(S)
=
©®
14
(=]
(=]

= = ki
- o I umu i ﬁl R Pl
w0 2

NVIDIA Tegra 3 (quad Arm
Corex A9 cores + GPU) An Intel MIC processor

NVIDIA GTX 480 processor

Intel labs 48 core SCC processor

Hands-on Intro to CUDA for OpenCL

programmers
Tim Mattson (Intel Labs)

Cell Broadband Engine Processor

System
. 41 Agent &
g e = =) Memory |
,Proce§sor - : A Controller |
. Graphics

including
DM, Display
and Misc. /0

=

Intel Labs 80 core Research .
processor Intel “Sandybridge” processor IBM Cell Broadband engine processor

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

Disclaimer @

READ THIS ... its very important

e The views expressed in this talk are those of the
speakers and not their employer.

e This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

e This was a team effort, but if we say anything really
stupid, it's our fault ... don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 ... A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

Recall the OpenCL Execution Model

Third party names are the property of their owners.

* Host defines a command queue and associates it with a context
(devices, kernels, memory, etc).
* Host enqueues commands to the command queue

Kernel execution - work-group size S, ,
commands launch o
work-items: i.e. a work-group (w,, w,) 1
kernel for each pointin .~
an abstract Index Space work-item mork-Res
(W, Sy + sX, WSy +5,) W, S, + X, W, S, +5,)
called an NDRange AR OO
Ky p .
T e work-group size S,
Gy work-item work-item
. - (W, Sy +sx,w, S +s)) | [(W S, +sx,w,S +5,)
e I B (3,,8,) = (0,S,-1) (5,-8,) = (S,-1,S,- 1)
& X
A(G, by G) G, -
index space Work items execute together as a work-group.

OpenCL vs, CUDA Terminology

ird party names are the property of their owners.

* Host defines a command queue Wtes it with a context
(devices, kernels, memory, etc). CUDA Stream

* Host enqueues commands to the command queue
Thread Block

Kernel execution Threads 5 work-group size S,
commands launch— i /

work-group (*W;U ‘A";Q)A

¥

work-items: i.e. a
kernel for each pointin .~
an abstract Index Space work-item SOrk-tam
. (WS, +sx, WS +5,) W, S, +sx, w,S, +5,)
called an NDRange <— Grid AN A
T ~ -
T e work-group size S,
Gy work-item work-item
. - (W, Sy +sx,w, S +s)) | [(W S, +sx,w,S +5,)
e I B (3,,8,) = (0,S,-1) (5,-8,) = (S,-1,S,- 1)
{fii:*ig' e X
A(G,byG,) G .
y X X -
index space Work items execute together as a work-group.

\ What is a CUDA thread?

= Logically, each CUDA thread is its
own very lightweight independent
execution context
= Has its own control flow and PC,
register file, call stack, ...
= Can access any GPU memory address
at any time
= |dentifiable uniquely within a grid by
the six integers: threadIdx.
{x,y,z}, blockIdx.{x,y,z}
= Very fine granularity: do not expect
any single thread to do a substantial
fraction of an expensive computation
= At full occupancy, each Thread has 21
32-bit registers

= ..1,536 Threads share a 48 KB L1
Cache/ _shared _ mem

Third party names are the property of their owners.v

Block (0, 0) Block (1,0) Block (2, 0)

Block (0, 1" Block (1,1) Block (2, 1)

Block (1, 1)

Image source: The CUDA programming guide

What is a CUDA warp?

® A group of 32 CUDA threads that execute simultaneously

= Execution hardware is most efficiently utilized when all threads in a
warp execute instructions from the same PC.

= |dentifiable uniquely by dividing the Thread Index by 32

= |f threads in a warp diverge (execute different PCs), then some
execution pipelines go unused

= |f threads in a warp access aligned, contiguous blocks of DRAM, the
accesses are coalesced into a single high-bandwidth access

® The minimum granularity of efficient SIMD execution, and the maximum
hardware SIMD width in a CUDA processor

Single Instruction Multiple Data

" Individual threads of a warp start together at the same program address
® Each thread has its own instruction address counter and register state

= Each thread is free to branch and execute independently

= Provide the MIMD abstraction
® Branch behavior

= Each branch will be executed serially

= Threads not following the current branch will be disabled

A warp

_ Time
—

Start Branch1 Branch2 Branch3 Converge 7

What is a CUDA thread block?

