DDR3 MC

T =l =g NVIDIA Tegra 3 (quad Arm
NVIDIA GTX 480 processor VRC.__Syster nterface + 16 EEE———— Corex A9 cores + GPU) An Intel MIC processor

Intel labs 48 core SCC processor

A hands on introduction to Cluster

Computing

Tim Mattson (Intel Labs)

Cell Broadband Engine Processor

System '
‘ : B : Agent &
, Processor il ' S sl met s cig] | Memory

. = dmm T 5.4 Controller [}
Graphics 4" |&% S U ] 18
' THTHAH i T - N including

DMI, Display
and Misc. /0

SharAeciAL3 Cache**

HIHH 1

Intel Labs 80 core Research N . ,
processor Intel “Sandybridge” processor IBM Cell Broadband engine processor

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners




Disclaimer (inte!)

READ THIS ... its very important

e The views expressed in this talk are those of the
speakers and not their employer.

e This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

e This was a team effort, but if we say anything really
stupid, it's our fault ... don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 ... A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.



INTRODUCTION TO MPI

3/119



viessage rassing

" Program consists of a collection of named processes.
= Number of processes almost always fixed at program startup time
= Local address space per node -- NO physically shared memory.
= Logically shared data is partitioned over local processes.
® Processes communicate by explicit send/receive pairs
= Coordination is implicit in every communication event.
= MPI (Message Passing Interface) is the most commonly used SW

Private
memory

receive Pn,s s; 11

send P1,s




MPI Type contiguous MPI Recv 1init

MPI Bcast
MPT—G size
MPI_ s MPI: An API for Writing Clustered Applications
DRLD
- - A library of routines to coordinate the
N execution of multiple processes. npare
- - Provides point to point and collective .
communication in Fortran, C and C++
- * Unifies last 25 years of cluster -
h computing and MPP practice B
MPI ck)

MPI Sendrecv replace MPI Ssend MPI Waitall

MPI Alltoallwv MPI Send



\

1‘) \ An MPI program at runtime

" Typically, when you run an MPI program, multiple processes all running
the same program are launched ... working on their own block of data.




An MPI program at runtime

" Typically, when you run an MPI program, multiple processes all running
the same program are launched ... working on their own block of data.

_—

T 1
\ 7 A 4/ D AV

The collection of processes involved in a computation
is called “a process group”




An MPI program at runtime

" Typically, when you run an MPI program, multiple processes all running
the same program are launched ... working o 1 lock of data.

AN V4

4

\

N

7

! !
\ / A/ / & Vv

You can dynamically split a process group into multiple subgroups to
manage how processes are mapped onto different tasks

MPI functions work within a “context” ... events in different contexts ...
even if they share a process group ... cannot interfere with each other. | 8




\ MPI Hello World

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){
int rank, size;
MPI Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );

MPI Finalize();
return 0;




Initializing and finalizing MPI

int MPI Init (int* argc, char* argv([])

= [nitializes the MPI library ... called before any
other MPI functions.

= agrc and argv are the command line args passed

#include <stdio.h> from main()
#include <mpi.h>

int main (int argc, char **argv){
int rank, size;
MPI Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",
rank, size );

MPI_Finalize();

return 63$\\\\.int MPI Finalize (void)

} " Frees memory allocated by the MPI library ... close
every MPI program with a call to MPI_Finalize

10



- ) \ How many processes are involved?

int MPI Comm size (MPI Comm comm, int* size)

= MPI_ Comm, an opaque data type called a communicator. Default
context: MPI_COMM_WORLD (all processes)

= MPI Comm _size returns the number of processes in the process

#inclboc—ocaxoin
#include <mpi.h>

int rank, size;
MPI_Init (&argc, &argv);

MPI_Finalize();
return 0O;

group associated with the communicator

int main (int argc, char **argv){

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );

Communicators consist of
two parts, a context and a
process group.

The communicator lets me
control how groups of
messages interact.

The communicator lets me
write modular SW ... i.e. |
can give a library module its
own communicator and
know that it's messages
can’t collide with messages
originating from outside the
module

11




\  Which process “am I” (the rank)

#incl A A1 S GCUMAW ol

int MPI Comm rank (MPI Comm comm, int* rank)

= MPI_ Comm, an opaque data type, a communicator. Default context:
MPI_COMM_WORLD (all processes)

= MPI Comm rank An integer ranging from O to “(num of procs)-1”

#include <mpi.h>

int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

MPI_Finalize();
return 0O;

rank, size );

Note that other than init()
and finalize(), every MPI

function has a
communicator.

This makes sense .. You
need a context and group of
processes that the MPI
functions impact ... and
those come from the
communicator.

12




Running the program

" On a 4 node cluster, I'd run this
program (hello) as:

> mpiexec —n 4 hello

® What would this program would output?

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){
int rank, size;
MPI Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0O;

13




Exercise 1: Hello world

" Goal
= To confirm that you can run a program on our cluster

" Program
= Write a program that prints “hello world” to the screen.

= Modify it to run as an MPI program ... with each process in the process group
printing “hello world” and its rank

#include <mpi.h>

int size, rank, argc; char **argv;
MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();

Use the VMs (2 cores) or the server in Bologna.

