
1 1

Introduction to Parallel Computing

Tim Mattson (Intel Labs)

Intel Labs 80 core Research
processor

Intel labs 48 core SCC processor

VRC

21
.4

m
m

26.5mm

System Interface + I/O

D
D

R
3

M
C

D
D

R
3

M
C

D
D

R
3

M
C

D
D

R
3

M
C

PLL

TILE

TILE

JTAG

IBM Cell Broadband engine processor

NVIDIA GTX 480 processor

Intel “Sandybridge” processor

NVIDIA Tegra 3 (quad Arm
Corex A9 cores + GPU)

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

An Intel MIC processor

2 2

Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the
speakers and not their employer.

• This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

• This was a team effort, but if I say anything really
stupid, it’s my fault … don’t blame my collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 … A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing
•  An introduction to parallel hardware
•  Software for parallel systems: key design patterns
•  Closing comments

3

Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

•  In 1965, Intel co-founder Gordon Moore predicted (from
just 3 data points!) that semiconductor density would
double every 18 months.
– He was right! Transistors are still shrinking at the same rate

5

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

A
X-

11
/7

80
)

25%/year

52%/year

??%/year

The good old days …

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

Vax “Star”, CISC
Vax-11/780 Vax “Nautilus”,

CISC, Vax 8700

Sparc V7 RISC
5-stage
Sun 4/260
16.7 MHz PowerPC 604, 100

MHz
7 stage, 4 issue

Pentium 4, 3.6 GHz,
31 stage, 6 uop
issue, 3 CISC issue

Third party names are the property of their owners.

(SPECint)
Uniproccessor
Performance

Pentium 4, 3.0 GHz,
20 stage, 3 CISC
issue (6 uop issue)

The Hardware/Software contract

•  Write your software as
you choose and we
HW-geniuses will take
care of performance.

6

•  The result: Generations of performance ignorant software
engineers using performance-handicapped languages (such
as Java) … which was OK since performance was a HW job.
Third party names are the property of their owners.

7

… Computer architecture and the power wall

0

5

10

15

20

25

30

0 2 4 6 8
Scalar Performance

Po
w

er power = perf ^ 1.74

Pentium M

i486 Pentium

Pentium Pro

Pentium 4 (Wmt)

Pentium 4 (Psc)

Growth in power
is unsustainable

Source: E. Grochowski of Intel

8

… partial solution: simple low power cores

0

5

10

15

20

25

30

0 2 4 6 8
Scalar Performance

Po
w

er power = perf ^ 1.74

Pentium M

i486 Pentium

Pentium Pro

Pentium 4 (Wmt)

Pentium 4 (Psc)

Mobile CPUs
with shallow
pipelines use
less power

Source: E. Grochowski of Intel

Eventually Pentium 4 used
over 30 pipeline stages!!!!

For the rest of the solution consider
power in a chip …

Processor

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

C = capacitance … it measures the ability
of a circuit to store energy:

C = q/V à q = CV

Work is pushing something (charge or q)
across a “distance” … in electrostatic
terms pushing q from 0 to V:

V * q = W.

But for a circuit q = CV so

 W = CV2

power is work over time … or how many
times in a second we oscillate the circuit

 Power = W* F à Power = CV2f

... The rest of the solution add cores

Processor

f

Processor

f/2

Processor

f/2

f

Input Output

Input

Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f Capacitance = 2.2C

Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W.,
"Optimizing power using transformations," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995

Source:
Vishwani Agrawal

11 11

Microprocessor trends

IBM Cell	

NVIDIA Tesla
C1060 Intel SCC Processor	

ATI RV770

3rd party names are the property of their owners.	

Individual processors are many core (and often heterogeneous) processors.

80 cores	

 30 cores	

8 wide SIMD	

1 CPU + 6 cores	

10 cores 	

16 wide SIMD	

48 cores	

Source: OpenCL tutorial, Gaster, Howes, Mattson, and Lokhmotov, HiPEAC 2011

ARM MPCORE Intel Nehalem

4 cores	

4 cores	

Summer School Lecture 1 12"

So how many cores?

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,

and more powerful.

n  Let’s assume Moore’s law
transistor doubling results in
a doubling of the number of
cores.
n  50 cores in 2010

n  100 cores in 2012

n  200 cores in 2014

n  400 cores in 2016

n  800 cores in 2018

n  1600 cores in 2020

n  So 1000 cores in 10 years is
not far fetched.

Market forces, not technology, will drive core counts

The result…

13

+

=
A new contract … HW people will do what’s natural
for them (lots of simple cores) and SW people will
have to adapt (rewrite everything)

The problem is this was presented as an ultimatum
… nobody asked us if we were OK with this new

contract … which is kind of rude.

14

The many core challenge
•  A harsh assessment …

– We have turned to multi-core chips not because of the success of our
parallel software but because of our failure to continually increase CPU
frequency.

n  Result: a fundamental and dangerous (for the computer
industry) mismatch
¨  Parallel hardware is ubiquitous.
¨  Parallel software is rare

n  The Many Core challenge …
n  Parallel software must become as common as parallel

hardware

Fortunately, we don’t have to start over “from scratch”.
We can draw from past experience with parallelism

from high performance computing

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing
•  An introduction to parallel hardware
•  Software for parallel systems: key design patterns
•  Closing comments

15

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing

– Basic definitions: Parallelism and Concurrency
– Notions of parallel performance
– The limits of scalability
– Sources of parallel overhead

•  An introduction to parallel hardware
•  Software for parallel systems: key design patterns
•  Closing comments

16

17"

Concurrency vs. Parallelism!

§  Two important definitions:"
§  Concurrency: A condition of a system in which multiple tasks

are logically active at one time."
§  Parallelism: A condition of a system in which multiple tasks

are actually active at one time."

Concurrent, parallel Execution

Concurrent, non-parallel Execution

18"

Concurrency vs. Parallelism!

§  Two important definitions:"
§  Concurrency: A condition of a system in which multiple tasks

are logically active at one time."
§  Parallelism: A condition of a system in which multiple tasks

are actually active at one time."

Programs

Concurrent
Programs

Parallel
Programs

19"

Concurrency in Action: a web server!

§  A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):"
§  An arbitrary, large number of clients make requests which reference

per-client persistent state"
§  Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images "

Images
The Internet

Image
Server

HTML
Server

Client Client Client Client

20"

Images
The Internet

Image
Server

HTML
Server

Client

Concurrency in Action: a web server!

