer d_c = cl::Buffer(context, !
                              CL_MEM_WRITE_ONLY,!
                              sizeof(float) * szC);!
 !
!
!
!
  auto rowcol = cl::make_kernel<int, int, int,!
                  cl::Buffer, cl::Buffer, cl::Buffer> !
                  (program, "mmul");!
!
  zero_mat(Ndim, Mdim, h_C);!
  start_time = wtime();!
!
  rowcol(cl::EnqueueArgs(queue,!
                         cl::NDRange(Ndim), !
                         cl::NDRange(ORDER/16)),!
         Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
  cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
  run_time  = wtime() - start_time;!
  results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

int main(int argc, char *argv[])!
{!
  std::vector<float> h_A, h_B, h_C; // matrices!
  int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
  int i, err; !
  int szA, szB, szC; // num elements in each matrix!
  double start_time, run_time; // timing data!
  cl::Program program;!
!
  Ndim = Pdim = Mdim = ORDER;!
  szA = Ndim*Pdim; !
  szB = Pdim*Mdim; !
  szC = Ndim*Mdim;!
  h_A   = std::vector<float>(szA);!
  h_B   = std::vector<float>(szB);!
  h_C   = std::vector<float>(szC);!
!
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
  // Compile for first kernel to setup program!
  program = cl::Program(C_elem_KernelSource, true);!
  Context context(CL_DEVICE_TYPE_DEFAULT);  !
  cl::CommandQueue queue(context);!
  std::vector<Device> devices =!
      context.getInfo<CL_CONTEXT_DEVICES>();!
  cl::Device device = devices[0]; !
  std::string s =  !
      device.getInfo<CL_DEVICE_NAME>();!
  std::cout << "\nUsing OpenCL Device ”!
            << s << "\n";!

Matrix multiplication host program (C++ API) 

cl::LocalSpaceArg localmem =!
                    cl::Local(sizeof(float) * Pdim);!

rowcol(cl::EnqueueArgs(queue,!
                       cl::NDRange(Ndim),           !
                       cl::NDRange(ORDER/16)),!
       Ndim, Mdim, Pdim, d_a, d_b, d_c, localmem);!

auto rowcol = cl::make_kernel<int, int, int,!
!     cl::Buffer, cl::Buffer, cl:::Buffer,!

                cl::LocalSpaceArg>(program, “mmul”);!



Matrix multiplication performance 

•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

C row per work-item, A row private 3,385.8 8,584.3 

C row per work-item, A private, B local 10,047.5 8,181.9 

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system. 
 



SYNCHRONIZATION IN OPENCL 



Consider N-dimensional domain of work-items 
•  Global Dimensions: 

–  1024x1024 (whole problem space) 
•  Local Dimensions: 

–  128x128 (work-group, executes together) 

Synchronization: when multiple units of execution (e.g. work-items) are 
brought to a known point in their execution.   Most common example is a 
barrier … i.e. all units of execution “in scope” arrive at the barrier before 
any proceed.  

1024 

10
24

 

Synchronization between 
work-items possible only 

within work-groups: 
barriers and memory fences 

Cannot synchronize 
between work-groups 

within a kernel 



Work-Item Synchronization 

•  Within a work-group 
void barrier()!
–  Takes optional flags 

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE 
–  A work-item that encounters a barrier() will wait until ALL work-items 

in its work-group reach the barrier() 
–  Corollary: If a barrier() is inside a branch, then the branch must be 

taken by either: 
•  ALL work-items in the work-group, OR 
•  NO work-item in the work-group 

•  Across work-groups 
–  No guarantees as to where and when a particular work-group will be 

executed relative to another work-group 
–  Cannot exchange data, or have barrier-like synchronization between 

two different work-groups! (Critical issue!) 
–  Only solution: finish the kernel and start another 

Ensure correct order of memory operations to 
local or global memory (with flushes or queuing 
a memory fence) 



Where might we need 
synchronization? 

•  Consider a reduction … reduce a set of 
numbers to a single value 
– E.g. find sum of all elements in an array 

•  Sequential code 

int reduce(int Ndim, int *A)!
{!
  sum = 0;!
  for(int i = 0; i < Ndim; i++)!
    sum += A[i];!
}!



Simple parallel reduction 
•  A reduction can be carried out in three steps: 

1.  Each work-item sums its private values into a local array 
indexed by the work-item’s local id 

2.  When all the work-items have finished, one work-item sums 
the local array into an element of a global array (indexed by 
work-group id). 