If you need to start the MPl deamon (mpd) type (VMs have 2 cores each):
> touch ~/.mpd.conf && chmod 600 ~/.mpd.conf
>mpd &

To run the executable a.out with 4 processes, type:
> mpiexec —n 4 ./a.out

14



Running the program

® On a 4 node cluster, I’d run this
program (hello) as:
> mpirun —n 4 hello
Hello from process 1 of 4

#include <stdio.h> Hello from process 2 of 4
#include <mpi.h> Hello from process 0 of 4
int main (int argc, char **a Hello from process 3 of 4

int rank, size;

MPI Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI Finalize();
return 0;

15




MPI FOR BULK
SYNCHRONOUS PROGRAMS

16/119



' Sending and Receiving Data

int MPI Send (void* buf,

int count,

MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

int MPI Recv (void* buf,

int count,

MPI Datatype datatype, int source,
int tag, MPI Comm comm,

MPI Status* status)

" MPI_Send performs a blocking send of the specified data (“count”
copies of type “datatype,” stored in “buf”) to the specified destination
(rank “dest” within communicator “comm?”), with message ID “tag”

" MPI_ Recv performs a blocking receive of specified data from specified

source whose parameters match the send; information about transfer

is stored in “status”

By “blocking” we mean the functions return as soon as the buffer, “buf”’, can be

safely used.

17



MPI Data Types for C

MPI Data Type C Data Type
MPI BYTE

MPI CHAR signed char
MPI DOUBLE double

MPI FLOAT float

MPI INT int

MPI LONG long

MPI LONG DOUBLE long double
MPI PACKED

MPI SHORT short

MPI UNSIGNED SHORT

unsigned short

MPI UNSIGNED

unsigned int

MPI UNSIGNED LONG

unsigned long

MPI UNSIGNED CHAR

unsigned char

MPI| Programming

MPI provides
predefined data
types that must be
specified when
passing messages.

18



\ The data in a message: datatypes

® The data in a message to send or receive is described by a triple:
= (address, count, datatype)
® An MPI datatype is defined as:
» Predefined, simple data type from the language (e.g., MPI_DOUBLE)
= Complex data types (contiguous blocks or even custom types.
" E.g. ... Aparticle’s state is defined by its 3 coordinates and 3 velocities
MPI_Datatype PART;
MPI_Type_contiguous( 6, MPI_DOUBLE, &PART );
MPI_Type_commit( &PART );
®" You can use this data type in MPI functions, for example, to send data for a
single particle:
MPI_Send (buff, /] PAFQ)est, tag, MPI_COMM_WORLD);

add ress Datatype

count

19



Receiving the right message

" The receiving process identifies messages with the double :
= (source, tag)

® Where:
= Source is the rank of the sending process

» Tag is a user-defined integer to help the receiver keep track of different
messages from a single source

MPI_Recv (buff, 1, PART, Src, tag, MPI_COMM_WORLD, &status);

Sou rce/ tag

® Can relax tag checking by specifying MPI_ANY_TAG as the tag in a receive.
® Can relax source checking by specifying MPI_ANY_SOURCE
MPI_Recv (buff, 1, PART, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

" This is a useful way to insert race conditions into an MPI program
20



\ A typical pattern with MPI Programs

® Many MPI applications have few (if any) sends and receives. They

use the following very common pattern: Time
» Use the Single Program Multiple Data
pattern (g 5 %
= Each process maintains a local view of
the global data
= A problem broken down into phases each | Collective comm.

of which is composed of two subphases: é
- Compute on local view of data

- Communicate to update global view
on all processes (collective
communication).

= Continue phases until complete

Collective comm.

Po Py Py P

This is a subset or the SPMD pattern sometimes Processes
referred to as the Bulk Synchronous pattern.

21




MPI Collective Routines

®  Collective communications: called by all processes in the group to
create a global result and share with all participating processes.

= Allgather, Allgatherv, Allreduce, Alltoall,
Alltoallv, Bcast, Gather, Gatherv, Reduce,

Reduce scatter, Scan, Scatter, Scatterv
® Notes:

Allreduce, Reduce, Reduce scatter, and Scan use the
same set of built-in or user-defined combiner functions.

» Routines with the “A11” prefix deliver results to all participating
processes

= Routines with the “v” suffix allow chunks to have different sizes
®  Global synchronization is available in MPI

" MPI Barrier( comm )

® Blocks until all processes in the group of the communicator comm call it.

22



Collective Data Movement

Take a value from PO
and give a copy to
P1, P2 and P3

Scatter an array on
PO to P1, P2, and P3

Gather values from
P1, P2, and P3 into
an array on PO

PO
Pl

P2
P3

PO
Pl

P2
P3

AL |
RN
RN
HEEE

ABICD]

Broadcast

Scatter

n
>

Gather

Al
Al
Al

23



Take a chunk from each
P and gather into a single
array on each P

Take arrays on each P
and spread them out to
arrays on each P

PO
Pl

P3

PO

P2
P3

Al
B

Cl
D

AOATIAZAS
B0/B1/B2B3)
colc1ic2c3)
DOID1D2D3

Allgather

Alltoall

AB CD
AB CD
AB CD
A BICID

A0IBOICOIDO
ALBICIDL
A2[B2/C2ID2
A3[B3/C3ID3

24



Collective Computation

PO
Take valugs on each 'P P E Reduce
and combine them with
an op (such as add) into P2
a single value on one P. P3 m
Take values on each P PO
and combine them witha Pl E
scan operation and P Scan
spread the scan array out
among all P. P3 m

25



#include <mpi.h>

int main(int argc, char *argv[]) ({
int nprocs, myrank, msg[4] = {0,0,0,0};

MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD, &nprocs);
MPI Comm rank (MPI_COMM WORLD, &myrank);

if (myrank == 0) msg[0] = 1;
else msg[0] 0;

MPI Bcast(msg, 4, MPI INT, O, MPI_ COMM WORLD) ;

MPI Finalize();

LSVYOd IdN

MP| Programming
26




Reduction

int MPI Reduce (void* sendbuf,
volid* recvbuf, int count,
MPI Datatype datatype, MPI Op op,
int root, MPI Comm comm)

®* MPI_Reduce performs specified reduction operation on specified data
from all processes in communicator, places result in process “root” only.