HTTP Request

§  A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):"
§  An arbitrary, large number of clients make requests which reference

per-client persistent state"
§  Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images "

For each
client …

21"

Images
The Internet

Image
Server

HTML
Server

Client

Concurrency in Action: a web server!

Image Request

HTML doc.

§  A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):"
§  An arbitrary, large number of clients make requests which reference

per-client persistent state"
§  Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images "

For each
client …

22"

Images
The Internet

Image
Server

HTML
Server

Client

Concurrency in Action: a web server!

Images

§  A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):"
§  An arbitrary, large number of clients make requests which reference

per-client persistent state"
§  Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images "

For each
client …

23"

Concurrency in Action: a web server!

§  The HTML server, image server, and clients (you have to plan on
having many clients) all execute at the same time"

§  The problem of one or more clients interacting with a web server not
only contains concurrency, the problem is fundamentally current. It
doesnʼt exist as a serial problem."

Concurrent application: An application for which
the problem definition is fundamentally concurrent."

24"

Concurrency in action: Mandelbrot Set!

§  The Mandelbrot set: An iterative map in the complex plane"

czz nn +=+
2

1 z0 = 0, c is constant

§  Plot rate of divergence
for different values of C."

25"

Concurrency in action: Mandelbrot Set!
int mandel (complex C) {"
 int n;"
 double a = C.real();"
 double b = C.imag();"
 double zr = 0.0 , zi = 0.0;"
 double tzr , tzi ;"
 n = 0;"
 while (n < max_iters && sqrt (zr*zr + zi*zi) < t) {"
 tzr = (zr*zr - zi*zi) + a;"
 tzi = (zr*zi + zr*zi) + b;"
 zr = tzr ;"
 zi = tzi ;"
 n = n+1;"
 }"
 return n;"
}"

Function to compute the iterative map for
a single point C where

C = a + b * i

Where i is the square root of (-1)

“t” is a constant that
defines a threshold
beyond which we
consider the iterative
map to diverge.

26"

Concurrency in action: Mandelbrot Set!

§  To generate the famous Mandelbrot set image, we use the function
mandel(C) where C comes from the points in the complex plane. "

§  At each point C, use n=mandel
(C) to determine if:"
§  The map converges

(n=max_iters), assign the
color black"

§  The map diverges
(n<max_iters), assign the
color based on the value of
n"

§  The computation for each point
is independent of all the other
points … a so-called
embarrassingly parallel
problem . "

CReal

C
im

aginary

27"

Concurrency in action: Mandelbrot Set!

§  The following is simplified code for the serial Mandelbrot program."

for (i=0; i<N; i++){

 for (j=0; j<N; j++) {

 complex c = get_const_at_pixel(i,j);

 complex image[i][j] = mandel(c);

 }

}

28"

Concurrency in action: Mandelbrot Set!

§  Loop iterations are independent, so we can create a parallel version of
this program as follows … "

for (i=0; i<N; i++){

 for (j=0; j<N; j++) {

 complex c = get_const_at_pixel(i,j);

 complex image[i][j] = mandel(c);

 }

}

•  Combine the two loops into one big loop
and execute them in parallel

#pragma omp parallel for collapse (2)

§  The following is simplified code for the serial Mandelbrot program.… "

29"

Concurrency in action: Mandelbrot Set!

§  The problem of
generating an image of
the Mandelbrot set can
be viewed serially."

§ We choose to exploit the
concurrency contained in
this problem so we can
generate the image in
less time"

Parallel application: An application composed of
tasks that actually execute concurrently in order to (1)

consider larger problems in fixed time or (2) complete in
less time for a fixed size problem."

30"

Concurrency vs. Parallelism: wrap up!

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

§  Key points:"
§  A web server had concurrency in its problem definition … it doesnʼt

make sense to even think of writing a “serial web server”."
§  The Mandelbrot program didnʼt have concurrency in its problem

definition. It would take a long time, but it could be serial "

§  Both cases use concurrency:"
§  A concurrent application is

concurrent by definition. "
§  A parallel application solves a

problem that could be serial, but
it is run in parallel by …"

1.  find concurrency in the
problem"

2.  expose the concurrency in
the source code."

3.  exploit the exposed
concurrency to complete a
job in less time."

31"

The Parallel programming process: !

Original Problem Tasks, shared and local data

Find Concurrency
(Decomposition)

32"

Decomposition in parallel programs!

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time."

§  EVERY parallel program requires a
task decomposition and a data
decomposition:"
§  Task decomposition: break the

application down into a set of
tasks that can execute
concurrently.."

§  Data decomposition: How must
the data be broken down into
chunks and associated with
threads/processes to make the
parallel program run efficiently."

33"

Decomposition in parallel programs!

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time."

§  EVERY parallel program requires a
task decomposition and a data
decomposition:"
§  Task decomposition: break the

application down into a set of
tasks that can execute
concurrently.."

§  Data decomposition: How must
the data be broken down into
chunks and associated with
threads/processes to make the
parallel program run efficiently."

What’s a task
decomposition for this
problem?

34"

Decomposition in parallel programs!

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time."

§  EVERY parallel program requires a
task decomposition and a data
decomposition:"
§  Task decomposition: break the

application down into a set of
tasks that can execute
concurrently.."

§  Data decomposition: How must
the data be broken down into
chunks and associated with
threads/processes to make the
parallel program run efficiently."

Hint: Think of the source
code and work that is
compute-intensive that can
execute independently

for (i=0; i<N; i++){

 for (j=0; j<N; j++) {

 complex c = get_const_at_pixel(i,j);

 complex image[i][j] = mandel(c);

 }

}

35"

Decomposition in parallel programs!

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time."

§  EVERY parallel program requires a
task decomposition and a data
decomposition:"
§  Task decomposition: break the

application down into a set of tasks
that can execute concurrently.."

§  Data decomposition: How must the
data be broken down into chunks
and associated with threads/
processes to make the parallel
program run efficiently."

Task: the computation required
for each pixel … the body of the
loop for a pair (i,j).

36"

Decomposition in parallel programs!

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time."

§  EVERY parallel program requires a
task decomposition and a data
decomposition:"
§  Task decomposition: break the

application down into a set of
tasks that can execute
concurrently.."

§  Data decomposition: How must
the data be broken down into
chunks and associated with
threads/processes to make the
parallel program run efficiently."

Suggest a data decomposition for
this problem … assume a quad
core shared memory PC.

