
OpenCL and CUDA:
A Hands-on Introduction

Tim Mattson
Intel Corp.

Acknowledgements: These slides are based on content produced by Tom Deakin and
Simon Mcintosh-Smith from the University of Bristol which where based on slides by
Tim and Simon with Ben Gaster (Qualcomm) .

2 2

Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the
speakers and not their employer.

• This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

• This was a team effort, but if we say anything really
stupid, it’s our fault … don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 … A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

AN INTRODUCTION TO OPENCL

Industry Standards for Programming
Heterogeneous Platforms

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of
heterogeneous parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general

purpose data-parallel
computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming –
e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

The origins of OpenCL
AMD

ATI

NVIDIA

Intel

Apple

Merged, needed
commonality
across products

GPU vendor –
wants to steal
market share
from CPU

CPU vendor –
wants to steal
market share
from GPU

Was tired of recoding for
many core, GPUs.
Pushed vendors to
standardize.

Wrote a rough draft
straw man API

Khronos Compute
group formed

ARM
Nokia
IBM
Sony
Qualcomm
Imagination
TI

Third party names are the property of their owners.

+ many
more

OpenCL: From cell phone to
supercomputer

•  OpenCL Embedded profile for
mobile and embedded silicon
–  Relaxes some data type and

precision requirements
–  Avoids the need for a separate

“ES” specification
•  Khronos APIs provide

computing support for
imaging & graphics
–  Enabling advanced applications

in, e.g., Augmented Reality

•  OpenCL will enable parallel
computing in new markets
–  Mobile phones, cars, avionics

A camera phone with GPS
processes images to

recognize buildings and
landmarks and provides

relevant data from internet

OpenCL Platform Model

•  One Host and one or more OpenCL Devices
–  Each OpenCL Device is composed of one or more

Compute Units
•  Each Compute Unit is divided into one or more Processing Elements

•  Memory divided into host memory and device memory

Processing
Element

OpenCL Device

… …
…

…
… …

…
…

… …
…

…
… …

…
Host

Compute Unit

The BIG idea behind OpenCL
•  Replace loops with functions (a kernel) executing at each

point in a problem domain
–  E.g., process a 1024x1024 image with one kernel invocation per

pixel or 1024x1024=1,048,576 kernel executions

Traditional loops Data Parallel OpenCL
void !
mul(const int n,!
 const float *a,!
 const float *b,!
 float *c)!
{!
 int i;!
 for (i = 0; i < n; i++)!
 c[i] = a[i] * b[i];!
}!

__kernel void!
mul(__global const float *a,!
 __global const float *b,!
 __global float *c)!
{!
 int id = get_global_id(0);!
 c[id] = a[id] * b[id];!
}!
// execute over n work-items!

An N-dimensional domain of work-items
•  Global Dimensions:

–  1024x1024 (whole problem space)
•  Local Dimensions:

–  128x128 (work-group, executes together)

•  Choose the dimensions that are “best” for
your algorithm

1024

10
24

Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

OpenCL Memory model
•  Private Memory

–  Per work-item

•  Local Memory
–  Shared within a

 work-group

•  Global Memory /
Constant Memory
–  Visible to all

 work-groups

•  Host memory
–  On the CPU

Memory management is explicit:
You are responsible for moving data from

 host → global → local and back

Context and Command-Queues
•  Context:

–  The environment within which kernels
execute and in which synchronization
and memory management is defined.

•  The context includes:
–  One or more devices
–  Device memory
–  One or more command-queues

•  All commands for a device (kernel
execution, synchronization, and
memory operations) are submitted
through a command-queue.

•  Each command-queue points to a
single device within a context.

Queue

Context

Device

Device Memory

Execution model (kernels)
•  OpenCL execution model … define a problem

domain and execute an instance of a kernel for
each point in the domain

__kernel void times_two(!
 __global float* input,!
 __global float* output)!
{!
 int i = get_global_id(0);!
 output[i] = 2.0f * input[i];!
}!

get_global_id(0)!
10

Input

Output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

__kernel void !
horizontal_reflect(read_only image2d_t src,!
 write_only image2d_t dst) !
{!
 int x = get_global_id(0); // x-coord !
 int y = get_global_id(1); // y-coord !
 int width = get_image_width(src); !
 float4 src_val = read_imagef(src, sampler, !
 (int2)(width-1-x, y)); !
 write_imagef(dst, (int2)(x, y), src_val);!
}!

Building Program Objects
•  The program object encapsulates:

–  A context
–  The program source or binary, and
–  List of target devices and build options

•  The build process to create a program
object:
–  clCreateProgramWithSource()!
–  clCreateProgramWithBinary()!

OpenCL uses runtime
compilation … because
in general you don’t
know the details of the
target device when you
ship the program

Compile for
GPU

Compile for
CPU

GPU
code

CPU
code

Example: vector addition

•  The “hello world” program of data parallel
programming is a program to add two vectors

C[i] = A[i] + B[i] for i=0 to N-1!

•  For the OpenCL solution, there are two parts
– Kernel code
– Host code

Vector Addition - Kernel

__kernel void vadd(__global const float *a,!
! ! ! ! __global const float *b,!
! ! ! ! __global float *c)!
 {!
 int gid = get_global_id(0);!
 c[gid] = a[gid] + b[gid];!
 }!
!

Exercise 1:
Running the Vector Add kernel

•  Goal:
–  To inspect and verify that you can run an OpenCL kernel

•  Procedure:
–  Take the Vadd program we provide you. It will run a

simple kernel to add two vectors together.
–  Look at the host code and identify the API calls in the

host code. Compare them against the API descriptions on
the OpenCL reference card.

–  There are some helper files which time the execution,
output device information neatly and check (some)
errors.

•  Expected output:
–  A message verifying that the vector addition completed

successfully

UNDERSTANDING THE HOST
PROGRAM

The basic platform and runtime APIs
in OpenCL

arg [0]
value

arg [1]
value

arg [2]
value

arg [0]
value

arg [1]
value

arg [2]
value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images
In

Order
Queue

Out of
Order
Queue

Compute Device

GPU

CPU

dp_mul

Programs Kernels Memory Objects Command Queues

Vector Addition – Host
•  The host program is the code that runs on the host to:

–  Setup the environment for the OpenCL program
–  Create and manage kernels

•  5 simple steps in a basic host program:
1.  Define the platform … platform = devices+context+queues
2.  Create and Build the program (dynamic library for kernels)
3.  Setup memory objects
4.  Define the kernel (attach arguments to kernel function)
5.  Submit commands … transfer memory objects and execute

kernels
As we go over the next set of slides, cross reference
content on the slides to your reference card. This
will help you get used to the reference card and
how to pull information from the card and express
it in code.

The C++ Interface
•  Khronos has defined a common C++ header file

containing a high level interface to OpenCL, cl.hpp
•  This interface is dramatically easier to work with1

•  Key features:
–  Uses common defaults for the platform and command-

queue, saving the programmer from extra coding for the
most common use cases

–  Simplifies the basic API by bundling key parameters with
the objects rather than requiring verbose and repetitive
argument lists

–  Ability to “call” a kernel from the host, like a regular
function

–  Error checking can be performed with C++ exceptions
1 especially for C++ programmers…

C++ Interface:
setting up the host program

•  Enable OpenCL API Exceptions. Do this before
including the header file
#define __CL_ENABLE_EXCEPTIONS!