®* MPI_Allreduce places result in all processes (avoid unless necessary)

Operation Function Operation Function

MPI_ SUM Summation MPI BAND Bitwise AND

MPI PROD Product MPI LOR Logical OR

MPI MIN Minimum value MPI BOR Bitwise OR

MPI MINLOC | Minimum value and location MPI LXOR Logical exclusive OR

MPI MAX Maximum value MPI BXOR Bitwise exclusive OR

MPI MAXLOC | Maximum value and location User-defined It is possible to define new
MPT LAND Logical AND reduction operations

27



MPI_REDUCE Example

#include <mpi.h> M Pl_COMM_WORLD

int main(int argc, char* argv[]) {
int msg, sum, nprocs, myrank;

MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD, é&nprocs);
MPI Comm rank (MPI_COMM WORLD, &myrank);

sum = 0;
msg = myrank;

IONATT TN

MPI Reduce (&msg, &sum, 1, MPI INT, MPI SUM, O,
MPI COMM WORLD) ;

MPI Finalize();

MP| Programming
28



Exercise 2: Pi Program

" Goal
= To write a simple Bulk Synchronous, SPMD program
" Program

= Start with the provided “pi program” and using an MPI reduction, write a
parallel version of the program.

int MPI Reduce (void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, int root, MPI Comm comm)

Operation | Function

MPI SUM Summation MPI Data Type C Data
MPI PROD Product Type
MPI DOUBLE double
#include <mpi.h> MPI_FLOAT float
int size, rank, argc; char **argv; — -~
MPI Init (&argc, &argv); —— ong

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI Finalize();

29




J\' " Example Problem: Numerical Integration

F(x) = 4.0/(1+x?)

4.0 1=~

N
o
1

0.0

1.0

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

N
| 2 F(x)Ax = TT
i=0

Where each rectangle has
width Ax and height F(x:) at

the middle of interval i.
30



Pl Program: an example

static long num_steps = 100000;

double step;
void main ()
{ inti; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
x = 0.5 * step;
for (i=0;i<= num_steps; i++){
X+=step;

sum += 4.0/(1.0+x*x);

}

pi = step * sum;

31



Pi program in MPI

#include <mpi.h>
void main (int argc, char *argv[])

{

int 1, my_1d, numprocs; double x, pi, step, sum = 0.0 ;

step = 1.0/(double) num_ steps ;

MPI_Init(&arge, &argyv) ;
MPI_Comm_Rank(MPI_ COMM_ WORLD, &my id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my_steps = num_ steps/numprocs ;

for (1I=my 1d*my_steps; i<(my_id+1)*my_steps ; i++)

{
x = (1+0.5)*step; —
sum += 4.0/(1.0+x*x); Sum values in “sum” from
‘ ° ’ each process and place it
} *= gt in “pi” on process 0
sum *= step ;

MPI_Reduce(&sum, &pi, 1, MPI_ DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD)

32



MPI Pi program performance

Pi program in MPI

#include <mpi.h>
void main (int argc. char *argv[]) Thread | OpenMP | OpenMP MPI
{ or procs| SPMD Pl Loop
int i my_id, numprocs: double x, pi, step. sum "
step = 1.0/(double) num_steps ; critical
MPI Init(&arge, &argy) ; 1 0.85 0.43 0.84
MPI Comm Rank(MPI_COMM WORLD,
MPI_Comm_Size(MPI_COMM_WORLD, § 2 0.48 0.23 0.48
for (i=my_id: i<num_steps: :i=itnumprocs) 3 0.47 0.23 0.46
{
x = (i+0.5)*step: 4 0.46 0.23 0.46
sum += 4 .0/(1.0+x*x);
¥
sum *= step ; _ ) Note: OMP loop used a
MPI Reduce(&sum, &pi, 1, MPI DOUBLE, MPI_SUM, 0, Blocked loop distribution.
MF1 COMM._WORLD) The others used a cyclic
; distribution. Serial .. 0.43.

*Intel compiler (icpc) with —O3 on Apple OS X 10.7.3 with a dual core (four HW thread)

Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 33



UNDERSTANDING MESSAGE
PASSING WITH MPI

34



Buffers

® Message passing has a small set of primitives, but there are subtleties
= Buffering and deadlock
= Deterministic execution
= Performance

® When you send data, where does it go? One possibility is:
Process 0 Process 1

User data

User data

Derived from: Bill Gropp, UIUC 35



Blocking Send-Receive Timing Diagram

\ (Receive before Send)
send side receive side
— T0: MPI_Recv

MPI_Send: T1 — D

Once receive

is called @ TO,

[~ ~ Local buffer unavailable
MPI_Send returns T2 — ~ - to user
~y
S -

Lol — T3: Transfer Complete
buffer can — T4: MPI_Recv returns
be reused

v v Local bufter filled and
_ . available to user
time time

It is important to post the receive before
sending, for highest performance. 36




\ Sources of Deadlocks

® Send a large message from process 0 to process 1

= |f there is insufficient storage at the destination, the send
must wait for the user to provide the memory space (through
a receive)

®  What happens with this code?