» A thread block is a virtualized multi-
threaded core

Block (0,0) Block (1,0) Block (2,0
= Configured at kernel-launch to have a (0 0) (1,0) || Block (2, 0)

number of scalar processors, registers,
__shared__ memory

= Consists of a number (32-1024) of
CUDA threads, who all share the
integer identifier blockIdx.{x,y,z}

= ... executing a data parallel task of
moderate granularity

= The cacheable working-set should fit
into the register file and the L1 cache

= All threads in a block share a (small)
instruction cache and synchronize via
the barrier intrinsic __syncthreads

0

Block (0, 1" Block (1,1) Block (2, 1)

Block (1, 1)

Third party names are the property of their owners. Image source: The CUDA programming guide 8

\ Whatis a CUDA grid?

= Aset of Thread Blocks performing :
related computations Grid

= All threads in a single kernel call have the Block (0, 0) Block (1,0) | Block (2, 0)
same entry point and function arguments,
initially differing only in blockIdx.
{x,y,z}

= Thread blocks in a grid may execute any Block (0, 1" Block (1,1) ™Block (2, 1)
code they want, e.g. switch
(blockIdx.x) { ... } incursno penalty

= There is an implicit global barrier K "
between kernel calls / \

= Thread blocks of a kernel call must be /! \

parallel sub-tasks ;

* Program must be valid for any
interleaving of block executions

= The flexibility of the memory system
technically allows Thread Blocks to

communicate and synchronize in arbitrary
ways ...

= But there is no guarantee that all Thread
Blocks execute concurrently, and inter-
block communication is risky!

Block (1, 1)

Third party names are the property of their owners. Image source: The CUDA programming guide 9

CUDA Host Runtime Support

® CUDA is a heterogeneous programming model

= Sequential code runs in the “Host Thread” on a CPU core, and the
“Device” code runs on the many cores of the GPU

= The Host and the Device communicate via a PCl-Express link
» The PCI-E link is slow (high latency, low bandwidth)

e Desirable to minimize the amount of data transferred and the
number of transfers

Third party names are the property of their owners. 10

CUDA Host Runtime Support

 Allocation/Deallocation of memory on the GPU:
— cudaMalloc(void**, int), cudaFree(void¥*)

« Memory transfers to/from the GPU:
- cudaMemcpy(void*,void*,int, dir)

- dir can be “cudaMemcpyHostToDevice”
or “cudaMemcpyDeviceToHost”

int main () { Create an array on the
int N = (1024*1024); host CPU and fill with data

// pointers to array on the CPU
float *h_a = new float[N];

for(int i=0; i < N; i++) h_a[i] = i; Allocate array on the GPU
// pointers to array on the GPU

float *g_a; Copy data from host CPU

cudaMalloc (&g a, sizeof(float)*N); upto the GPU

cudaMemcpy(g_a, h_a, sizeof(float)*N,
cudaMemcpyHostToDevice);

11

Hello World: Vector Addition (C++)

// Compute sum of length-N vectors: C = A + B
void
vecAdd (float* a, float* b, float* c, int N) {
for (int 1 = 0; i < N; i++)
c[i] = a[i] + b[i];

int main () {
int N = ... ;
float *d a, *d b, *d c;
d a = new float[N];
// ... allocate other arrays, fill with data

LITTTTTTTITTTd]
I
+

vecAdd (d_a, d b, d c, N);

Third party names are the property of their owners. 12

Hello World: Vector Addition (CUDA)

void _ _global _

vecAdd (float* a, float* b, float* c, int N) {

int i = blockIdx.x * blockDim.x + threadIdx.x; Note: this is a

if (1 < N) c[i] = a[i] + b[i]; partial solution. We
} don’t show all the
int main () { data allocation and

int N = ... ; float *d_a, *d b, *d c; copies for each
std: :vecor<float> h_a[LENGTH]; // host side data array (jUSt 3 and C)
std::vecor<float> h_c[LENGTH]; // host side result vec
// Selecte default device
cudaSetDevice(09);
// ... allocate arrays, fill with data, copy data to device

cudaMalloc (&d_a, sizeof(float) * N); cudaMemcpy(d_a, &h_a[@], sizeof
(float)*LENGTH, cudaMemcpyHostToDevice);

// Use thread blocks with 256 threads each

vecAdd <<< (N+255)/256, 256 >>> (d_a, d b, d c, N);
// ... copy data back to host

cudaMemcpy(&h_c[0@], d_c, sizeof(float)*LENGTH, cudaMemcpyDeviceToHost);
cudaFree(d_a);