37"

Decomposition in parallel programs!

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time."

§  EVERY parallel program requires a
task decomposition and a data
decomposition:"
§  Task decomposition: break the

application down into a set of
tasks that can execute
concurrently.."

§  Data decomposition: How must
the data be broken down into
chunks and associated with
threads/processes to make the
parallel program run efficiently."

Hint: you can define the data
decomposition to match the task,
but would that be efficient in this
case?

Task: the computation required
for each pixel … the body of the
loop for a pair (i,j).

38"

Map the pixels into row blocks and
deal them out to the cores. This
will give each core a memory
efficient block to work on.

Decomposition in parallel programs!

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time."

§  EVERY parallel program requires a
task decomposition and a data
decomposition:"
§  Task decomposition: break the

application down into a set of tasks
that can execute concurrently.."

§  Data decomposition: How must the
data be broken down into chunks
and associated with threads/
processes to make the parallel
program run efficiently."

39"

Map the pixels into row blocks and
deal them out to the cores. This
will give each core a memory
efficient block to work on.

Decomposition in parallel programs!

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time."

§  EVERY parallel program requires a
task decomposition and a data
decomposition:"
§  Task decomposition: break the

application down into a set of tasks
that can execute concurrently.."

§  Data decomposition: How must the
data be broken down into chunks
and associated with threads/
processes to make the parallel
program run efficiently."

But given this data decomposition, it is
effective to think of a task as the update
to a pixel? Should we update our task
definition given the data decomposition?

40"

Map the pixels into row blocks and
deal them out to the cores. This
will give each core a memory
efficient block to work on.

Decomposition in parallel programs!

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time."

§  EVERY parallel program requires a
task decomposition and a data
decomposition:"
§  Task decomposition: break the

application down into a set of tasks
that can execute concurrently.."

§  Data decomposition: How must the
data be broken down into chunks
and associated with threads/
processes to make the parallel
program run efficiently."

Yes. You go back and forth between
task and data decomposition until you
have a pair that work well together. In
this case, let’s define a task as the
update to a row-block

41"

The Parallel programming process: !

Original Problem Tasks, shared and local data

Find Concurrency
(Decomposition)

42"

The Parallel programming process: !

Original Problem Tasks, shared and local data

Find Concurrency
(Decomposition)

Implementation
strategy

Corresponding source code

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int Num = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N, Data);
 for (int I= ID; I<N;I=I+Num){
 tmp = func(I, Data);
 Res.accumulate(tmp);
 }
}

Units of execution + new shared data for extracted
dependencies

43"

The Parallel programming process: !

Original Problem Tasks, shared and local data

Find Concurrency
(Decomposition)

Implementation
strategy

Corresponding source code

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int Num = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N, Data);
 for (int I= ID; I<N;I=I+Num){
 tmp = func(I, Data);
 Res.accumulate(tmp);
 }
}

Units of execution + new shared data for extracted
dependencies

Programming Notations
we will consider:

•  OpenMP
•  OpenACC
•  OpenCL
•  CUDA
•  MPI

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing

– Basic definitions: Parallelism and Concurrency
– Notions of parallel performance
– The limits of scalability
– Sources of parallel overhead

•  An introduction to parallel hardware
•  Software for parallel systems: key design patterns
•  Closing comments

44

45"

Parallel Performance!
§  MP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern)."

0

0,5

1

1,5

2

2,5

3

3,5

4

0 10 20 30 40 50

G
Fl

op
s

cores

§  Intel SCC 48 processor, 500 MHz core, 1 GHz router, DDR3 at 800 MHz."

46"

Talking about performance!

)(
)1(

)(
PTime

Time
PS

par

seq=

PPS =)(
n  Perfect Linear Speedup:

happens when no parallel
overhead and algorithm is
100% parallel.

n  Speedup: the increased
performance from running
on P processors

47"

Performance scalability!
§  HP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern)."

Intel SCC 48 processor,
500 Mhz core, 1 Ghz

router, DDR3 at 800 Mhz."

0	

20	

40	

60	

80	

100	

120	

140	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Cores

S
pe

ed
up

 =
 T

pa
r(1

)/T
pa

r(P
)

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010

48"

Performance scalability!
§  HP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern)."

Intel SCC 48 processor,
500 Mhz core, 1 Ghz

router, DDR3 at 800 Mhz."

0	

20	

40	

60	

80	

100	

120	

140	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Cores

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010

Notice anything
strange about this

scalability plot? S
pe

ed
up

 =
 T

pa
r(1

)/T
pa

r(P
)

49"

Performance scalability!
§  HP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern)."

Intel SCC 48 processor,
500 Mhz core, 1 Ghz

router, DDR3 at 800 Mhz."

0	

20	

40	

60	

80	

100	

120	

140	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Cores

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010

The speedup is
greater than the
number of cores! S

pe
ed

up
 =

 T
pa

r(1
)/T

pa
r(P

)

50"

Talking about performance!

)(
)1(

)(
PTime

Time
PS

par

seq=

PPS =)(

PPS >)(

n  Perfect Linear Speedup:
happens when no parallel
overhead and algorithm is
100% parallel.

n  Super-linear Speedup: Speed
grows faster than the number of
processing elements

n  Speedup: the increased
performance from running
on P processors

51"

Performance scalability!
§  HP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern)."

Intel SCC 48 processor,
500 Mhz core, 1 Ghz

router, DDR3 at 800 Mhz."

0	

20	

40	

60	

80	

100	

120	

140	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Cores

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010

What caused our
superlinear speedup?

S
pe

ed
up

 =
 T

pa
r(1

)/T
pa

r(P
)

52"

SuperLlnear Speedup!
§  HP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern)."

0	

20	

40	

60	

80	

100	

120	

140	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Cores

0.03 GFs

0.245 GFs

0.78 GFs

3.45 GFs

2.4 GFs

1.6 GFs
Why is this
number so

small?
Intel SCC 48 processor,

500 Mhz core, 1 Ghz
router, DDR3 at 800 Mhz."

S
pe

ed
up

 =
 T

pa
r(1

)/T
pa

r(P
)

53"

Why the Superlinear speedup?