•  Include key header files … both standard and custom
#include <CL/cl.hpp> // Khronos C++ Wrapper
API!
#include <cstdio> // C style IO (e.g.
printf)!
#include <iostream> // C++ style IO!
#include <vector> // C++ vector types!

•  Define key namespaces
using namespace cl;!
using namespace std;!

For information about C++, see
the appendix:
“C++ for C programmers”.

1. Create a context and queue

•  Grab a context using a device type:
cl::Context context
(CL_DEVICE_TYPE_DEFAULT);!
!

•  Create a command queue for the first
device in the context:
cl::CommandQueue queue(context);!

Command-Queues
•  Commands include:

–  Kernel executions
–  Memory object management
–  Synchronization

•  The only way to submit
commands to a device is
through a command-queue.

•  Each command-queue
points to a single device
within a context.

•  Multiple command-queues
can feed a single device.
–  Used to define independent

streams of commands that
don’t require synchronization

Queue Queue

Context

GPU

CPU

Command-Queue execution details

•  Command queues can be configured in
different ways to control how commands
execute

•  In-order queues:
–  Commands are enqueued and complete in the order

they appear in the program (program-order)

•  Out-of-order queues:
–  Commands are enqueued in program-order but can

execute (and hence complete) in any order.

•  Execution of commands in the command-
queue are guaranteed to be completed at
synchronization points
–  Discussed later

Queue Queue

Context

GPU

CPU

2. Create and Build the program

•  Define source code for the kernel-program either as a
string literal (great for toy programs) or read it from a
file (for real applications).

•  Create the program object and compile to create a
“dynamic library” from which specific kernels can be
pulled:

cl::Program program(context, KernelSource, true);!

3. Setup Memory Objects
•  For vector addition we need 3 memory objects, one each

for input vectors A and B, and one for the output vector C

•  Create input vectors and assign values on the host:
std::vector<float> h_a(LENGTH), h_b(LENGTH), h_c(LENGTH);!
for (i = 0; i < length; i++) {!
 h_a[i] = rand() / (float)RAND_MAX;!
 h_b[i] = rand() / (float)RAND_MAX;!
}!
!

•  Define OpenCL device buffers and copy from host buffers:
cl::Buffer d_a(context, begin(h_a), end(h_a), true);!
cl::Buffer d_b(context, begin(h_b), end(h_b), true);!
cl::Buffer d_c(context, CL_MEM_WRITE_ONLY,!
 ! sizeof(float)*count);!

What do we put in device memory?

•  Memory Objects:
–  A handle to a reference-counted region of global

memory.
•  There are two kinds of memory object

–  Buffer object:
•  Defines a linear collection of bytes.
•  The contents of buffer objects are fully exposed within kernels

and can be accessed using pointers
–  Image object:

•  Defines a two- or three-dimensional region of memory.
•  Image data can only be accessed with read and write functions,

i.e. these are opaque data structures. The read functions use a
sampler.

Used when interfacing with a graphics API such as
OpenGL. We won’t use image objects in this tutorial.

Creating and manipulating buffers
•  Buffers are declared on the host as object type:
cl::Buffer!

•  Arrays in host memory hold your original host-side
data:
std::vector<float> h_a, h_b;!

•  Create the device-side buffer (d_a), assign read
only memory to hold the host array (h_a) and copy
it into device memory:
cl::Buffer !
 d_a(context, begin(h_a), end(h_a), true);!

Creating and manipulating buffers

•  Can specify device read/write access to the Buffer
by setting the final argument to false instead of
true

•  Submit command to copy the device buffer back to
host memory in array “h_c”:
cl::copy(queue, d_c, begin(h_c), end(h_c));!

•  Can also copy host memory to device buffers:
cl::copy(queue, begin(h_c), end(h_c), d_c);!

4. Define the kernel
•  Create a kernel functor for the kernels you want

to be able to call in the program:

auto vadd =!
 cl::make_kernel!
 <cl::Buffer, cl::Buffer, cl::Buffer> !
 (program, “vadd”);!

•  This means you can ‘call’ the kernel as a ‘function’

in your host code to enqueue the kernel.!

5. Enqueue commands
•  Specify global and local dimensions

–  cl::NDRange global(1024)
–  If you don’t specify a local dimension, it is assumed as

cl::NullRange, and the runtime picks a size for you

•  Enqueue the kernel for execution (note: non-blocking):
!
vadd(cl::EnqueueArgs(queue, global), d_a, d_b, d_c);!

•  Read back result (as a blocking operation). We use an in-
order queue to assure the previous commands are
completed before the read can begin
!
cl::copy(queue, begin(h_c), end(h_c), d_c);!

!
// Create buffers!
// True indicates CL_MEM_READ_ONLY!
// False indicates CL_MEM_READ_WRITE!
!
d_a = Buffer(context,begin(h_a),end(h_a),true);!
d_b = Buffer(context,begin(h_b),end(h_b),true);!
d_c = Buffer(context,begin(h_c),end(h_c),false);!
!
// Enqueue the kernel!
vadd(EnqueueArgs(queue, NDRange(count)),!
 d_a, d_b, d_c, count);!
!
copy(queue, d_c, begin(h_c), end(h_c));!
!
}!

#define N 1024!
int main(void) {!
!
vector<float> h_a(N), h_b(N), h_c(N);!
// initialize these host vectors…!
!
Buffer d_a, d_b, d_c;!
!
Context!
 context(CL_DEVICE_TYPE_DEFAULT);!
!
CommandQueue queue(context);!
!
Program!
 program(!
 context,!
 loadprogram(“vadd.cl”), true);!
!
// Create the kernel functor!
auto vadd = make_kernel!
 <Buffer, Buffer, Buffer, int>!
 (program, “vadd”);!
!

C++ interface: The vadd host program

Note: The default context and command queue are used when we do not specify one in the function calls.
The code here also uses the default device, so these cases are the same.

Exercise 2: Chaining vector add kernels

•  Goal:
–  To verify that you understand manipulating kernel

invocations and buffers in OpenCL
•  Procedure:

–  Start with your VADD program in C++
–  Add additional buffer objects and assign them to vectors

defined on the host (see the provided vadd programs for
examples of how to do this)

–  Chain vadds … e.g. C=A+B; D=C+E; F=D+G.
–  Read back the final result and verify that it is correct

•  Expected output:
–  A message to standard output verifying that the chain of

vector additions produced the correct result.

(Sample solution is for C = A + B; D = C + E; F = D + G; return F)

MODIFYING KERNELS

Working with Kernels (C++)

•  The kernels are where all the action is in an OpenCL
program.

•  Steps to using kernels:
1.  Load kernel source code into a program object from a

file
2.  Make a kernel functor from a function within the

program
3.  Initialize device memory
4.  Call the kernel functor, specifying memory objects and

global/local sizes
5.  Read results back from the device

•  Note the kernel function argument list must match
the kernel definition on the host.