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

e This code could deadlock ... it depends on the
availability of system buffers in which to store the data
sent until it can be received

Slide source: based on slides from Bill Gropp, UIUC 37



Some Solutions to the “deadlock’ Problem

® Order the operations more carefully:

Process 0 Process 1
Send (1) Recv (0)
Recv (1) Send (0)

e Supply receive buffer at same time as send:

Process O Process 1

Sendrecv(l) Sendrecv (0)

Slide source: Bill Gropp, UIUC 38



More Solutions to the “unsafe” Problem

®  Supply a sufficiently large buffer in the send function

Process O Process 1
Bsend (1) Bsend (0)
Recv (1) Recv (0)
Use non-blocking operations:

Process O Process 1
Isend (1) Isend (0)
Irecv (1) Irecv (0)
Waitall Waitall

Slide source: Bill Gropp, UIUC

39



\ Non-Blocking Communication

Non-blocking operations return immediately and pass “request handles’
that can be waited on and queried

- MPL_ISEND( start, count, datatype, dest, tag, comm,
request )

- MPL_IRECV( start, count, datatype, src, tag, comm, request )
- MPI_WAIT( request, status )

One can also test without waiting using MPI_TEST
- MPL_TEST( request, flag, status )

Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/MPI_Wait

Non-blocking operations are extremely important ... they
allow you to overlap computation and communication.

40



\  Non-Blocking Send-Receive Diagram

MPI Isend T2 —
MPI_Isend returns T3 —

send side

buffer unavailable
to user

/\

MPI_Wait T5 —

Sender completes T6 —
MPI_Wait returns T9 —

buffer available
to user

e

receive side

TO: MPI_Irecv

— T1: MPI Irecv Returns

T~

buffer unavailable
to user

T4: MPI_Wait called

T7: transfer finishes
T8: MPI_Wait returns

receive buffer
filled and available
to the user

41




xample: shift messages around a ring

(part 1 of 2)

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv)

{
int num, rank, size, tag, next, from;
MPI_Status status1, status2;
MPI_Request req1, req2;

MPI1_Init(&argc, &argv);

MPI_Comm_rank( MPI_COMM_WORLD, &rank);

MPI_Comm_size( MPI_COMM_WORLD, &size);

tag = 201;

next = (rank+1) % size;

from = (rank + size - 1) % size;

if (rank == 0) {
printf("Enter the number of times around the ring: ");
scanf("%d", &num);

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD,&req1);
MPI_Wait(&req1, &status1);

) 42



messages arouna a ring

nart 2 of 2

MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req?2);
MPI_Wait(&reqg2, &status?2);
printf("Process %d received %d from process %d\n", rank, num, from);

if (rank == 0) {

num--;

printf("Process 0 decremented number\n");
}

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPIl_INT, next, tag, MPI_COMM_WORLD, &req1);
MPI_Wait(&req1, &status1);

} while (num != 0);

if (rank == 0) {
MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req?2);
MPI_Wait(&reqg2, &status2);

}

MPI1_Finalize();
return O;

) 43



Exercise 3: Ring program

" Goal
= Explore other modes of message passing in MPI
" Program

= Start with the basic ring program we provide. Run it for a range
of message sizes and notes what happens for large messages.

= |f the program deadlocks (and it should) figure out why and how
to fix it.

= Try a range of message passing functions to understand how
they work.

44



MPI AND THE GEOMETRIC
DECOMPOSITION PATTERN

45



» BN
Example: finite difference methods” / %

m Solve the heat diffusion equation in 1 D:
u(x,t) describes the temperature field 0’u  Ou
We set the heat diffusion constant to one ol ot
Boundary conditions, constant u at endpoints.

m  map onto a mesh with stepsize h and k X; =X, +1ih b =1y +ik
m Central difference approximation for spatial d’u Uy —2U U
derivative (at fixed time) PR PR

m Time derivative at t = t"*1 —

46



" J
Example: Explicit finite differences

m Combining time derivative expression using spatial derivative at t = t"

n+l n n n n
k h’
m Solve for u at time n+1 and step |
n+1 n n n
W =(1=2ru +ru_ +ru’, r=%2

m The solution att=t_,,is determined explicitly from the solution att =t
(assume u[t][0] = u[t][N] = Constant for all t).

for (int t = @; t < N_STEPS-1; ++t)
for (int x = 1; x < N-1; ++x)
u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]);

m Explicit methods are easy to compute ... each point updated based on

nearest neighbors. Converges for r<1/2.
47



"
Heat Diffusion equation

infinitesimally narrow rod (~one D)

T1 MIIIDTITOIIIIIIIITITIITIITT1]

“infinite” heat “infinite” heat
bath (fixed bath (fixed
temperature, T1) temperature, T2)

48



" J
Heat Diffusion equation

infinitesimally narrow rod (~one D)

T1 I I I IIIIIITIT11]
OI1T1—

Pictorially, you are sliding a three point
“stencil” across the domain (u) and
updating the center point at each stop.