3.  When all work-groups have finished the kernel execution, 
the global array is summed on the host. 

•  Note: this is a simple reduction that is straightforward to 
implement.  More efficient reductions do the work-group 
sums in parallel on the device rather than on the host.  
These more scalable reductions are considerably more 
complicated to implement. 



A simple program that uses a reduction 

Numerical Integration 
Mathematically, we know that 
we can approximate the integral 
as a sum of rectangles. 
 
Each rectangle has width and 
height at the middle of interval. 
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Numerical integration source code 
The serial Pi program 

static long num_steps = 100000;!
double step;!
void main()!
{!
  int i; double x, pi, sum = 0.0;!
!
  step = 1.0/(double) num_steps;!
!
  for (i = 0; i < num_steps; i++) {!
    x = (i+0.5)*step;!
    sum = sum + 4.0/(1.0+x*x);!
  }!
  pi = step * sum;!
}!



Exercise 4: The Pi program 
•  Goal:  

– To understand synchronization between work-items 
in the OpenCL C kernel programming language 

•  Procedure:  
–  Start with the provided serial program to estimate Pi 

through numerical integration 
– Write a kernel and host program to compute the 

numerical integral using OpenCL 
– Note: You will need to implement a reduction 

•  Expected output: 
– Output result plus an estimate of the error in the 

result 
– Report the runtime 

Hint: you will want each work-item to do many iterations of the loop, i.e. don’t 
create one work-item per loop iteration. To do so would make the reduction so 
costly that performance would be terrible.  
 



SOME CONCLUDING REMARKS 



Conclusion 
•  OpenCL has widespread industrial support 

•  OpenCL defines a platform-API/framework for heterogeneous 
computing, not just GPGPU or CPU-offload programming 

•  OpenCL has the potential to deliver portably performant code; 
but it has to be used correctly 

•  The latest C++ and Python APIs makes developing OpenCL 
programs much simpler than before 

•  The future is clear: 
–  OpenCL is the only parallel programming standard that enables 

mixing task parallel and data parallel code in a single program while 
load balancing across ALL of the platform’s available resources. 



Other important related trends 

•  The Heterogeneous Systems Architecture, HSA 
–  New standard supported by HSA Foundation (hsafoundation.com) 
–  Partners include Samsung, ARM, IMG, Qualcomm, LG, TI, Mediatek, … 

•  OpenCL’s Standard Portable Intermediate Representation (SPIR) 
–  Based on LLVM’s IR 
–  Makes interchangeable front- and back-ends straightforward 

•  OpenCL 2.0 
–  Adding High Level Model (HLM) 
–  Lots of other improvements 

•  For the latest news on SPIR and new OpenCL versions see: 
–  http://www.khronos.org/opencl/  

Third party names are the property of their owners. 



Resources: https://www.khronos.org/
opencl/ 

OpenCL Programming Guide:  
Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and 
James Fung, 2011  
 

Heterogeneous Computing with OpenCL 
Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry 
and Dana Schaa, 2011 
 



Other OpenCL resources 

•  New OpenCL user group 
– http://comportability.org 
– Forums 
– Downloaded examples 
– Training 
– Launched SC’12 in November 
– ACTION: register and become part of the 

community!! 



PORTING CUDA TO OPENCL 



Introduction to OpenCL 

•  You’ve already done the hard work! 
–  I.e. working out how to split up the problem 

to run effectively on a many-core device 

•  Switching between CUDA and OpenCL is 
mainly changes to host code syntax 
– Apart from indexing and naming conventions 

in kernel code (simple!) 

Third party names are the property of their owners. 



Memory Hierarchy 
CUDA OpenCL 

Private – within a work-item Local – within a thread 

Local – shared between 
work-items in a work-group 

Shared – shared between 
threads in a thread block 

Constant – a cache for 
constant memory 

Constant – a cache for 
constant memory 

Device – shared between 
all thread blocks 

Global – shared 
between all work-
groups 

Third party names are the property of their owners. 



Allocating and copying memory 

CUDA C OpenCL C++ 

Allocate float* d_x;!
cudaMalloc(&d_x,  !
    sizeof(float)
*size);!
!

cl::Buffer!
  d_x(begin(h_x), end
(h_x), true);!
!

Host to Device cudaMemcpy(d_x, h_x,!
    sizeof(float)
*size,!
    
cudaMemcpyHostToDevice
);!
!

cl::copy(begin(h_x), end
(h_x), !
         d_x);!