Create a kernel
•  Kernel code can be a string in the host code (toy codes)
•  Or the kernel code can be loaded from a file (real codes)

•  Compile for the default devices within the default context
program.build();!

•  Define the kernel functor from a function within the program –
allows us to ‘call’ the kernel to enqueue it
auto vadd = make_kernel<Buffer, Buffer, Buffer, int> !
 (program, “vadd”);!

•  Advanced: if you want to query information about a kernel, you
will need to create a kernel object:
Kernel ko_vadd(program, “vadd”);!

The build step can be carried out by specifying true
in the program constructor. If you need to specify
build flags you must specify false in the constructor
and use this method instead.

If we set the local dimension
ourselves or accept the OpenCL
runtime’s we don’t need this step

Advanced: get info about the kernel

•  E.g. get default size of local dimension (size of
a Work-Group)

::size_t local =!
 ko_vadd.getWorkGroupInfo!
 <CL_KERNEL_WORK_GROUP_SIZE>!
 (Device::getDefault());!

We can use any work-group-info parameter from table 5.15 in the
OpenCL 1.1 specification. The function will return the appropriate type.

Call (enqueue) the kernel

•  Enqueue the kernel for execution with buffer
objects d_a, d_b and d_c and their length,
count:

vadd(!
 EnqueueArgs(queue,!
 NDRange(count),!
 NDRange(local)),  
 d_a, d_b, d_c, count);!

We can include any arguments from the clEnqueueNDRangeKernel
function including Event wait lists (to be discussed later) and the

command queue (optional)

Exercise 3: The D = A + B + C problem

•  Goal:
–  To verify that you understand how to control the

argument definitions for a kernel.
–  To verify that you understand the host/kernel interface.

•  Procedure:
–  Start with your VADD program.
–  Modify the kernel so it adds three vectors together.
–  Modify the host code to define three vectors and

associate them with relevant kernel arguments.
–  Read back the final result and verify that it is correct.

•  Expected output:
–  Test your result and verify that it is correct. Print a

message to that effect on the screen.

We have now covered the basic
platform runtime APIs in OpenCL

arg [0]
value

arg [1]
value

arg [2]
value

arg [0]
value

arg [1]
value

arg [2]
value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images
In

Order
Queue

Out of
Order
Queue

Compute Device

GPU

CPU

dp_mul

Programs Kernels Memory Objects Command Queues

INTRODUCTION TO OPENCL
KERNEL PROGRAMMING

OpenCL C kernel language

•  Derived from ISO C99
– A few restrictions: no recursion, function pointers,

functions in C99 standard headers ...
–  Preprocessing directives defined by C99 are

supported (#include etc.)

•  Built-in data types
–  Scalar and vector data types, pointers
– Data-type conversion functions:

•  convert_type<_sat><_roundingmode>

–  Image types: image2d_t, image3d_t and sampler_t

OpenCL C Language Highlights
•  Function qualifiers

–  __kernel qualifier declares a function as a kernel
•  I.e. makes it visible to host code so it can be enqueued

–  Kernels can call other kernel-side functions
•  Address space qualifiers

–  __global, __local, __constant, __private
–  Pointer kernel arguments must be declared with an address space

qualifier
•  Work-item functions

–  get_work_dim(), get_global_id(), get_local_id(), get_group_id()
•  Synchronization functions

–  Barriers - all work-items within a work-group must execute the
barrier function before any work-item can continue

–  Memory fences - provides ordering between memory operations

OpenCL C Language Restrictions

•  Pointers to functions are not allowed
•  Pointers to pointers allowed within a kernel,

but not as an argument to a kernel invocation
•  Bit-fields are not supported
•  Variable length arrays and structures are not

supported
•  Recursion is not supported (yet!)
•  Double types are optional in OpenCL v1.1, but

the key word is reserved
 (note: most implementations support double)

Matrix multiplication: sequential code

void mat_mul(int Mdim, int Ndim, int Pdim,!
 float *A, float *B, float
*C)!
{!
 int i, j, k;!
 for (i = 0; i < Ndim; i++) {!
 for (j = 0; j < Mdim; j++) {!
 for (k = 0; k < Pdim; k++) { !
 // C(i, j) = sum(over k) A(i,k) * B
(k,j)!
 C[i*Ndim+j] += A[i*Ndim+k] * B
[k*Pdim+j];!
 }!
 }!
 }!
}!

We calculate C=AB, dimA = (N x P), dimB=(P x M), dimC=(N x M)

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each
element of C

Matrix multiplication performance

•  Serial C code on CPU (single core).

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz
using the gcc compiler.

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

Matrix multiplication: sequential code

void mat_mul(int Mdim, int Ndim, int Pdim,!
 float *A, float *B, float
*C)!
{!
 int i, j, k;!
 for (i = 0; i < Ndim; i++) {!
 for (j = 0; j < Mdim; j++) {!
 for (k = 0; k < Pdim; k++) { !
 // C(i, j) = sum(over k) A(i,k) * B
(k,j)!
 C[i*Ndim+j] += A[i*Ndim+k] * B
[k*Pdim+j];!
 }!
 }!
 }!
}!

We turn this into an OpenCL kernel!

Matrix multiplication: OpenCL kernel (1/2)

void mat_mul(int Mdim, int Ndim, int Pdim,!
 float *A, float *B, float
*C)!
{!
 int i, j, k;!
 for (i = 0; i < Ndim; i++) {!
 for (j = 0; j < Mdim; j++) {!
 // C(i, j) = sum(over k) A(i,k) * B(k,j)!
 for (k = 0; k < Pdim; k++) { !
 C[i*Ndim+j] += A[i*Ndim+k] * B
[k*Pdim+j];!
 }!
 }!
 }!
}!

__kernel void mat_mul(!
 const int Mdim, const int Ndim, const int Pdim,!
 __global float *A, __global float *B, __global float *C)!

Mark as a kernel function and
specify memory qualifiers

__kernel void mat_mul(!
 const int Mdim, const int Ndim, const int Pdim,!
 __global float *A, __global float *B, __global float *C)!
{!
 int i, j, k;!
 for (i = 0; i < Ndim; i++) {!
 for (j = 0; j < Mdim; j++) {!
 for (k = 0; k < Pdim; k++) { !
 // C(i, j) = sum(over k) A(i,k) * B(k,j)!
 C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];!
 }!
 }!
 }!
}!

Matrix multiplication: OpenCL kernel (2/2)

i = get_global_id(0);!
j = get_global_id(1);!

Remove outer loops and set
work-item co-ordinates

!
!

__kernel void mmul(!
 const int Mdim,!
 const int Ndim,!
 const int Pdim,!
 __global float *A,!
 __global float *B,!
 __global float *C)!

Matrix multiplication: OpenCL kernel improved

{!
 int k;!
 int i = get_global_id(0);!
 int j = get_global_id(1);!
 float tmp = 0.0f;!
 for (k = 0; k < Pdim; k++) !
 tmp += A[i*Ndim+k]*B[k*Pdim+j];!
 }!
 C[i*Ndim+j] += tmp;!
}!