49



Heat Diffusion equation

T1 MIMIMIOIITITTITITTIITTITITTTTT1]
[(IT}—

int main()

{ Note: | don’t need the
intermediate “u[t]” values
double *u

malloc (sizeof(double) * (N)); hence “U” is just indexed by x.
double *upl = malloc (sizeof(double) * (N));

initialize data(uk, ukpl, N, P); // init to zero, set end temperatures
for (int t = @; t < N_STEPS; ++t){
for (int x = 1; x < N-1; ++Xx)
upl[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

A well known trick with 2 arrays so |
@ upl = u; u = @ don’t overwrite values from step k-1

} as | fill in for step k

return 0;

50



Heat Diffusion equation

T1 MIMIMIOIITITTITITTIITTITITTTTT1]
[(IT}—

int main() How would

{

you parallelize
this program?

double *u
double *upl

malloc (sizeof(double) * (N));
malloc (sizeof(double) * (N));

initialize data(uk, ukpl, N, P); // init to zero, set end temperatures
for (int t = @; t < N_STEPS; ++t){
for (int x = 1; x < N-1; ++Xx)
upl[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

temp = upl; upl = u; u = temp;
¥

return 0;

51



software

" These seven strategies for parallelizing software give us:
= Names: so we can communicate better
» Categories: so we can gather and share information
= A palette (like an artist’s palette) of approaches that is:
* Necessary: we should consider them all and

« Sufficient: once we have considered them all then we don’t’
have to worry that we forgot something

Parallel Algorithm Strategy Patterns Discrete-Event

Task-Parallelism Data-Parallelism Geometric-Decomposition
Divide and Conquer Pipeline Speculation

52



Heat Diffusion equation

® Start with our original picture of the problem ... a one dimensional
domain with end points set at a fixed temperature.

T1 IIIIIIIIIIIIIIIIIIIIII.

53



software

" These seven strategies for parallelizing software give us:
= Names: so we can communicate better
» Categories: so we can gather and share information
= A palette (like an artist’s palette) of approaches that is:
* Necessary: we should consider them all and

« Sufficient: once we have considered them all then we don’t’
have to worry that we forgot something

Parallel Algorithm Strategy Patterns Discrete-Event

Task-Parallelism Data-Parallelism I Geometric-Decomposition I
Divide and Conquer Pipeline Speculation

54



Heat Diffusion equation

® Break it into chunks assigning one chunk to each process.

T1

P, P, P, P,

55



Heat Diffusion equation

® Each process works on it’'s own chunk ... sliding the stencil across
the domain to updates its own data.

T1 MO0 OO0 OO0 OO
(I} Oo11— Ol 1

P, P, P, P,

56



Heat Diffusion equation

® What about the ends of each chunk ... where the stencil will run off the
end and hence have missing values for the computation?

11 OId
IIT}— M1}

T1 OII11
OI1T1—

57



Heat Diffusion equation

® We add ghost cells to the ends of each chunk, update them with the
required values from neighbor chunks at each time step ... hence giving
the stencil everything it needs on any given chunk to update all of its
values.

T1 OOIII1IT:

Ghost cell

Ghost cell

58



\ SPMD: Single Program Mulitple Data

® Run the same program on P processing elements where
P can be arbitrarily large.

® Use the rank ... an ID ranging from 0 to (P-1) ... to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support
most (if not all) the algorithm strategy patterns.

MPI| programs almost always use this pattern ... itis
probably the most commonly used pattern in the history of
parallel programming.

59



How do people use MPI?

The SPMD Design Pattern

A sequential program
working on a data set

Replicate the program.
Add glue code

Break up the data

*A single program working on a
decomposed data set.

*Use Node ID and numb of nodes to
split up work between processes

* Coordination by passing messages.




Heat Diffusion MPI Example

MPI Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"
double *upl = malloc (sizeof(double) * (2 + N/P)); // to hold values
// from my neighbors

initialize_data(uk, ukpl, N, P);
for (int t = @; t < N_STEPS; ++t){
if (myID !'= @) MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, ©, MPI_COMM_WORLD);
if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM_WORLD, &status);
if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM_WORLD);
if (myID != @) MPI_Recv (&u[©], 1, MPI_DOUBLE, myID-1, ©,MPI_COMM_WORLD, &status);

///’;or (int x = 2; x <= N/P; ++X) ‘\\\\

upl[x] u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]); . ]
if (myID != @) We write/explain

upl[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]); this part first and
if (myID != P-1)

upl[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]); then add_reS§ the
temp = upl; upl = u; u = temp; communication and

data structures

} // End of for (int t ...) loop

\QQEI_Finalize(); <‘///

return 9;

61



Heat Diffusion MPI Example

/* continued from previous slide */ | Iemperature fields using local data and values
from ghost cells.

for (int x = 1; x <= N/P; ++x)
upl[x] u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

if (myID != 09)

upl[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]); | u[0] and u[N/P+1]
are the ghost cells

if (myID != P-1)
upl[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

temp = upl; upl = u; u = temp;

. Note | was lazy and assume N was evenly
End of f tt...) 1
} // End of for (in ) loop divided by P. Clearly, I'd never do this in a
“real” program.

MPI_Finalize();
return 0;

62



Heat Diffusion MPI Example

MPI Init (&argc, &argv); 1D PDE solver ... the simplest “real” message
MPI_Comm_size (MPI_COMM_WORLD, &P); passing code | can think of. Note: edges of
MPT_Comm_rank (MPI_COMM WORLD, &myID); domain held at a fixed temperature

double *u = malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"
double *upl = malloc (sizeof(double) * (2 + N/P)); // to hold values
// from my neighbors
initialize data(uk, ukpl, N, P);
for (int t = ©; t < N_STEPS; ++t){
if (myID != 0) — Send my “right” boundary value to my “right’ neighbor
MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, ©, MPI_COMM_WORLD);

if (myID != P-1) . — | Receive my “left” ghost cell from my “left’ neighbor
MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM_WORLD, &status);

if (myID != P-1) __— Send my “left” boundary value to my “left’ neighbor
MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM_WORLD);

if (myID != @) __—] Receive my “right” ghost cell from my “right’ neighbor
MPI_Recv (&u[@], 1, MPI_DOUBLE, myID-1, ©,MPI_COMM WORLD, &status);
/* continued on next slide */ 63




J\' The Geometric Decomposition Pattern

® This is an instance of a very important design pattern ... the Geometric
decomposition pattern.