13

void _ _global _

Hello World: Vector Addition (CUDA)

You should test that i<N in case you have extra
threads when block size doesn’t evenly divide N

vecAdd (float* a, float* b, float* c, int N) {

}

int i =

if (1 < N) c[i] = a[i] + b[i];

int main () {

int N = ... ; float *d_a, *d b, *d c;

blockIdx.x * blockDim.x + threadIdx.x;

Note: this is a
partial solution. We
don’t show all the
data allocation and

std::vecor<float> h_a[LENGTH]; // host sids
std: :vecor<float> h_c[LENGTH]; // host sids
// Selecte default device
cudaSetDevice(09);
// ... allocate arrays, fill with dat

cudaMalloc (&d_a, sizeof(float
(float)*LENGTH, cudaMemcpyHostToDevice);

N); d

! three dimensions) and the

h
1 c)

When you launch a kernel,
you must specify two
parameters of type dim3. The
first specifies the global
dimension of the grid (one to

-

second species the size of a
“thread block”.

// Use thread blocks wi 256 threads each

vecAdd <<< (N+255)/256, 256 >>> (d_a, d_b,
// ... copy data back to hos

d_c, N);

cudaMemc
cudaFree(c

(N+255)/256) assures that you round up on the integer division and have
enough blocks even when N isn’t evenly divided by the block size.

14

Vector addition: side by side

// Compute sum of length-N vectors: C = A + B
void
vecAdd (float* a, float* b, float* c, int N) {
for (int i = 0; 1 < N; i++)
c[i] = a[i] + b[i];

int main () {
intN=...;
float *d_a, *d_b, *d_c;
d_a = new float[N];
// ... allocate other arrays, fill with data

vecAdd (d_a, d b, d c, N);

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) c[i] = a[i] + b[i];

int main () {
int N = ...
float *d_a, *d_b, *d _c;
cudaMalloc (&d_a, sizeof(float) * N);
// ... allocate other arrays, fill with data

// Use thread blocks with 256 threads each

vecAdd <<< (N+255)/256, 256 >>> (d_a, d b, d c,
N);

15

CUDA Exercise 1

e Goal

— Verify that you really understand the constructs by playing with the vector
add program

* Problem

— Start with the vector addition program we provide, create a CUDA
version of the program.

e Extra work

— Experiment with different Grid sizes. Find grid sizes that lead to the best
performance. Relate what you observe to the size of a CUDA Warp.

Kernel example: void __global__ vfunc(const float *a, float *c, const int N);

int i = blockIdx.x * blockDim.x + threadIdx.x;
cudaSetDevice(0);

cudaMalloc (&a, sizeof(float) * LEN);
cudaMemcpy(a,&a[0@],sizeof(float)*LEN, cudaMemcpyHostToDevice);
vfunc<<<Glob_size,Block_size>>>(a, ¢, LEN);

cudaMemcpy(&c[0@],c, sizeof(float)*LEN,cudaMemcpyDeviceToHost);
cudaFree(a);

CUDA memory hierarchy

Thread ® Each CUDA thread has private access to a

configurable number of registers
Per-thread , o -
Local Memory " The 64 KB SM register file is partitioned
among all resident threads

= The CUDA program can trade degree of
thread block concurrency for amount of per-
thread state

Block = Registers, stack spill into “local” DRAM if
necessary
gﬁ%@ g FS)E;Pelng ® Each thread block has private access to a
é%%%é% Memory configurable amount of scratchpad memory

= Pre-Fermi SM’s have 16 KB scratchpad only

= The available scratchpad space is partitioned
among resident thread blocks, providing
another concurrency-state tradeoff

17

Memory, Memory, Memory

® A many core processor = A device for turning a compute bound problem
into a memory bound problem

Control ALU ALU |

NN
RERER
Rl DA =]

—REREEN
REEER
REEER
REEER
REEER

(]
|
e
|
(]
|
e
|

CPU GPU

Lots of processors, only one socket
Memory concerns dominate performance tuning

Image source: The CUDA programming guide 18

Thread-Block Synchronization

® Intra-block barrier instruction __syncthreads () for synchronizing
accesses to __shared__ memory

= To guarantee correctness threads must __syncthreads() before
reading values written by other threads

= All threads in a block must execute the same __syncthreads() or
the GPU will hang

”

“‘extern _ shared " allows

the shared memory block to
/ dynamically sized at run-time
extern _ _shared _ float T[];

device void The function qualifier
__ o “ device__” indicates the
function runs on the device,

transpose (float* a, int 1lda){

T[i + 1da*j] = a[i + lda*j]; “ _device__” function cannot
__syncthreads(); be called by a host .. its’

called by a kernel running

al[i + lda*j] = T[j + 1lda*i]; 0 8 AEvEER.