Rearrange a bit and use a local scalar for intermediate C element
values (a common optimization in Matrix Multiplication functions)

Matrix multiplication host program (C++ API)

int main(int argc, char *argv[])!
{!
 std::vector<float> h_A, h_B, h_C; // matrices!
 int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
 int i, err; !
 int szA, szB, szC; // num elements in each matrix!
 double start_time, run_time; // timing data!
 cl::Program program;!
!
 Ndim = Pdim = Mdim = ORDER;!
 szA = Ndim*Pdim; !
 szB = Pdim*Mdim; !
 szC = Ndim*Mdim;!
 h_A = std::vector<float>(szA);!
 h_B = std::vector<float>(szB);!
 h_C = std::vector<float>(szC);!
!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
 // Compile for first kernel to setup program!
 program = cl::Program(C_elem_KernelSource, true);!
 Context context(CL_DEVICE_TYPE_DEFAULT); !
 cl::CommandQueue queue(context);!
 std::vector<Device> devices =!
 context.getInfo<CL_CONTEXT_DEVICES>();!
 cl::Device device = devices[0]; !
 std::string s = !
 device.getInfo<CL_DEVICE_NAME>();!
 std::cout << "\nUsing OpenCL Device ”!
 << s << "\n";!

 // Setup the buffers, initialize matrices,!
 // and write them into global memory!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
 cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
 cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
 cl::Buffer d_c = cl::Buffer(context, !
 CL_MEM_WRITE_ONLY,!
 sizeof(float) * szC);!
 !
!
 auto naive = cl::make_kernel<int, int, int,!
 cl::Buffer, cl::Buffer, cl::Buffer> !
 (program, "mmul");!
!
 zero_mat(Ndim, Mdim, h_C);!
 start_time = wtime();!
!
 naive(cl::EnqueueArgs(queue,!
 cl::NDRange(Ndim, Mdim)),!
 Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
 cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
 run_time = wtime() - start_time;!
 results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

Note: To use the default context/queue/device, skip this section
and remove the references to context, queue and device.

Matrix multiplication host program (C++ API)

int main(int argc, char *argv[])!
{!
 std::vector<float> h_A, h_B, h_C; // matrices!
 int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
 int i, err; !
 int szA, szB, szC; // num elements in each matrix!
 double start_time, run_time; // timing data!
 cl::Program program;!
!
 Ndim = Pdim = Mdim = ORDER;!
 szA = Ndim*Pdim; !
 szB = Pdim*Mdim; !
 szC = Ndim*Mdim;!
 h_A = std::vector<float>(szA);!
 h_B = std::vector<float>(szB);!
 h_C = std::vector<float>(szC);!
!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
 // Compile for first kernel to setup program!
 program = cl::Program(C_elem_KernelSource, true);!
 Context context(CL_DEVICE_TYPE_DEFAULT); !
 cl::CommandQueue queue(context);!
 std::vector<Device> devices =!
 context.getInfo<CL_CONTEXT_DEVICES>();!
 cl::Device device = devices[0]; !
 std::string s = !
 device.getInfo<CL_DEVICE_NAME>();!
 std::cout << "\nUsing OpenCL Device ”!
 << s << "\n";!

 // Setup the buffers, initialize matrices,!
 // and write them into global memory!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
 cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
 cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
 cl::Buffer d_c = cl::Buffer(context, !
 CL_MEM_WRITE_ONLY,!
 sizeof(float) * szC);!
 !
!
 auto naive = cl::make_kernel<int, int, int,!
 cl::Buffer, cl::Buffer, cl::Buffer> !
 (program, "mmul");!
!
 zero_mat(Ndim, Mdim, h_C);!
 start_time = wtime();!
!
 naive(cl::EnqueueArgs(queue,!
 cl::NDRange(Ndim, Mdim)),!
 Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
 cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
 run_time = wtime() - start_time;!
 results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

Declare and
initialize

data

Setup the
platform and
build program

Setup buffers and write
A and B matrices to the

device memory

Create the kernel functor

Run the kernel and
collect results

Note: To use the default context/queue/device, skip this section
and remove the references to context, queue and device.

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

UNDERSTANDING THE OPENCL
MEMORY HIERARCHY

Optimizing matrix multiplication
•  MM cost determined by FLOPS and memory movement:

–  2*n3 = O(n3) FLOPS
–  Operates on 3*n2 = O(n2) numbers

•  To optimize matrix multiplication, we must ensure that for
every memory access we execute as many FLOPS as
possible.

•  Outer product algorithms are faster, but for pedagogical
reasons, let’s stick to the simple dot-product algorithm.

•  We will work with work-item/work-group sizes and the
memory model to optimize matrix multiplication

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

An N-dimensional domain of work-items
•  Global Dimensions:

–  1024x1024 (whole problem space)
•  Local Dimensions:

–  128x128 (work-group, executes together)

•  Choose the dimensions that are “best” for
your algorithm

1024

10
24

Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

OpenCL Memory model
•  Private Memory

–  Per work-item

•  Local Memory
–  Shared within a

 work-group

•  Global/Constant
Memory
–  Visible to all

 work-groups

•  Host memory
–  On the CPU

Memory management is explicit:
You are responsible for moving data from

 host → global → local and back

OpenCL Memory model
•  Private Memory

–  Fastest & smallest: O(10) words/WI
•  Local Memory

–  Shared by all WI’s in a work-group
–  But not shared between work-

groups!
–  O(1-10) Kbytes per work-group

•  Global/Constant Memory
–  O(1-10) Gbytes of Global memory
–  O(10-100) Kbytes of Constant

memory
•  Host memory

–  On the CPU - GBytes

Memory management is explicit:
O(1-10) Gbytes/s bandwidth to discrete GPUs for
 Host <-> Global transfers

Private Memory

•  Managing the memory hierarchy is one of the
most important things to get right to achieve
good performance

•  Private Memory:
–  A very scarce resource, only a few tens of 32-bit

words per Work-Item at most
–  If you use too much it spills to global memory or

reduces the number of Work-Items that can be run
at the same time, potentially harming performance*

–  Think of these like registers on the CPU

* Occupancy on a GPU

Local Memory
•  Tens of KBytes per Compute Unit

–  As multiple Work-Groups will be running on each CU, this
means only a fraction of the total Local Memory size is
available to each Work-Group

•  Assume O(1-10) KBytes of Local Memory per Work-Group
–  Your kernels are responsible for transferring data between

Local and Global/Constant memories … there are optimized
library functions to help

–  E.g. async_work_group_copy(),
async_workgroup_strided_copy(), …

•  Use Local Memory to hold data that can be reused by all
the work-items in a work-group

•  Access patterns to Local Memory affect performance in a
similar way to accessing Global Memory
–  Have to think about things like coalescence & bank conflicts

Local Memory

•  Local Memory doesn’t always help…
– CPUs don’t have special hardware for it
– This can mean excessive use of Local Memory

might slow down kernels on CPUs
– GPUs now have effective on-chip caches which

can provide much of the benefit of Local
Memory but without programmer intervention

– So, your mileage may vary!