Device to Host cudaMemcpy(h_x, d_x,!
    sizeof(float)
*size,!
    
cudaMemcpyDeviceToHost
);!

cl::copy(d_x, !
         begin(h_x), end
(h_x));!
!Third party names are the property of their owners. 



Declaring dynamic local/shared memory 

CUDA C 

1.  Define an array in the kernel 
source as extern 

  __shared__ int array[];!
!
2.  When executing the kernel, 

specify the third parameter as 
size in bytes of shared memory 

func<<<num_blocks,!
 num_threads_per_block,!
 shared_mem_size>>>(args);!

OpenCL C++ 

1.  Have the kernel accept a local 
array as an argument 

    __kernel void func(!
          __local int *array)   !
  {}!
!

2.  Define a local memory kernel 
kernel argument of the right size 

cl::LocalSpaceArg localmem =!
    cl::Local(shared_mem_size);!
!

3.  Pass the argument to the kernel 
invocation 

func(EnqueueArgs(…),localmem);!
Third party names are the property of their owners. 



Dividing up the work 

•  To enqueue the kernel 
– CUDA – specify the number of thread blocks and 

threads per block 
– OpenCL – specify the problem size and number 

of work-items per work-group 

Problem size 

CUDA OpenCL 

Work-item Thread 

Thread block Work-group 

Third party names are the property of their owners. 



Enqueue a kernel 

CUDA C 
dim3 threads_per_block
(30,20);!
!
!
dim3 num_blocks(10,10);!
!
kernel<<<num_blocks,       !
  threads_per_block>>>();!

OpenCL C++ 
const size_t global[2] =!

! !{300, 200};!
!
const size_t local[2] =!

! !{30, 20};!
!
kernel(EnqueueArgs(!

!  NDRange(global), 
!  NDRange(local)), …);!

Third party names are the property of their owners. 



Indexing work 

CUDA 

gridDim 

blockIdx 

blockDim 

gridDim * blockDim 

threadIdx 

blockIdx * blockdim + threadIdx 

OpenCL 

get_num_groups() 

get_group_id() 

get_local_size() 

get_global_size() 

get_local_id() 

get_global_id() 

Third party names are the property of their owners. 



Differences in kernels 

•  Where do you find the kernel? 
– OpenCL -  a string (const char *), possibly 

read from a file 
– CUDA – a function in the host code 

•  Denoting a kernel 
– OpenCL - __kernel 
– CUDA - __global__ 

•  When are my kernels compiled? 
– OpenCL – at runtime 
– CUDA – with compilation of host code 

Third party names are the property of their owners. 



Host code 

•  By default, CUDA initilizes the GPU 
automatically 
–  If you needed anything more complicated 

(multi-card, etc.) you must do so manually 

•  OpenCL always requires explicit device 
initilization 
–  It runs not just on NVIDIA® GPUs and so you 

must tell it which device to use 

Third party names are the property of their owners. 



Thread Synchronization 

CUDA OpenCL 

__syncthreads() barrier() 
 

__threadfenceblock() mem_fence( 
    CLK_GLOBAL_MEM_FENCE |             
    CLK_LOCAL_MEM_FENCE) 

No equivalent read_mem_fence() 

No equivalent write_mem_fence() 

__threadfence() Finish one kernel and start 
another 

Third party names are the property of their owners. 



Translation from CUDA to OpenCL 

CUDA OpenCL 

GPU Device (CPU, GPU etc) 

Multiprocessor Compute Unit, or CU 

Scalar or CUDA core Processing Element, or PE 

Global or Device Memory Global Memory 

Shared Memory (per block)  Local Memory (per workgroup) 

Local Memory (registers) Private Memory 

Thread Block Work-group 

Thread Work-item 

Warp No equivalent term (yet) 

Grid NDRange 

Third party names are the property of their owners. 



More information 

•  http://developer.amd.com/Resources/
hc/OpenCLZone/programming/pages/
portingcudatoopencl.aspx 



Exercise 5: CUDA and OpenCL 

•  Goal:  
– To understand CUDA and convert a serial matrix 

multiplication code into CUDA 

•  Procedure:  
–  Examine the CUDA vadd program we have provided. 
– Using that program and these slides as your guide, 

convert provided matrix multiply program into a 
CUDA program (hint use the same algorithm as we 
used for OpenCL matrix multiply program). 

•  Expected output: 
– Test your answers and compare performance of the 

CUDA, OpenMP and serial programs. 
Third party names are the property of their owners. 