19

Using per-block shared memory

The per-block shared memory / L1 cache is a crucial resource: without it,
the performance of most CUDA programs would be hopelessly DRAM-
bound

Block-shared variables can be declared statically:
__shared__ int begin, end;

Software-managed scratchpad memory is allocated statically:
__shared__ int scratch[128];

scratch[threadIdx.x] = ... ; The third argument is optional
... or dynamically: and gives the size in bytes of
extern __shared__ int scratch[]; per-bl}shared fEtel R
kernel call <<< grid dim, block dim, scratch_size >>> (...);
Most intra-block communication is via shared scratchpad:
scratch[threadIldx.x] = ...;
__syncthreads();

int left = scratch[threadIdx.x - 1];

20

| ﬂ \ CUDA Memory Hierarchy

® Thread blocks in all Grids share access to a large pool of “Global” memory,
separate from the Host CPU’s memory.

= Global memory holds the application’s persistent state, while the
thread-local and block-local memories are ephemeral

= Global memory is much more expensive than local memories: O(100)x
latency, O(1/50)x (aggregate) bandwidth

= Registers and Cache multiply bandwidth, massive multithreading hides
latency

Kernel o

»

Sequential
Kernels

Per Device
Global Memory

R | | 2% 222 | 4=

Third party names are the property of their owners. 21

-

\ CUDA memory hierarchy

There are other read-only
components of the Memory
Hierarchy that exist due to the
graphics heritage of CUDA

The 64 KB CUDA Constant Memory
resides in the same address space
DRAM as global memory, but is
accessed via special read-only 8 KB
per-SM caches

The CUDA Texture Memory also
resides in DRAM’s address space and
is accessed via small per-SM read-
only caches, but also includes
interpolation hardware

= This hardware is crucial for
graphics performance, but only
occasionally is useful for general-
purpose workloads

The behaviors of these caches are
highly optimized for their roles in
graphics workloads.

Third party names are the property of their owners.

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction
Unit

Image source: The CUDA programming guide

22

Mapping CUDA to Nvidia GPUs

® CUDA is designed to be functionally forgiving

= First priority: make things work. Second: get performance.

However, to get good performance, one must understand how
CUDA is mapped to Nvidia GPUs =

e [1 [1 [1 1 1 7 & [4 [1 [g
=

Instruction Cache
Warp Scheduler Warp Scheduler

" Threads: °) ———-

Register File (32,768 x 32-bit)

3 3 1 ¥
LD/IST

LD/ST
LDIST
LD/ST

B

EEEEEEEEEEEEEEEEENEEEEEEERREEREE ()
T —————+F——+t— &+ —+ —+t—+ £
<] s
I s

Core Core

m each thread is a SIMD vector lane

3
ore

.ore Core Core
ore
or

® Warps: o
= A SIMD instruction acts on a “warp” HosEaEa T TE
= Warp width is 32 elements: LOGICAL SIMD width 111

®" Thread blocks:
= Each thread block is scheduled onto a processor

= Peak efficiency requires multiple thread blocks per processor

1l

Third party names are the property of their owners. 23

CUDA Exercise 2

» Goal
— Work with the CUDA memory hierarchy to optimize matrix multiplication.

* Problem
— Start with the matrix multiplication program we provide to compute C= A*B in
parallel
— Parallelize with CUDA using the dot product for each element of C(l,j) as a
CUDA-thread

— Optimize performance by (1) putting rows of the A matrix in thread-local memory
and (2) putting rows of the B matrix in thread-block shared memory.

Kernel example: void _ global__ vfunc(const float *a, float *c, const int N);

int i = blockIdx.x * blockDim.x + threadIdx.Xx;
cudaSetDevice(0);

cudaMalloc (&a, sizeof(float) * LEN);
cudaMemcpy(a,&a[0],sizeof(float)*LEN, cudaMemcpyHostToDevice);
cudaMemcpy(&c[0],c, sizeof(float)*LEN,cudaMemcpyDeviceToHost);
cudaFree(a);

syncthreads();

extern _ shared _ int scratch[];