The Memory Hierarchy

Private memory
O(10) words/WI

Local memory

O(1-10) KBytes/WG

Global memory
O(1-10) GBytes

Host memory
O(1-100) GBytes

Private memory
O(2-3) words/cycle/WI

Local memory

O(10) words/cycle/WG

Global memory
O(100-200) GBytes/s

Host memory

O(1-100) GBytes/s

Speeds and feeds approx. for a high-end discrete GPU, circa 2011

Bandwidths Sizes

Memory Consistency
•  OpenCL uses a relaxed consistency memory model; i.e.

–  The state of memory visible to a work-item is not guaranteed
to be consistent across the collection of work-items at all
times.

•  Within a work-item:
–  Memory has load/store consistency to the work-item’s private

view of memory, i.e. it sees its own reads and writes correctly
•  Within a work-group:

–  Local memory is consistent between work-items at a barrier.
•  Global memory is consistent within a work-group at a

barrier, but not guaranteed across different work-
groups!!
–  This is a common source of bugs!

•  Consistency of memory shared between commands (e.g.
kernel invocations) is enforced by synchronization
(barriers, events, in-order queue)

Optimizing matrix multiplication

•  There may be significant overhead to manage work-items
and work-groups.

•  So let’s have each work-item compute a full row of C

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

An N-dimension domain of work-items

•  Global Dimensions: 1024 (1D)
 Whole problem space (index space)

•  Local Dimensions: 64 (work-items per work-group)
 Only 1024/64 = 16 work-groups in total

•  Important implication: we will have a lot fewer
work-items per work-group (64) and work-
groups (16). Why might this matter?

10
24

64

__kernel void mmul(!
 const int Mdim, const int Ndim, const int Pdim,!
 __global float *A, __global float *B, __global float *C)!
{!
 int k, j;!
 int i = get_global_id(0);!
 float tmp;!
 for (j = 0; j < Mdim; j++) {!
 // Mdim is width of rows in C!
 tmp = 0.0f;!
 for (k = 0; k < Pdim; k++)!
 tmp += A[i*Ndim+k] * B[k*Pdim+j];!
 C[i*Ndim+j] += tmp;!
 }!
}!

Reduce work-item overhead
Do a whole row of C per work-item

 // Setup the buffers, initialize matrices,!
 // and write them into global memory!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
 cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
 cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
 cl::Buffer d_c = cl::Buffer(context, !
 CL_MEM_WRITE_ONLY,!
 sizeof(float) * szC);!
 !
!
 auto krow = cl::make_kernel<int, int, int,!
 cl::Buffer, cl::Buffer, cl::Buffer> !
 (program, "mmul");!
!
 zero_mat(Ndim, Mdim, h_C);!
 start_time = wtime();!
!
 krow(cl::EnqueueArgs(queue,!
 cl::NDRange(Ndim), !
 cl::NDRange(ORDER/16)),!
 Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
 cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
 run_time = wtime() - start_time;!
 results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

int main(int argc, char *argv[])!
{!
 std::vector<float> h_A, h_B, h_C; // matrices!
 int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
 int i, err; !
 int szA, szB, szC; // num elements in each matrix!
 double start_time, run_time; // timing data!
 cl::Program program;!
!
 Ndim = Pdim = Mdim = ORDER;!
 szA = Ndim*Pdim; !
 szB = Pdim*Mdim; !
 szC = Ndim*Mdim;!
 h_A = std::vector<float>(szA);!
 h_B = std::vector<float>(szB);!
 h_C = std::vector<float>(szC);!
!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
 // Compile for first kernel to setup program!
 program = cl::Program(C_elem_KernelSource, true);!
 Context context(CL_DEVICE_TYPE_DEFAULT); !
 cl::CommandQueue queue(context);!
 std::vector<Device> devices =!
 context.getInfo<CL_CONTEXT_DEVICES>();!
 cl::Device device = devices[0]; !
 std::string s = !
 device.getInfo<CL_DEVICE_NAME>();!
 std::cout << "\nUsing OpenCL Device ”!
 << s << "\n";!

Matrix multiplication host program (C++ API)

Changes to host program:
1.  1D ND Range set to number of rows in the C matrix
2.  Local Dimension set to 64 so number of work-groups

match number of compute units (16 in this case) for our
order 1024 matrices

krow(cl::EnqueueArgs(queue!
 cl::NDRange(Ndim),!
 cl::NDRange(ORDER/16)),!
 Ndim, Mdim, Pdim, a_in, b_in, c_out);!

 // Setup the buffers, initialize matrices,!
 // and write them into global memory!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
 cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
 cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
 cl::Buffer d_c = cl::Buffer(context, !
 CL_MEM_WRITE_ONLY,!
 sizeof(float) * szC);!
 !
!
 auto krow = cl::make_kernel<int, int, int,!
 cl::Buffer, cl::Buffer, cl::Buffer> !
 (program, "mmul");!
!
 zero_mat(Ndim, Mdim, h_C);!
 start_time = wtime();!
!
 krow(cl::EnqueueArgs(queue,!
 cl::NDRange(Ndim), !
 cl::NDRange(ORDER/16)),!
 Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
 cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
 run_time = wtime() - start_time;!
 results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

int main(int argc, char *argv[])!
{!
 std::vector<float> h_A, h_B, h_C; // matrices!
 int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
 int i, err; !
 int szA, szB, szC; // num elements in each matrix!
 double start_time, run_time; // timing data!
 cl::Program program;!
!
 Ndim = Pdim = Mdim = ORDER;!
 szA = Ndim*Pdim; !
 szB = Pdim*Mdim; !
 szC = Ndim*Mdim;!
 h_A = std::vector<float>(szA);!
 h_B = std::vector<float>(szB);!
 h_C = std::vector<float>(szC);!
!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
 // Compile for first kernel to setup program!
 program = cl::Program(C_elem_KernelSource, true);!
 Context context(CL_DEVICE_TYPE_DEFAULT); !
 cl::CommandQueue queue(context);!
 std::vector<Device> devices =!
 context.getInfo<CL_CONTEXT_DEVICES>();!
 cl::Device device = devices[0]; !
 std::string s = !
 device.getInfo<CL_DEVICE_NAME>();!
 std::cout << "\nUsing OpenCL Device ”!
 << s << "\n";!

Matrix multiplication host program (C++ API)

krow(cl::EnqueueArgs(queue!
 cl::NDRange(Ndim),!
 cl::NDRange(ORDER/16)),!
 Ndim, Mdim, Pdim, a_in, b_in, c_out);!

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

This has started to help.

Optimizing matrix multiplication

•  Notice that, in one row of C, each element reuses the same
row of A.

•  Let’s copy that row of A into private memory of the work-
item that’s (exclusively) using it to avoid the overhead of
loading it from global memory for each C(i,j) computation.

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Private memory of each
work-item

Matrix multiplication: OpenCL kernel (3/3)

__kernel void mmul(!
 const int Mdim,!
 const int Ndim,!
 const int Pdim,!
 __global float *A,!
 __global float *B,!
 __global float *C)!
{!
 int k, j;!
 int i = get_global_id(0);!
 float Awrk[1024];!
 float tmp;!