R = router, MC = Memory Controller,

P54C
16KB L1-D$
16KB L1-I$

256KB
unified

L2$

Mesh
I/F

To
Router

P54C
16KB L1-D$
16KB L1-I$

256KB
unified

L2$

Message
Passing
Buffer
16 KB

R R

Tile Tile

Tile

Tile Tile

Tile

Tile

Tile

R
Tile

Tile

R
Tile

Tile

R

Tile Tile

Tile

R
Tile

R

to PCI

Tile

Tile

R
Tile

Tile

R

Tile Tile

Tile

R
Tile

R

R R R R R R

R R R R R R

R MC

MC MC

MC

•  Intel SCC 48 core research chip

•  SCC caches are so small, even a small portion of our O(1000) matrices won’t fit.
Ø  Hence the single node performance measures memory overhead.

•  As you add more cores, the aggregate cache size grows.
Ø  Eventually the tiles of the matrices being processed fits in the caches and

performance sharply increases à superlinear speedup.

P54C = second generation
Pentium® core,

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010

54"

A more typical speedup plot!
§  CHARMM molecular dynamics program running the myoglobin benchmark on an

Intel Paragon XP/S supercomputer with 32 Mbyte nodes running OSF R 1.2. (The
nbody computational pattern). Speedup relative to running the parallel program on one node."

0	

20	

40	

60	

80	

100	

120	

140	

160	

0	
 100	
 200	
 300	
 400	
 500	
 600	

Nodes

Porting Applications to the MP-Paragon Supercomputer: The CHARMM Molecular Dynamics program,
T.G. Mattson, Intel Supercomputers Userʼs Group meeting, 1995."

Strong scaling … the
speedup trends for a fixed

size problem.

S
pe

ed
up

 =
 T

pa
r(1

)/T
pa

r(P
)

55"

Efficiency!

v  Efficiency measures how well the parallel systemʼs resources are
being utilized. "

n  Where P is the number of nodes and T is the elapsed
runtime.

P
PS

PTimeP
Time

par

seq)(
)(*
==ε

56"

Efficiency!
§  CHARMM molecular dynamics program running the myoglobin benchmark on an

Intel Paragon XP/S supercomputer with 32 Mbyte nodes running OSF R 1.2. (The
nbody computational pattern). Speedup relative to running the parallel program on one node."

Nodes

E
ffi

ci
en

cy

Porting Applications to the MP-Paragon Supercomputer: The CHARMM Molecular Dynamics program, T.G. Mattson, Intel
Supercomputers Userʼs Group meeting, 1995."

0	

0,2	

0,4	

0,6	

0,8	

1	

1,2	

0	
 100	
 200	
 300	
 400	
 500	
 600	

57"

Little's Law!

§ Consider a system where tasks arrive periodically. The
system takes some finite amount of time to execute
each job."

Black-Box
System

•  Suppose that the system is in Equilibrium: the average rate
at which tasks arrive is equal to the average rate at which
they are completed. Then, the average over time:

tasks in the system = response time * arrival rate

Incoming Tasks Completed Tasks

58"

Little's Law!

§  Tells us the number of "in flight" tasks we must have to
keep our system busy, once we know how long tasks take
to execute and the rate at which we can execute them."

§ Applies in many situations:"
§  # Outstanding load instrs = DRAM latency * DRAM bandwidth"
§  Pipeline Depth = Instruction Latency * Pipeline Width "
§ Concurrency = latency * bandwidth!

tasks in the system = response time * arrival rate

59"

Littleʼs law example ...!

§  Consider an NVIDIA GTX285 GPU. "
§  Bandwidth to DRAM, 128 byte/cycle"
§  Latency to DRAM, 500 cycles"
§  An OpenCL work-item on a GTX285

issues 4 byte memory requests"
§  How many outstanding memory requests must

be sustained to fully utilize the chip."
§  What does this suggest concerning how many

work-items you need in your program to keep
this utilized at peak clock-rate?" NVIDIA GTX285

(Tesla C1060)

30 cores	

8 wide SIMD	

§  Littleʼs law … concurrency = latency * bandwidth"
§  Key … pay attention to units. Requests per clock cycle is what I need."
§  (128 bytes/cycle)*(1 request/4 bytes) = 32 requests/cycle"
§  Concurrency = 500 cycles * 32 requests/cycle = 16000 requests"

§  In other words, you need 16 K threads to fully saturate this GPU. "

Source: GPU Computing Gems jade edition, Wen Mei Hwu

60"

Granularity!

§ Granularity is the ratio of compute time to
communication time"
§  Hardware: compute rate vs. communication rate … also

expressed as flops relative to memory latency"
§  Software: How much computation you need to compensate

for parallel overhead."

Key rule: Granularity demanded by software must be met or
bettered by hardware. Fine grained applications do not run

well on coarse grained systems.

61"

Parallel Architecture Granularity!
§  An NVIDIA GTX285 GPU. "

§  30 1.3 GHz Nvidia Streaming SIMD cores
each with 8-wide SIMD (240 “CUDA cores”)"

§  2.5 DP GFLOPS per ONE core!
§  Communication through shared memory"
§  Latency to DRAM, 500 cycles"

§  A Linux Cluster"
§  Many Linux PCʼs."

•  Intel Core 2 Q6600 Kensfield, 4 core,
2.4 GHz. 38 GFLOP DP peak"

§  Communication over 1 gigbit ethernet"
§  Communication latency ~ 40 microseconds

(96 thousand cycles)"

§  A multiprocessor PC"
§  2 sockets each with a CPU"

•  Intel Core 2 Q6600 Kensfield, 4 core,
2.4 GHz. 38 GFLOP DP peak"

§  Communication through shared memory"
§  Latency to DRAM, 200 .. to L3 40 cycles"

Consider how many FLOPS
your algorithm needs to

balance a single
communication

~1000 DP FLOPS

1.5 * 106 DP FLOPS

3200 DP FLOPS
~150 DP FLOPS
between cores
sharing an L3

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing

– Basic definitions: Parallelism and Concurrency
– Notions of parallel performance
– The limits of scalability
– Sources of parallel overhead

•  An introduction to parallel hardware
•  Software for parallel systems: key design patterns
•  Closing comments

62

63"

Amdahl's Law: History!

§ Gene Amdahl was a computer
architect in the 1960's at IBM"

§  In 1967, refuted the idea that parallel
computing was a practical path to
improving program performance."

§  Example: Compare these two systems" IBM System 360, ca. 1964

•  The IBM System 360:
•  A single-processor machine, running at 16 MHz.
•  1 FP addition per 60 ns cycle, and 1 FP mul in ~10 60 ns cycles,

and execute multiple instructions simultaneously
•  ILLIAC IV:

•  “The first Supercomputer” … installed at NASA Ames in 1975.
•  256 processors … could perform 256 FP adds in 240 ns.