®  We will cover this pattern in more detail in a later lecture.

T1 OOIII1IT:

Ghost cell

Ghost cell

64



Partitioned Array Pattern

® Problem:

= Arrays often need to be partitioned between multiple UEs. How can we
do this so the resulting program is both readable and efficient?

" Forces
= |Large number of small blocks organized to balance load.
= Able to specialize organization to different platforms/problems.
» Understandable indexing to make programming easier.
" Solution:
= Express algorithm in blocks

» Abstract indexing inside mapping functions ... programmer works in an
index space natural to the domain, functions map into distribution
needed for efficient execution.

» The text of the pattern defines some of these common mapping
functions (which can get quite confusing ... and in the literature are
usually left as “an exercise for the reader”).

65



Partitioned Arrays

" Realistic problems are 2D or | ag, | ag; | @02 | @03 | @04 | @05 | @0 | @07
3D; require move complex

data distributions. 10| @1,1 | 12 | 213 | @14 | @15 | 16 | A1,7
® We need to parallelize the
computation by partitioning @20 | 921 | P22 | 923 | 924 | F25 | Y26 | D27

this index space

: Q3o | @31 | @32 | @33 [(434)| @35 | A36 | 3,7
" Example: Consider a 2D

domain over whlch we wish aso | as1 | ass (@D @0 46 | @z
to solve a PDE using an
eXp|ICIt f|n|te dlfferenCe a5’0 a5,1 CL5,2 (15,3 (15’5 (15,6 a5,7

solver . The figure shows a
five point stencil ... update a Qgo | @61 | %62 | @63 | @64 | 65 | Cep | B67
value based on its value and
its 4 neighbors. a70 | @7,1 | Q7,2 | @73 | @74 | Q75 | Q76 | Q77

W Start with an array >

66



® Split the non-unit-stride dimension (P-1) times to produce P chunks, assign
the it" chunkto P, WthN=n*n,P=p*p

®" In a 2D finite-differencing program (exchange edges), how much do we
have to communicate? 2*n = 2*sqrt(N) messages per processor

P is the
# of
processors

Qo,0 | Q0,1 Qo2 | A0,3 Qo4 | Q05 Qo6 | A0,7
ai1o | 91,1 ai12 | Qa13 a14 | 215 Q16 | A1,7
Qa0 | @21 Qg2 | Q23 Qg4 | Q25 Qog | Q27
azo | 43,1 G392 | A33 ass Q36 | 43,7
Quo | @41 Qg2 Que | Qa7
A50 | @51 Q592 | 53 as 5 A56 | A57
Q6,0 | 26,1 Qg2 | 6,3 Qg4 | Q6,5 Q66 | 6,7
Q70 | @71 Q79 | Q73 a74 | Q75 Q76 | Q77
UE(0) UE() UE(2) UE(3)

UE = unit of
execution ... think of
it as a generic term
for “process or
thread”

67



\ Partitioned Arrays: Block distribution

" |If we parallelize in both dimensions, then we have (n/p)? elements per
processor, and we need to send 4*(n/p) = 4 *sqrt(N/P) messages from
each processor. Asymptotically better than 2*sqrt(N).

UE(0, 0) UEQ, 1)
Qo0 | @0,1 | Q0,2 | 0,3 Qo4 | Q05 | Q0,6 | R0,7
Q10| @11 | Q12 | 213 Q14 | 15 | Q16 | Q1,7
Qa0 | Q21 | Q22 | 23 Qo4 | Q25 | Q26 | Q27
Q30| Qa3,1 | a32 | @33 1@ ags | 43,6 | 43,7

Qg0 | A4,1 | Q42 (@43 Ay 4 )l(a45 )04,6 Q47

55 | @56 | 45,7

50 | @51 | @52 | A53 1“54)| a
P is the @60 | @61 | 6,2 | %63 Qg4 | Q65 | Q66 | V6,7
# of

Q70 | Q71 | Q72 | Q73 74 | Q75 | Q76 | Q77
processors

UE(1, 0) UE(, 1) 68



Partitioned Arrays:

block cyclic distribution

® LU decomposition (A= LU) .. Move
down the diagonal transform rows to | “e0 [ %1 | | %02 %03 | | %04 ]%5) |%6 | %07
“zero the column” below the diagonal. |, |, | S SN o || e
* bl AO,O AO,l AO,2 A0,3
O\ * * * % * %
0 * Y* *ox @20 | @21 A2 | @23 Q24 | A25 Q26 | A2,7
00 | * * * %
000 o aso | 23,1 azo | 33 34 | 235 36 | 23,7
0 00 *
000 * A Ay Az Az
0O 0 O|* * =*
oy - . . a a a a a a a a
" Zeros fill in the right lower triangle of | *° | ™" B ol il
the matrix ... less work to do. @so | @51 | |ass|ass| | asal|ass| | ase|ass
" Balance load with cyclic distribution n n " n
. 2,0 2,1 2,2 2,3
of blocks of A mapped onto a grid of
nodes (2x2 in this case ... colors S . S | e || e e ||
show the mapping to nodes).
a70 | 7,1 a72 | Q13 A4 | Q15 76 | 1,7




Exercise 4: Transpose

" Goal
= Explore interaction of partitioned arrays and message passing
" Program

= We provide a matrix transposition program ... which is one of the
simplest examples of a program based on partitioned arrays.