!
 for (k = 0; k < Pdim; k++)!
 Awrk[k] = A[i*Ndim+k];!
 for (j = 0; j < Mdim; j++) {!
 tmp = 0.0f;!
 for (k = 0; k < Pdim; k++)!
 tmp += Awrk[k]*B[k*Pdim+j];!
 C[i*Ndim+j] += tmp;!
 }!
}!

Setup a work array for A in private
memory and copy into it from global

memory before we start with the matrix
multiplications.

(Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory)

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

Device is Tesla® M2090 GPU from
NVIDIA® with a max of 16
compute units, 512 PEs
Device is Intel® Xeon® CPU,
E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

Big impact!

Optimizing matrix multiplication
•  We already noticed that, in one row of C, each element uses

the same row of A
•  Each work-item in a work-group also uses the same columns

of B
•  So let’s store the B columns in local memory (which is

shared by the work-items in the work-group)

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Private memory of each
work-item Local memory for each

work-group

Row of C per work-item, A row private, B columns local

__kernel void mmul(!
 const int Mdim,!
 const int Ndim,!
 const int Pdim,!
 __global float *A,!
 __global float *B,!
 __global float *C,!
 __local float *Bwrk)!
{!
 int k, j;!
 int i = get_global_id(0);!
 int iloc = get_local_id(0);!
 int nloc = get_local_size(0);!
 float Awrk[1024];!

!
float tmp;!
for (k = 0; k < Pdim; k++)!
 Awrk[k] = A[i*Ndim+k];!
for (j = 0; j < Mdim; j++) {!
 for (k=iloc; k<Pdim; k+=nloc)!
 Bwrk[k] = B[k*Pdim+j];!
 barrier(CLK_LOCAL_MEM_FENCE);!
 tmp = 0.0f;!
 for (k = 0; k < Pdim; k++)!
 tmp += Awrk[k] * Bwrk[k];!
 C[i*Ndim+j] += tmp;!
 }!
}!

Pass in a pointer to local memory. Work-items
in a work-group start by copying the columns

of B they need into their local memory.

 // Setup the buffers, initialize matrices,!
 // and write them into global memory!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
 cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
 cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
 cl::Buffer d_c = cl::Buffer(context, !
 CL_MEM_WRITE_ONLY,!
 sizeof(float) * szC);!
 !
!
!
!
 auto rowcol = cl::make_kernel<int, int, int,!
 cl::Buffer, cl::Buffer, cl::Buffer> !
 (program, "mmul");!
!
 zero_mat(Ndim, Mdim, h_C);!
 start_time = wtime();!
!
 rowcol(cl::EnqueueArgs(queue,!
 cl::NDRange(Ndim), !
 cl::NDRange(ORDER/16)),!
 Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
 cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
 run_time = wtime() - start_time;!
 results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

int main(int argc, char *argv[])!
{!
 std::vector<float> h_A, h_B, h_C; // matrices!
 int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
 int i, err; !
 int szA, szB, szC; // num elements in each matrix!
 double start_time, run_time; // timing data!
 cl::Program program;!
!
 Ndim = Pdim = Mdim = ORDER;!
 szA = Ndim*Pdim; !
 szB = Pdim*Mdim; !
 szC = Ndim*Mdim;!
 h_A = std::vector<float>(szA);!
 h_B = std::vector<float>(szB);!
 h_C = std::vector<float>(szC);!
!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
 // Compile for first kernel to setup program!
 program = cl::Program(C_elem_KernelSource, true);!
 Context context(CL_DEVICE_TYPE_DEFAULT); !
 cl::CommandQueue queue(context);!
 std::vector<Device> devices =!
 context.getInfo<CL_CONTEXT_DEVICES>();!
 cl::Device device = devices[0]; !
 std::string s = !
 device.getInfo<CL_DEVICE_NAME>();!
 std::cout << "\nUsing OpenCL Device ”!
 << s << "\n";!

Matrix multiplication host program (C++ API)

cl::LocalSpaceArg localmem =!
 cl::Local(sizeof(float) * Pdim);!

rowcol(cl::EnqueueArgs(queue,!
 cl::NDRange(Ndim), !
 cl::NDRange(ORDER/16)),!
 Ndim, Mdim, Pdim, d_a, d_b, d_c, localmem);!

Changes to host program:
1.  Pass local memory to kernels.

1.  This requires a change to the kernel argument lists … an
arg of type LocalSpaceArg is needed.

2.  Allocate the size of local memory
3.  Update argument list in kernel functor

auto rowcol = cl::make_kernel<int, int, int,!
! cl::Buffer, cl::Buffer, cl:::Buffer,!

 cl::LocalSpaceArg>(program, “mmul”);!

 // Setup the buffers, initialize matrices,!
 // and write them into global memory!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
 cl::Buffer d_a(context, begin(h_A), end(h_A), true);!
 cl::Buffer d_b(context, begin(h_B), end(h_B), true);!
 cl::Buffer d_c = cl::Buffer(context, !
 CL_MEM_WRITE_ONLY,!
 sizeof(float) * szC);!
 !
!
!
!
 auto rowcol = cl::make_kernel<int, int, int,!
 cl::Buffer, cl::Buffer, cl::Buffer> !
 (program, "mmul");!
!
 zero_mat(Ndim, Mdim, h_C);!
 start_time = wtime();!
!
 rowcol(cl::EnqueueArgs(queue,!
 cl::NDRange(Ndim), !
 cl::NDRange(ORDER/16)),!
 Ndim, Mdim, Pdim, d_a, d_b, d_c);!
!
 cl::copy(queue, d_c, begin(h_C), end(h_C));!
!
 run_time = wtime() - start_time;!
 results(Mdim, Ndim, Pdim, h_C, run_time);!
}!

int main(int argc, char *argv[])!
{!
 std::vector<float> h_A, h_B, h_C; // matrices!
 int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]!
 int i, err; !
 int szA, szB, szC; // num elements in each matrix!
 double start_time, run_time; // timing data!
 cl::Program program;!
!
 Ndim = Pdim = Mdim = ORDER;!
 szA = Ndim*Pdim; !
 szB = Pdim*Mdim; !
 szC = Ndim*Mdim;!
 h_A = std::vector<float>(szA);!
 h_B = std::vector<float>(szB);!
 h_C = std::vector<float>(szC);!
!
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);!
!
 // Compile for first kernel to setup program!
 program = cl::Program(C_elem_KernelSource, true);!
 Context context(CL_DEVICE_TYPE_DEFAULT); !
 cl::CommandQueue queue(context);!
 std::vector<Device> devices =!
 context.getInfo<CL_CONTEXT_DEVICES>();!
 cl::Device device = devices[0]; !
 std::string s = !
 device.getInfo<CL_DEVICE_NAME>();!
 std::cout << "\nUsing OpenCL Device ”!
 << s << "\n";!

Matrix multiplication host program (C++ API)

cl::LocalSpaceArg localmem =!
 cl::Local(sizeof(float) * Pdim);!

rowcol(cl::EnqueueArgs(queue,!
 cl::NDRange(Ndim), !
 cl::NDRange(ORDER/16)),!
 Ndim, Mdim, Pdim, d_a, d_b, d_c, localmem);!

auto rowcol = cl::make_kernel<int, int, int,!
! cl::Buffer, cl::Buffer, cl:::Buffer,!

 cl::LocalSpaceArg>(program, “mmul”);!