64"

Amdahl's Law!

§  Clearly, the ILLIAC will run programs much faster than the S/
360: It has 60x higher instruction throughput!"
§  ... if you always have 256 independent instructions"

§  Amdahl argued that large portions of many programs are not
parallelizable. Parallel hardware does not help serial code: "

Each block is 1 s …
Runtime = 3 s

Runtime = 2.25 s The “middle
second” runs

perfectly parallel
on 4 threads

65"

Amdahl's Law!

!"#$%$&= ​​!"#$↓)$*"+, +!"#$↓.+*+,,$,"/+0,$ 

§ What is the maximum speedup you can expect from a parallel program?"
§  Consider a sequential program with runtime: "

​​!"#$↓)$& ↓  

§ We can think of this program as consisting of two parts … one that can
benefit from multiple processing elements (parallel) and a second part that
is fundamentally serial."

§  The runtime is therefore:"

§ We can express this in terms of a fraction of the program that is serial and
a fraction of the program that is parallel or"

!"#$%$&=%$*"+,_1*+23"45∗!"#$%$& + parallel_fraction * Timeseq

66"

Amdahlʼs Law!
v  If we run the program on P processing elements and assume linear

speedup, then our time for the parallel program becomes:"
 "

seqpar Time
P
fractionparallelfractionserialPTime *)__()(+=

n  If you had an unlimited number of processors:

n  If the serial_fraction is α and the parallel_fraction is (1- α), the speedup is:

n  The maximum possible speedup is:

α
1

=S Amdahl’s Law

)(H)= ​​!"#$↓%$&  /​!"#$↓.+* (H) = ​​!"#$↓%$& /(K+ ​1−K/H )∗​
!"#$↓%$&  = ​1/(K+ ​1−K/H ) 

​​lim┬H→∞  ⁠​
1−K/H  =0

0

67"

Amdahl's Law and the CHARMM MD
program!

§  We Profiled CHARMM running on the Paragon XPS to find the time
spent in code that was not parallelized … concluded that CHARMM
has a serial fraction of ~0.003."

n  The maximum possible speedup is: S= 1/0.003 = 333

0	

50	

100	

150	

200	

250	

0	
 100	
 200	
 300	
 400	
 500	
 600	

Est. from serial fraction

Observed

Nodes

S
pe

ed
up

 =
 T

pa
r(1

)/T
pa

r(P
)

68"

What if the problem size grows!
§  Consider the dense linear algebra computational pattern (which we

will cover in much more detail later)."
§  A key feature is that operations between matrices (such as LU

factorization or matrix multiplication) scale as the cube of the order
of the matrix."

§  Assume we can parallelize the linear algebra operation (O(N3)) but
not the loading of the matrices from memory (O(N2)). How does the
serial fraction vary with matrix order (assume loading from memory
is much slower than a floating point op)."

What would plots of runtime vs. problem size look like
for the N squared and N cubed terms?

What would plots of serial fraction vs. problem size look

like for the N squared and N cubed terms?

69"

What if the problem size grows!
§  Consider the dense linear algebra design pattern (which we will cover in

much more detail later)."
§  A key feature is that operations between matrices (such as LU factorization

or matrix multiplication) scale as the cube of the order of the matrix."
§  Assume we can parallelize the linear algebra operation (O(N3)) but not the

loading of the matrices from memory (O(N2)). How does the serial fraction
vary with matrix order (assume loading from memory is much slower than a
floating point op)."

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

0	
 20	
 40	
 60	
 80	

O(N^2)	

O(N^3)	

0	

0,2	

0,4	

0,6	

0,8	

1	

1,2	

0	
 20	
 40	
 60	
 80	

Runtime vs.
matrix order Serial fraction

vs. matrix order

70"

What if the problem size grows!
§  Consider the dense linear algebra design pattern (which we will cover in

much more detail later)."
§  A key feature is that operations between matrices (such as LU factorization

or matrix multiplication) scale as the cube of the order of the matrix."
§  Assume we can parallelize the linear algebra operation (O(N3)) but not the

loading of the matrices from memory (O(N2)). How does the serial fraction
vary with matrix order (assume loading from memory is much slower than a
floating point op)."

-­‐1E+09	

0	

1E+09	

2E+09	

3E+09	

4E+09	

5E+09	

6E+09	

0	
 500	
 1000	
 1500	
 2000	

O(N^2)	

O(N^3)	

Run8me	
 vs.	

matrix	
 order	

0	

0,2	

0,4	

0,6	

0,8	

1	

1,2	

0	
 500	
 1000	
 1500	
 2000	

Serial	
 frac8on	
 vs.	

matrix	
 order	

For much larger Matrix orders …

71"

Weak Scaling: a response to Amdhal!
§  Gary Montry and John Gustafson (1988, Sandia National Laboratories)

observed that for many problems the serial fraction of a function of the
problem size (N) decreases:"

§  In other words … if parallelizable computations asymptotically dominate the
runtime, then you can increase a problem size until limitations due to
Amdahlʼs law can be ignored. This is an easier form of scalability for a
programmer to meet … so its called “weak scaling”:"
§  Weak Scaling: Performance of an application when the problem size

increases with the number of processors (fixed size problem per node)"

0)(lim
arg

=
→

N
elNN
α

PNPS el →),(arg

)1(*))(1)((

)1(
),(

seq

seq

T
P
NN

T
NPS

α
α

−
+

=

72"

Example of weak scaling!

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf

A time dependent
Quantum
simulation of
helium atoms
with 20 grid units
per processing
element.

IBM Blue Gene P,
0.85 GHz,
PowerPC 450, 4-
way processors

E
xe

cu
tio

n
tim

e
(s

ec
s)

Cores

73"

Example of weak scaling!

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf

A time dependent
Quantum
simulation of
helium atoms
with 20 grid units
per processing
element.

IBM Blue Gene P,
0.85 GHz,
PowerPC 450, 4-
way processors

E
xe

cu
tio

n
tim

e
(s

ec
s)

Cores

What does ideal scaling look
on the time vs. cores plot when
you have ideal scaling?

74"

Example of weak scaling!

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf

A time dependent
Quantum
simulation of
helium atoms
with 20 grid units
per processing
element.