= Notice how the SPMD pattern interacts with the partitioned array
pattern.

» Modify the program to use isend/irecv and overlap
communication with local transpose to maximize aggregate
bandwidth

70



MIXING MPI AND OPENMP

71



72

How do people mix MPI and OpenMP?

A sequential program
working on a data set

Replicate the program.
Add glue code
Break up the data

*Create the MPI program with
its data decomposition.

* Use OpenMP inside each
MPI process.




Pi program with MPI and OpenMP

Get the MPI
part done
first, then add
OpenMP
pragma
where it
makes sense
to do so

73

#include <mpi.h>

#include “omp.h”

void main (int argc, char *argv[])

{
int 1, my_1d, numprocs; double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_ steps ;
MPI_Init(&arge, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my id) ;
MPI_Comm_Size(MPI_COMM_ WORLD, &numprocs) ;
my_steps = num_steps/numprocs ;

#pragma omp parallel for reduction(+:sum) private(x)
for (I=my 1d*my steps; i<(m_id+1)*my_steps ; i++)

{

x = (1+0.5)*step;

sum += 4.0/(1.0+x*x);
h
sum *= step ;

MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD) ;

73



)\ Key issues when mixing OpenMP and MPI

1. Messages are sent to a process not to a particular thread.
= Not all MPIs are threadsafe. MPI 2.0 defines threading modes:
« MPI_Thread_Single: no support for multiple threads
MPI_Thread_Funneled: Mult threads, only master calls MPI

MPI_Thread_Serialized: Mult threads each calling MPI, but they
do it one at a time.

MPI_Thread_Multiple: Multiple threads without any restrictions
= Request and test thread modes with the function:
MPI_init_thread(desired_mode, delivered_mode, ierr)

2. Environment variables are not propagated by mpirun.
You'll need to broadcast OpenMP parameters and set them
with the library routines.

74 74



)\ Dangerous Mixing of MPl and OpenMP

" The following will work only if MPI_Thread_Multiple is supported ... a
level of support | wouldn’t depend on.

MPI Comm_Rank(MPI COMM_ WORLD, &mpi 1d) ;

#pragma omp parallel

{

int tag, swap_neigh, stat, omp_id = omp_thread num();
long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
big_ugly calc1(omp_id, mpi_id, buffer);
// Finds MPI id and tag
SO

neighbor(omp _id, mpi_id, &swap_neigh, &tag); // messages don’t conflict

MPI_Send (buffer, BUFF_SIZE, MPl_LONG, swap_neigh,
tag, MPI_COMM_WORLD);

MPI1_Recv (incoming, buffer _count, MPI_LONG, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical
;s consume(buffer, omp_id, mpi_id); 75



7\ Messages and threads

® Keep message passing and threaded sections of your program
separate:

» Setup message passing outside OpenMP parallel regions
(MPI_Thread_funneled)

= Surround with appropriate directives (e.g. critical section or master)
(MPI_Thread_Serialized)

= For certain applications depending on how it is designed it may not
matter which thread handles a message. (MPI_Thread_Multiple)

- Beware of race conditions though if two threads are probing on
the same message and then racing to receive it.

76 76



77

Safe Mixing of MPl and OpenMP

Put MPI in sequential regions

MPI_Init(&arge, &argv) ;  MPI Comm Rank(MPI COMM_ WORLD, &mpi id) ;

// a whole bunch of initializations

#pragma omp parallel for
for (I=0;I<N;l++) {

U[l] = big_calc(l);
}

MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, swap_neigh,

tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,

tag, MPI_COMM_WORLD, &stat);
#pragma omp parallel for

for (1=0;I<N;l++) {
U[l] = other_big_calc(l, incoming);
}

consume(U, mpi_id);

Technically Requires
MPI_Thread_funneled, but |

have never had a problem with
this approach ... even with pre-

MPI-2.0 libraries.

— m—

[/




78

MPI_Init(&arge, &argv) ;  MPI Comm Rank(MPI COMM WORLD, &mpi id) ;

// a whole bunch of initializations

#pragma omp parallel Technically Requires

{ MPI_Thread_funneled, but |
#pragma omp for _ have never had a problem with

for (I=0;l<N;l++) - Ull] = big_calc(l); this approach ... even with pre-
#pragma master MPI-2.0 libraries.

{
MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD);

MPI_Recv (incoming, count, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD,
&stat);
}

#pragma omp barrier
#pragma omp for
for (1=0;I<N;l++) U[l] = other_big_calc(l, incoming);

#pragma omp master
consume(U, mpi_id);

}

78



Hybrid OpenMP/MPI works, but is it worth it?

® Literature™ is mixed on the hybrid model: sometimes its better,
sometimes MPI alone is best.

® There is potential for benefit to the hybrid model

= MPI algorithms often require replicated data making them less memory
efficient.

= Fewer total MPlI communicating agents means fewer messages and less
overhead from message conflicts.

= Algorithms with good cache efficiency should benefit from shared caches
of multi-threaded programs.

= The model maps perfectly with clusters of SMP nodes.

® But really, it’s a case by case basis and to large extent depends on the
particular application.