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

SYNCHRONIZATION IN OPENCL

Consider N-dimensional domain of work-items
•  Global Dimensions:

–  1024x1024 (whole problem space)
•  Local Dimensions:

–  128x128 (work-group, executes together)

Synchronization: when multiple units of execution (e.g. work-items) are
brought to a known point in their execution. Most common example is a
barrier … i.e. all units of execution “in scope” arrive at the barrier before
any proceed.

1024

10
24

Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

Work-Item Synchronization

•  Within a work-group
void barrier()!
–  Takes optional flags

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
–  A work-item that encounters a barrier() will wait until ALL work-items

in its work-group reach the barrier()
–  Corollary: If a barrier() is inside a branch, then the branch must be

taken by either:
•  ALL work-items in the work-group, OR
•  NO work-item in the work-group

•  Across work-groups
–  No guarantees as to where and when a particular work-group will be

executed relative to another work-group
–  Cannot exchange data, or have barrier-like synchronization between

two different work-groups! (Critical issue!)
–  Only solution: finish the kernel and start another

Ensure correct order of memory operations to
local or global memory (with flushes or queuing
a memory fence)

Where might we need
synchronization?

•  Consider a reduction … reduce a set of
numbers to a single value
– E.g. find sum of all elements in an array

•  Sequential code

int reduce(int Ndim, int *A)!
{!
 sum = 0;!
 for(int i = 0; i < Ndim; i++)!
 sum += A[i];!
}!

Simple parallel reduction
•  A reduction can be carried out in three steps:

1.  Each work-item sums its private values into a local array
indexed by the work-item’s local id

2.  When all the work-items have finished, one work-item sums
the local array into an element of a global array (indexed by
work-group id).

3.  When all work-groups have finished the kernel execution,
the global array is summed on the host.

•  Note: this is a simple reduction that is straightforward to
implement. More efficient reductions do the work-group
sums in parallel on the device rather than on the host.
These more scalable reductions are considerably more
complicated to implement.

A simple program that uses a reduction

Numerical Integration
Mathematically, we know that
we can approximate the integral
as a sum of rectangles.

Each rectangle has width and
height at the middle of interval.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X 0.0

Numerical integration source code
The serial Pi program

static long num_steps = 100000;!
double step;!
void main()!
{!
 int i; double x, pi, sum = 0.0;!
!
 step = 1.0/(double) num_steps;!
!
 for (i = 0; i < num_steps; i++) {!
 x = (i+0.5)*step;!
 sum = sum + 4.0/(1.0+x*x);!
 }!
 pi = step * sum;!
}!

Exercise 4: The Pi program
•  Goal:

– To understand synchronization between work-items
in the OpenCL C kernel programming language

•  Procedure:
–  Start with the provided serial program to estimate Pi

through numerical integration
– Write a kernel and host program to compute the

numerical integral using OpenCL
– Note: You will need to implement a reduction

•  Expected output:
– Output result plus an estimate of the error in the

result
– Report the runtime

Hint: you will want each work-item to do many iterations of the loop, i.e. don’t
create one work-item per loop iteration. To do so would make the reduction so
costly that performance would be terrible.

SOME CONCLUDING REMARKS

Conclusion
•  OpenCL has widespread industrial support

•  OpenCL defines a platform-API/framework for heterogeneous
computing, not just GPGPU or CPU-offload programming

•  OpenCL has the potential to deliver portably performant code;
but it has to be used correctly

•  The latest C++ and Python APIs makes developing OpenCL
programs much simpler than before

•  The future is clear:
–  OpenCL is the only parallel programming standard that enables

mixing task parallel and data parallel code in a single program while
load balancing across ALL of the platform’s available resources.

Other important related trends

•  The Heterogeneous Systems Architecture, HSA
–  New standard supported by HSA Foundation (hsafoundation.com)
–  Partners include Samsung, ARM, IMG, Qualcomm, LG, TI, Mediatek, …

•  OpenCL’s Standard Portable Intermediate Representation (SPIR)
–  Based on LLVM’s IR
–  Makes interchangeable front- and back-ends straightforward

•  OpenCL 2.0
–  Adding High Level Model (HLM)
–  Lots of other improvements

•  For the latest news on SPIR and new OpenCL versions see:
–  http://www.khronos.org/opencl/

Third party names are the property of their owners.

Resources: https://www.khronos.org/
opencl/

OpenCL Programming Guide:
Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and
James Fung, 2011

Heterogeneous Computing with OpenCL
Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry
and Dana Schaa, 2011

Other OpenCL resources

•  New OpenCL user group
– http://comportability.org
– Forums
– Downloaded examples
– Training
– Launched SC’12 in November
– ACTION: register and become part of the

community!!

PORTING CUDA TO OPENCL

Introduction to OpenCL

•  You’ve already done the hard work!
–  I.e. working out how to split up the problem

to run effectively on a many-core device

•  Switching between CUDA and OpenCL is
mainly changes to host code syntax
– Apart from indexing and naming conventions

in kernel code (simple!)

Third party names are the property of their owners.

Memory Hierarchy
CUDA OpenCL

Private – within a work-item Local – within a thread

Local – shared between
work-items in a work-group

Shared – shared between
threads in a thread block

Constant – a cache for
constant memory

Constant – a cache for
constant memory

Device – shared between
all thread blocks

Global – shared
between all work-
groups

Third party names are the property of their owners.

Allocating and copying memory

CUDA C OpenCL C++

Allocate float* d_x;!
cudaMalloc(&d_x, !
 sizeof(float)
*size);!
!

cl::Buffer!
 d_x(begin(h_x), end
(h_x), true);!
!

Host to Device cudaMemcpy(d_x, h_x,!
 sizeof(float)
*size,!

cudaMemcpyHostToDevice
);!
!

cl::copy(begin(h_x), end
(h_x), !
 d_x);!

Device to Host cudaMemcpy(h_x, d_x,!
 sizeof(float)
*size,!

cudaMemcpyDeviceToHost
);!

cl::copy(d_x, !
 begin(h_x), end
(h_x));!
!Third party names are the property of their owners.

Declaring dynamic local/shared memory

CUDA C

1.  Define an array in the kernel
source as extern

 __shared__ int array[];!
!
2.  When executing the kernel,

specify the third parameter as
size in bytes of shared memory

func<<<num_blocks,!
 num_threads_per_block,!
 shared_mem_size>>>(args);!

OpenCL C++

1.  Have the kernel accept a local
array as an argument

 __kernel void func(!
 __local int *array) !
 {}!
!

2.  Define a local memory kernel
kernel argument of the right size

cl::LocalSpaceArg localmem =!
 cl::Local(shared_mem_size);!
!

3.  Pass the argument to the kernel
invocation

func(EnqueueArgs(…),localmem);!
Third party names are the property of their owners.

Dividing up the work

•  To enqueue the kernel
– CUDA – specify the number of thread blocks and

threads per block
– OpenCL – specify the problem size and number

of work-items per work-group

Problem size

CUDA OpenCL

Work-item Thread

Thread block Work-group

Third party names are the property of their owners.