IBM Blue Gene P,
0.85 GHz,
PowerPC 450, 4-
way processors

E
xe

cu
tio

n
tim

e
(s

ec
s)

Cores

For a “perfectly scalable”
application, the trend line for
weak scaling should be flat.

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing

– Basic definitions: Parallelism and Concurrency
– Notions of parallel performance
– The limits of scalability
– Sources of parallel overhead

•  An introduction to parallel hardware
•  Software for parallel systems: key design patterns
•  Closing comments

75

76"

Limitations to scalability!

§  Remember the speedup plot we discussed earilier?"

77"

Limitations to scalability!

§  Remember the speedup plot we discussed from last time?"

Why does the app.
Scale worse than
we’d expect from
Amdahl’s law?

78"

Why does the app.
Scale worse than
we’d expect from
Amdahl’s law?

Limitations to scalability!

§  Remember the speedup plot we discussed from last time?"

Amdahl’s law ignores
overheads associated
with the implementation
of the parallelism.

These overheads may
have a huge impact on
observed speedups.

79"

Parallel overheads: The algorithmic
structure of many HPC codes (part 1)!

§  A large fraction of HPC applications (such as CHARMM) use a message
passing notation with the Single Program Multiple Data or SPMD design
pattern."

Original program Parallel program

80"

Parallel overheads: The algorithmic
structure of many HPC codes (part 2)!

§  And many SPMD programs use an
additional simplification … “Bulk
Synchronous Processing”."

§  Each process maintains a local view of
the global data"

§  A problem is broken down into phases
each composed of two subphases:"

•  Compute on local view of data (the
“squiggles” in the figure)"

•  Communicate to update global view
on all processes (collective
communication)."

§  Continue phases until complete"

0 1 2 3
Process IDs

Tim
e

81"

Parallel overheads with the Bulk
Synchronous Processing pattern!

§  Two major sources of parallel
overhead:"

0 1 2 3
Process IDs

Tim
e

1. Load imbalance: the slowest process
determines when everyone is done.
Time waiting for other processes to
finish (i.e. unequal lengths of the
“squiggles” in the figure) is time
wasted."

2. Communication overhead: A cost
only incurred by the parallel
program. Grows with the number of
processes for collective comm."

82"Source: CS267 Lecture 7"

More Collective Data Movement!

A
B

D
C

A B C D
A B C D

A B C D
A B C D

Allgather
P0
P1

P2

P3

P0
P1

P2

P3

A
B

D
C

A+B+C+D
AllReduce A+B+C+D

A+B+C+D
A+B+C+D

P0
P1

P2

P3

P0
P1

P2

P3

83"

Molecular dynamics!

v  The potential energy, U(r), is divided
into two parts:"
§  Bonded terms – Groups of atoms

connected by chemical bonds."
§  Non-bonded terms – longer range

forces (e.g. electrostatic). "
•  An N-body problem … i.e. every

atom depends on every other
atom, an O(N2) problem."

Bonds, angles and torsions
Source: Izaguirre, Ma and Skeel, SAC’03 slides, March 10 2003

n  Models motion of atoms in
molecular systems by solving
Newton’s equations of motion:

84"

Molecular dynamics simulation!

real atoms(3,N)
real force(3,N)

int neighbors(MX,N)
// Every PE has a copy of atoms and force
loop over time steps

 parallel loop over atoms
Compute neighbor list (for my atoms)
Compute nonbonded forces (my atoms and neighbors)

Barrier
All reduce (Sum force arrays, each PE gets a copy)
Compute bonded forces (for my atoms)
Integrate to Update position (for my atoms)
All_gather(update atoms array)

 end loop over atoms
end loop

We used a cutoff method … the
potential energy drops off quickly so
atoms beyond a neighborhood can be
ignored in the nonbonded force calc.

85"

Molecular dynamics simulation!

real atoms(3,N)
real force(3,N)

int neighbors(MX,N) //MX = max neighbors an atom may have

// Every PE has a copy of atoms and force

loop over time steps
 parallel loop over atoms

Compute neighbor list (for my atoms)

Compute long range forces (my atoms and neighbors)
Barrier
All reduce (Sum force arrays, each PE gets a copy)
Compute bonded forces (for my atoms)
Integrate to Update position (for my atoms)

All_gather(update atoms array)
 end loop over atoms
end loop

synchronization

Collective
Communication

86"

Limitations to scalability!

§  Remember the speedup plot we discussed from last time?"

Why does the app.
Scale worse than
we’d expect from
Amdahl’s law?

87"

CHARMM Myoglobin Benchmark !
§  Percent of runtime for the different phases of the computation"

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

integ	

list	

comm	

wait	

Ebond	

Enon	

512 256 128 64 148 32 16 8 1
Number of Nodes

P
er

ce
nt

 o
f t

ot
al

 ru
nt

im
e

CHARMM running on
a distributed memory,
MPP supercomputer
using a message
passing library (NX)

88"

Charm Myoglobin Benchmark !
§  Percent of runtime for the different phases of the computation"

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

integ	

list	

comm	

wait	

Ebond	

Enon	

512 256 128 64 148 32 16 8 1
Number of Nodes

P
er

ce
nt

 o
f t

ot
al

 ru
nt

im
e

Enon (the n-body term) scales better than
the other computational terms. This was
taken into account in the Serial fraction
estimate for the Amdahl’s law analysis

O(N)

O(N)

O(N2)

O(MX*N)

89"

Charm Myoglobin Benchmark !
§  Percent of runtime for the different phases of the computation"

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

integ	

list	

comm	

wait	

Ebond	

Enon	

512 256 128 64 148 32 16 8 1
Number of Nodes

P
er

ce
nt

 o
f t

ot
al

 ru
nt

im
e

The fraction of time spent waiting grows
with the number of nodes due to two
factors: (1) the cost of the barrier grows
with the number of nodes, and (2) variation
in the work for each node increases as
node count grows … load imbalance.

90"

Synchronization overhead!

§  Processes finish their work and must assure that all processes are
finished before the results are combined into the global force array."
§  This is parallel overhead since this doesnʼt occur in a serial

program."
§  The synchronization construct itself takes time and in some

cases (such as a barrier) the cost grows with the number of
nodes."

CPU 3
CPU 2
CPU 1
CPU 0

CPU 3
CPU 2
CPU 1
CPU 0

Time

91"

CPU 3
CPU 2
CPU 1

Load imbalance !