SETTING UP OPENCL 
PLATFORMS 



Some notes on setting up OpenCL 

•  We will provide some instructions for setting 
up OpenCL on your machine for a variety of 
major platforms and device types 
– AMD CPU, GPU and APU 
–  Intel CPU 
– NVIDIA GPU 

•  We assume you are running 64-bit Ubuntu 
12.04 LTS 

Third party names are the property of their owners. 



Running OSX? 

•  OpenCL works out of the box! 

•  Just compile your programs with 
-framework OpenCL -DAPPLE!

Third party names are the property of their owners. 



Setting up with AMD GPU 

•  Install some required packages: 
–  sudo apt-get install build-essential linux-headers-
generic debhelper dh-modaliases execstack dkms 
lib32gcc1 libc6-i386 opencl-headers!

•  Download the driver from amd.com/drivers 
–  Select your GPU, OS, etc. 
–  Download the .zip 
–  Unpack this with unzip filename.zip 

•  Create the installer 
–  sudo sh fglrx*.run --buildpkg Ubuntu/precise!

•  Install the drivers 
–  sudo dpkg –i fglrx*.deb!

•  Update your Xorg.conf file 
–  sudo amdconfig --initial --adapter=all!

•  Reboot! 
–  Check all is working by running fglrxinfo!

* Fglrx is the name of AMD’s graphics driver for the GPUs 



Setting up with AMD CPU 

•  Download the AMD APP SDK from their website 
•  Extract with tar -zxf file.tar.gz!
•  Install with 

– sudo ./Install*.sh!
•  Create symbolic links to the library and includes 

–  sudo ln –s /opt/AMDAPP/lib/x86_64/* /usr/local/
lib!

–  sudo ln –s /opt/AMDAPP/include/* /usr/local/
include!

•  Update linker paths 
– sudo ldconfig!

•  Reboot and run clinfo!
– Your CPU should be listed 

Third party names are the property of their owners. 



Setting up with AMD APU 

•  The easiest way is to follow the AMD GPU 
instructions to install fglrx. 

•  This means you can use the CPU and GPU 
parts of your APU as separate OpenCL 
devices. 

•  You may have to force your BIOS to use 
integrated graphics if you have a 
dedicated GPU too. 

Third party names are the property of their owners. 



Setting up with Intel CPU 

•  NB: requires an Intel® Xeon™ processor on Linux 
•  Download the Xeon Linux SDK from the Intel website 
•  Extract the download 

–  tar -zxf download.tar.gz!
•  Install some dependancies 

–  sudo apt-get install rpm alien libnuma1!
•  Install them using alien 

–  sudo alien –i *base*.rpm *intel-cpu*.rpm 
*devel*.rpm!

•  Copy the ICD to the right location 
–  sudo cp /opt/intel/<version>/etc/
intel64.icd /etc/OpenCL/vendors/!

Third party names are the property of their owners. 



Setting up with Intel Xeon Phi 

•  Intel® Xeon Phi™ coprocessor are 
specialist processor only found in 
dedicated HPC clusters. 

•  As such, we expect most users will be 
using them in a server environment set up 
by someone else – hence we wont 
discusses setting up OpenCL on the Intel® 
Xeon Phi™ coprocessor in these slides 

Third party names are the property of their owners. 



Setting up with NVIDIA GPUs 
•  Blacklist the open source driver (IMPORTANT) 

–  sudo nano /etc/modprobe.d/blacklist.conf!
–  Add the line: blacklist nouveau 

•  Install some dependencies 
–  sudo apt-get install build-essential linux-header-
generic opencl-headers!

•  Download the NVIDIA driver from their website and unpack the 
download 

•  In a virtual terminal (Ctrl+Alt+F1), stop the windows manager 
–  sudo service lightdm stop!

•  Give the script run permissions then run it 
–  chmod +x *.run!
–  sudo ./*.run!

•  The pre-install test will fail – this is OK! 
•  Say yes to DKMS, 32-bit GL libraries and to update your X config 
•  Reboot! 

Third party names are the property of their owners. 



C/C++ linking (gcc/g++) 

•  In order to compile your OpenCL program 
you must tell the compiler to use the 
OpenCL library with the flag: –l OpenCL!

•  If the compiler cannot find the OpenCL 
header files (it should do) you must specify 
the location of the CL/ folder with the –I 
(capital “i”) flag 

•  If the linker cannot find the OpenCL runtime 
libraries (it should do) you must specify the 
location of the lib file with the –L flag 