*L. Adhianto and Chapman, 2007 29
79



CLOSING COMMENTS

80



0p)
=
3
)
*
+
o
*
)
-
o
9)
»
o
-
QL
3
)
)
=3
S
@
7
o
=
~
o
g
O
o
S
=
~

140000

120000

100000

80000

60000

40000

20000

0

The downward trend from ‘93 to ‘95 is
due to the old TMC SIMD machines

failing and leaving the list.

1993

|IIH|

1994 1995 1996 1997 1998 1999 2000
Year for the “June top500 list”

Source: the “June lists” from www.top500.org 81




J

1S1| 00Gdo) uo saulyoew ||e 1o} "soo4d JO # JO wng

\ TOp 500: total number of processors (1993-2011)

9000000
8000000
7000000
6000000
5000000
4000000
3000000
2000000
1000000

e Many core processors have
fundamentally changed the game.

e HPC Programmers need to think

in terms of ~100K parallelism
today.

e Order million parallelism will be

available on top-end machines in
the next few years




programming easier?

Extra work upfront, but easier
optimization and debugging means
overall, less time to solution

1043

Message passing
Time

But difficult debugging and
optimization means overall
project takes longer

initial parallelization can be
quite easy

H0J}4

Multi-threading

Time

Proving that a shared address space program using
semaphores is race free is an NP-complete problem*

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321-345, 200@3



)\ Closing comments

®  Question conventional wisdom.

= Do we really need cache coherence? If the memory hierarchy can’t be
hidden, isn’t it better to expose the hierarchy so | can control it?

= Debugging and Maintenance costs more than coding. So extra work up
front to organize a problem to exploit the concurrency (e.g. decomposing
and distributing data structures) shouldn’t be such a big deal.

= SW lives longer than HW. So why would anyone use a non-portable,
non-standard programming model? That’s just nuts!!

® As you move forward through the course ....

= Notice that the patterns used in creating parallel code only weakly
depend on the programming model. | can do loop parallelism with MPI,
message passing with pthreads, kernel parallelism with OpenMP.

» So learn multiple programming models and enjoy them ... but don't
obsess about them. Ultimately, it’s the design patterns and learning how
to apply them to different problems that matter.

84



L‘) ‘{\ MPI References

® The Standard itself:
= at http://www.mpi-forum.org

= All MPI official releases, in both postscript and
HTML

® Other information on Web:
= at http://www.mcs.anl.gov/mpi

= pointers to lots of stuff, including other talks and
tutorials, a FAQ, other MPI pages

85



\ Books for learning MPI

Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999..

Parallel Programming with MPI, by Peter Pacheco,
Morgan-Kaufmann, 1997.

Patterns for Parallel Programing, by Tim Mattson,
Beverly Sanders, and Berna Massingill.

PROGRAMMING

iMPI
e

PATTERNS
FOR PARALLEL
PROGRAMMING




Pi program in MPI

#include <mpi.h>
void main (int argc, char *argv[])

{

int 1, my_1d, numprocs; double x, pi, step, sum = 0.0 ;

step = 1.0/(double) num_ steps ;

MPI_Init(&arge, &argyv) ;
MPI_Comm_Rank(MPI_ COMM_ WORLD, &my id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my_steps = num_ steps/numprocs ;

for (1I=my 1d*my_steps; i<(my_id+1)*my_steps ; i++)

{
x = (1+0.5)*step; —
sum += 4.0/(1.0+x*x); Sum values in “sum” from
‘ ° ’ each process and place it
} *= gt in “pi” on process 0
sum *= step ;

MPI_Reduce(&sum, &pi, 1, MPI_ DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD)

87/72



Reduction

int MPI Reduce (void* sendbuf,
volid* recvbuf, int count,
MPI Datatype datatype, MPI Op op,
int root, MPI Comm comm)

®* MPI_Reduce performs specified reduction operation on specified data
from all processes in communicator, places result in process “root” only.

®* MPI_Allreduce places result in all processes (avoid unless necessary)

Operation Function Operation Function

MPI_ SUM Summation MPI BAND Bitwise AND

MPI PROD Product MPI LOR Logical OR

MPI MIN Minimum value MPI BOR Bitwise OR

MPI MINLOC | Minimum value and location MPI LXOR Logical exclusive OR

MPI MAX Maximum value MPI BXOR Bitwise exclusive OR

MPI MAXLOC | Maximum value and location User-defined It is possible to define new
MPT LAND Logical AND reduction operations

88/72



MPI Pi program performance

Pi program in MPI

#include <mpi.h>
void main (int argc. char *argv[]) Thread | OpenMP | OpenMP MPI
{ or procs| SPMD Pl Loop
int i my_id, numprocs: double x, pi, step. sum "
step = 1.0/(double) num_steps ; critical
MPI Init(&arge, &argy) ; 1 0.85 0.43 0.84
MPI Comm Rank(MPI_COMM WORLD,
MPI_Comm_Size(MPI_COMM_WORLD, § 2 0.48 0.23 0.48
for (i=my_id: i<num_steps: :i=itnumprocs) 3 0.47 0.23 0.46
{
x = (i+0.5)*step: 4 0.46 0.23 0.46
sum += 4 .0/(1.0+x*x);
¥
sum *= step ; _ ) Note: OMP loop used a
MPI Reduce(&sum, &pi, 1, MPI DOUBLE, MPI_SUM, 0, Blocked loop distribution.
MF1 COMM._WORLD) The others used a cyclic
; distribution. Serial .. 0.43.

*Intel compiler (icpc) with —O3 on Apple OS X 10.7.3 with a dual core (four HW thread)

Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 89/72