§  If some processes finish their share of the computation early, the
time spent waiting for other processors is wasted."
§  This is an example of Load Imbalance!

Time

CPU 0

CPU 3
CPU 2
CPU 1
CPU 0

92"

Charm Myoglobin Benchmark !
§  Percent of runtime for the different phases of the computation"

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

integ	

list	

comm	

wait	

Ebond	

Enon	

512 256 128 64 148 32 16 8 1
Number of Nodes

P
er

ce
nt

 o
f t

ot
al

 ru
nt

im
e

The communication growth is the chief
culprit limiting performance in this case.

93"

Communication!

§  On distributed-memory machines (e.g. a cluster), communication
can only occur by sending discrete messages over a network"
§  The sending processor marshals the shared data from the

application's data structures into a message buffer"
§  The receiving processor must wait for the message to arrive ..."
§  ... and un-pack the data back into data structures "
"

Time

CPU 0

CPU 3

94"

Communication!

§  On distributed-memory machines (e.g. a cluster), communication
can only occur by sending discrete messages over a network"
§  The sending processor marshals the shared data from the

application's data structures into a message buffer"
§  The receiving processor must wait for the message to arrive ..."
§  ... and un-pack the data back into data structures"

§  If the communication protocol is synchronous, then the sending
processor must wait for acknowledgement that the message was
received "
"

Time

CPU 0

CPU 3

95"

Charm Myoglobin Benchmark !
§  Percent of runtime for the different phases of the computation"

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

integ	

list	

comm	

wait	

Ebond	

Enon	

512 256 128 64 148 32 16 8 1
Number of Nodes

P
er

ce
nt

 o
f t

ot
al

 ru
nt

im
e Remember these are

collective comms.

Composed of multiple
messages each of
which incur these
overheads

96"

Limitations to scalability!

§  Remember the speedup plot we discussed from last time?"

Sync, wait, and
comm. overheads
combined explain
this gap

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing
•  An introduction to parallel hardware
•  Software for parallel systems: key design patterns
•  Closing Comments

97

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing
•  An introduction to parallel hardware

– History of parallel hardware
– The major building blocks of modern parallel systems

– Multicore processors
–  The GPU

•  Software for parallel systems: key design patterns
•  Closing Comments

98

99"

The Essence of supercomputing:
Amazing science

Scientific supercomputing is
addictive. Once you wrap your
brain around these sorts of
problems, there is no going back.

A study of the H1N1 virus
and how mutations render
anti-virus drugs ineffective."
The video shows the
electrostatic surface
potential around the drug
binding site of the H1N1
neuraminidase enzyme…
with unbinding and
rebinding of Tamiflu into
the active site on the
protein."

Source: http://www.ks.uiuc.edu/Research/influenza, Klaus Schulten’s biophysics group at UIUC
using their NAMD program running on clusters (Ranger at TACC) and Nvidia GPUs

100"

Tracking Supercomputers: Top500!
§  Top500: a list of the 500 fastest computers in the world

(www.top500.org)"§  Computers ranked by solution to the MPLinpack benchmark:"
§  Solve Ax=b problem for any order of A"

§  List released twice per year: in June and November"
Current number 1 (June 2013) Rmax=33.9 PFLOPS
Tianhe-2, NUDT, Intel Ivy Bridge + Xeon Phi cluster
17.8 megawatts, >3million cores

1 PFLOP

1 TFLOP

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

101"

Hardware Architectures for High
Performance Computing (HPC)!

Symmetric
Multiprocessor
(SMP)

Non-uniform
Memory
Architecture
(NUMA)

Massively
Parallel
Processor
(MPP)

Cluster

Single Instruction
Multiple Data (SIMD) Multiple Instruction

Multiple Data (MIMD)

Parallel Computers

Shared Address Space Disjoint Address Space

Distributed
Computing

102"

Hardware Architectures for High
Performance Computing (HPC)!

Symmetric
Multiprocessor
(SMP)

Non-uniform
Memory
Architecture
(NUMA)

Massively
Parallel
Processor
(MPP)

Cluster

Single Instruction
Multiple Data (SIMD) Multiple Instruction

Multiple Data (MIMD)

Parallel Computers

Shared Address Space Disjoint Address Space

Distributed
Computing

The dominant branch and
our focus in this lecture

Discussed later
with GPUs

103"

The birth of Supercomputing!

§  The CRAY-1A:"
§  2.5-nanosecond clock, "
§  64 vector registers,"
§  1 million 64-bit words of high-

speed memory. "
§  Peak speed:"

•  80 MFLOPS scalar."
•  250 MFLOPS vector (but

this was VERY hard to
achieve)"

§  Cray software … by 1978 "
§  Cray Operating System

(COS), "
§  the first automatically

vectorizing Fortran compiler
(CFT),"

§  Cray Assembler Language
(CAL) were introduced. "

§  On July 11, 1977, the CRAY-1A, serial
number 3, was delivered to NCAR. The
system cost was $8.86 million ($7.9
million plus $1 million for the disks). "

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp

104"

0
10
20
30
40
50
60

Vector

History of Supercomputing:  
The Era of the Vector Supercomputer!§  Large mainframes that operated on vectors of data"

§  Custom built, highly specialized hardware and software"
§  Multiple processors in an shared memory configuration"
§  Required modest changes to software (vectorization)"

The Cray C916/512 at the Pittsburgh
Supercomputer Center

C
ra

y
2

(4
),

19
85

C
ra

y
YM

P
(8

),
19

89

C
ra

y
T9

32
 (3

2)
, 1

99
6

Pe
ak

 G
FL

O
PS

C
ra

y
C

91
6

(1
6)

, 1
99

1

Vector

105"

The attack of the killer micros!

§  The Caltech Cosmic
Cube developed by
Charles Seitz and
Geoffrey Fox in1981"

§  64 Intel 8086/8087
processors"

§  128kB of memory per
processor"

§  6-dimensional hypercube
network"

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

The cosmic cube, Charles Seitz
Communications of the ACM, Vol 28, number 1 January
1985, p. 22

Launched the “attack of
the killer micros”
Eugene Brooks, SC’90

106"

0
20
40
60
80

100
120
140
160
180
200

Vector MPP

It took a while, but MPPs came to
dominate supercomputing!