Enqueue a kernel

CUDA C
dim3 threads_per_block
(30,20);!
!
!
dim3 num_blocks(10,10);!
!
kernel<<<num_blocks, !
 threads_per_block>>>();!

OpenCL C++
const size_t global[2] =!

! !{300, 200};!
!
const size_t local[2] =!

! !{30, 20};!
!
kernel(EnqueueArgs(!

! NDRange(global),
! NDRange(local)), …);!

Third party names are the property of their owners.

Indexing work

CUDA

gridDim

blockIdx

blockDim

gridDim * blockDim

threadIdx

blockIdx * blockdim + threadIdx

OpenCL

get_num_groups()

get_group_id()

get_local_size()

get_global_size()

get_local_id()

get_global_id()

Third party names are the property of their owners.

Differences in kernels

•  Where do you find the kernel?
– OpenCL - a string (const char *), possibly

read from a file
– CUDA – a function in the host code

•  Denoting a kernel
– OpenCL - __kernel
– CUDA - __global__

•  When are my kernels compiled?
– OpenCL – at runtime
– CUDA – with compilation of host code

Third party names are the property of their owners.

Host code

•  By default, CUDA initilizes the GPU
automatically
–  If you needed anything more complicated

(multi-card, etc.) you must do so manually

•  OpenCL always requires explicit device
initilization
–  It runs not just on NVIDIA® GPUs and so you

must tell it which device to use

Third party names are the property of their owners.

Thread Synchronization

CUDA OpenCL

__syncthreads() barrier()

__threadfenceblock() mem_fence(
 CLK_GLOBAL_MEM_FENCE |
 CLK_LOCAL_MEM_FENCE)

No equivalent read_mem_fence()

No equivalent write_mem_fence()

__threadfence() Finish one kernel and start
another

Third party names are the property of their owners.

Translation from CUDA to OpenCL

CUDA OpenCL

GPU Device (CPU, GPU etc)

Multiprocessor Compute Unit, or CU

Scalar or CUDA core Processing Element, or PE

Global or Device Memory Global Memory

Shared Memory (per block) Local Memory (per workgroup)

Local Memory (registers) Private Memory

Thread Block Work-group

Thread Work-item

Warp No equivalent term (yet)

Grid NDRange

Third party names are the property of their owners.

More information

•  http://developer.amd.com/Resources/
hc/OpenCLZone/programming/pages/
portingcudatoopencl.aspx

Exercise 5: CUDA and OpenCL

•  Goal:
– To understand CUDA and convert a serial matrix

multiplication code into CUDA

•  Procedure:
–  Examine the CUDA vadd program we have provided.
– Using that program and these slides as your guide,

convert provided matrix multiply program into a
CUDA program (hint use the same algorithm as we
used for OpenCL matrix multiply program).

•  Expected output:
– Test your answers and compare performance of the

CUDA, OpenMP and serial programs.
Third party names are the property of their owners.

SETTING UP OPENCL
PLATFORMS

Some notes on setting up OpenCL

•  We will provide some instructions for setting
up OpenCL on your machine for a variety of
major platforms and device types
– AMD CPU, GPU and APU
–  Intel CPU
– NVIDIA GPU

•  We assume you are running 64-bit Ubuntu
12.04 LTS

Third party names are the property of their owners.

Running OSX?

•  OpenCL works out of the box!

•  Just compile your programs with
-framework OpenCL -DAPPLE!

Third party names are the property of their owners.

Setting up with AMD GPU

•  Install some required packages:
–  sudo apt-get install build-essential linux-headers-
generic debhelper dh-modaliases execstack dkms
lib32gcc1 libc6-i386 opencl-headers!

•  Download the driver from amd.com/drivers
–  Select your GPU, OS, etc.
–  Download the .zip
–  Unpack this with unzip filename.zip

•  Create the installer
–  sudo sh fglrx*.run --buildpkg Ubuntu/precise!

•  Install the drivers
–  sudo dpkg –i fglrx*.deb!

•  Update your Xorg.conf file
–  sudo amdconfig --initial --adapter=all!

•  Reboot!
–  Check all is working by running fglrxinfo!

* Fglrx is the name of AMD’s graphics driver for the GPUs

Setting up with AMD CPU

•  Download the AMD APP SDK from their website
•  Extract with tar -zxf file.tar.gz!
•  Install with

– sudo ./Install*.sh!
•  Create symbolic links to the library and includes

–  sudo ln –s /opt/AMDAPP/lib/x86_64/* /usr/local/
lib!

–  sudo ln –s /opt/AMDAPP/include/* /usr/local/
include!

•  Update linker paths
– sudo ldconfig!

•  Reboot and run clinfo!
– Your CPU should be listed

Third party names are the property of their owners.

Setting up with AMD APU

•  The easiest way is to follow the AMD GPU
instructions to install fglrx.

•  This means you can use the CPU and GPU
parts of your APU as separate OpenCL
devices.

•  You may have to force your BIOS to use
integrated graphics if you have a
dedicated GPU too.

Third party names are the property of their owners.

Setting up with Intel CPU

•  NB: requires an Intel® Xeon™ processor on Linux
•  Download the Xeon Linux SDK from the Intel website
•  Extract the download

–  tar -zxf download.tar.gz!
•  Install some dependancies

–  sudo apt-get install rpm alien libnuma1!
•  Install them using alien

–  sudo alien –i *base*.rpm *intel-cpu*.rpm
devel.rpm!

•  Copy the ICD to the right location
–  sudo cp /opt/intel/<version>/etc/
intel64.icd /etc/OpenCL/vendors/!

Third party names are the property of their owners.

Setting up with Intel Xeon Phi

•  Intel® Xeon Phi™ coprocessor are
specialist processor only found in
dedicated HPC clusters.

•  As such, we expect most users will be
using them in a server environment set up
by someone else – hence we wont
discusses setting up OpenCL on the Intel®
Xeon Phi™ coprocessor in these slides

Third party names are the property of their owners.

Setting up with NVIDIA GPUs
•  Blacklist the open source driver (IMPORTANT)

–  sudo nano /etc/modprobe.d/blacklist.conf!
–  Add the line: blacklist nouveau

•  Install some dependencies
–  sudo apt-get install build-essential linux-header-
generic opencl-headers!

•  Download the NVIDIA driver from their website and unpack the
download

•  In a virtual terminal (Ctrl+Alt+F1), stop the windows manager
–  sudo service lightdm stop!

•  Give the script run permissions then run it
–  chmod +x *.run!
–  sudo ./*.run!

•  The pre-install test will fail – this is OK!
•  Say yes to DKMS, 32-bit GL libraries and to update your X config
•  Reboot!

Third party names are the property of their owners.

C/C++ linking (gcc/g++)

•  In order to compile your OpenCL program
you must tell the compiler to use the
OpenCL library with the flag: –l OpenCL!

•  If the compiler cannot find the OpenCL
header files (it should do) you must specify
the location of the CL/ folder with the –I
(capital “i”) flag

•  If the linker cannot find the OpenCL runtime
libraries (it should do) you must specify the
location of the lib file with the –L flag