§  Parallel computers with large numbers of microprocessors "
§  High speed, low latency, scalable interconnection networks "
§  Lots of custom hardware to support scalability"
§  Required massive changes to software (parallelization) "

Paragon XPS-140 at Sandia
National labs in Albuquerque
NM

Pe
ak

 G
FL

O
PS

iP
SC

\8
60

(1
28

) 1
99

0.

Pa
ra

go
n

XP
S

19
93

TM
C

 C
M

5-
(1

02
4)

 1
99

2

Vector MPP

107"

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Vector MPP CCOTS MPP

IB
M

 S
P/

57
2

(4
60

)
In

te
l T

FL
O

P,
 (

45
36

)

The cost advantage of mass market COTS!

§  MPPs using Mass market Commercial off the shelf (COTS)
microprocessors and standard memory and I/O components"

§  Decreased hardware and software costs makes huge systems
affordable"

P
ea

k
G

FL
O

P
S

ASCI Red TFLOP Supercomputer

Vector MPP COTS MPP

108"

The MPP future looked bright … but
then clusters took over!

§  A cluster is a collection of connected, independent computers that work
in unison to solve a problem."

§  Nothing is custom … motivated users could build cluster on their own"
§  First clusters appeared in

the late 80ʼs (Stacks of
“SPARC pizza boxes”)"

§  The Intel Pentium Pro in
1995 coupled with Linux
made them competitive."
§  NASA Goddardʼs Beowulf

cluster demonstrated
publically that high visibility
science could be done on
clusters."

§  Clusters made it easier to
bring the benefits due to
Mooresʼs law into working
supercomputers"

109"

Top 500 list: System Architecture !

*Constellation: A cluster for which the number of processors on a node is greater than the number of
nodes in the cluster. I’ve never seen anyone use this term outside of the top500 list.

*

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing
•  An introduction to parallel hardware

– History of parallel hardware
– The major building blocks of modern parallel systems

– Multicore processors
–  The GPU

•  Software for parallel systems: key design patterns

110

111

How do we connect cores together?
n  A symmetric multiprocessor (SMP) consists of a collection

of processors that share a single address space:
n  Multiple processing elements.
n  A shared address space with “equal-time” access for each processor.
n  The OS treats every processor the same

Proc3 Proc2 Proc1 ProcN

Shared Address Space

112

How realistic is this model?
n  Some of the old

supercomputer
mainframes followed this
model,

n  But as soon as we added caches to
CPUs, the SMP model fell apart.
¨  Caches … all memory is equal, but

some memory is more equal than
others.

A CPU with lots of cache …

8/19/2013 Parallel Architecture: 113 John Kubiatowicz

Example of modern core: Nahalem

•  ON-chip cache resources:
–  For each core: L1: 32K instruction and 32K data cache, L2: 1MB
–  L3: 8MB shared among all 4 cores

•  Integrated, on-chip memory controller (DDR3)

114"

Memory Hierarchies!

§  A typical microprocessor memory hierarchy"

I-cache

TLB

CPU D-cache

U
nified C

ache

R
eg File

RAM

n  Instruction cache and data cache pull data from a unified cache that maps onto
RAM.

n  TLB implements virtual memory and brings in pages to support large memory
foot prints.

1 ns

1 ns

10 ns 100 ns

1 ns

115"

NUMA* issues on a Multicore Machine  
2-socket Clovertown Dell PE1950!

2 threads, 2 cores,
sharing a cache

2 threads, 2 cores, 1
socket, no shared cache

A single quad-
core chip is a
NUMA
machine!

2 threads, 2 cores, 2 sockets

$ $

Xeon® 5300
Processor block
diagram

Third party names are the property of their owners.

*NUMA == Non Uniform Memory architecture … memory is shared but access times vary.

116"

Do you need to worry about the TLB?!
Transpose: 2 threads on a Dual Proc Xeon
Ti
m
e
(s
ec
s)

Matrix Order

Tiled to optimize
use of TLB

Ignore TLB issues (no
tiling)

Source: M Frumkin, R. van de Wijngaart, T. G. Mattson, Intel

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing
•  An introduction to parallel hardware

– History of parallel hardware
– The major building blocks of modern parallel systems

– Multicore processors
–  The GPU

•  Software for parallel systems: key design patterns
•  Closing comments

117

118"

What happened to SIMD?!

Symmetric
Multiprocessor
(SMP)

Non-uniform
Memory
Architecture
(NUMA)

Massively
Parallel
Processor
(MPP)

Cluster

Single Instruction
Multiple Data (SIMD)* Multiple Instruction

Multiple Data (MIMD)

Parallel Computers

Shared Address Space Disjoint Address Space

Distributed
Computing

119"

Data-Parallelism in HW Architecture!

§  Notions of "Data-Parallelism" in HW
architecture were originally developed in the
context of the strict-SIMD machines of the
1980's"
§  Some of the first massively parallel

systems: e.g. the Connection Machine
with up to 64K processors"

§  Have recently become relevant again
(after a decade of dormancy) due to the
wide availability of wide SIMD"

§  Called "Data-Parallel" because the source of
parallelism is simultaneous operations
across large sets of data, rather than from
multiple threads of control"

§  The semantics of "pure" Data-Parallel
languages are sequential, and parallelization
is implicit"
§  The program produces "equivalent"

results if executed serially"
§  Much easier to reason about

correctness!"
"Data Parallel Algorithms", Hillis and Steele, CACM 1986. Vol. 29, no. 12

“Vector Models for Data-Parallel
Computing”, Guy E. Blelloch

SIMD and sx86 multimedia extensions.

12
0

Source: Bryan Catanzaro, NVIDIA, UCB Parlab Bootcamp, 2013

A brief history of the GPU:
Coprocessors to support Graphics (and more)

121

1st generation:
Voodoo 3dfx (1996)

2nd Generation:
GeForce 256/Radeon 7500
(1998)

3rd Generation: GeForce3/Radeon 8500
(2001). The first GPU to allow a limited
programmability in the vertex pipeline.

4th Generation: Radeon 9700/GeForce FX
(2002): The first generation of “fully-
programmable” graphics cards.

Third party names are the property of their owners

5th Generation: GeForce 8800/HD2900
(2006) and the birth of CUDA

122	

NVIDIA	
 GTX	
 480	

Graphics only
i.e. texture cache,
interpolation hardware

General compute + graphics
16 “Streaming multiprocessors”

Memory Controllers

500 Double-precision GFLOPs
16 Multiprocessors
32 ALUs/processor

123 123

The end of the discrete GPU

GMCH GPU

ICH

CPU CPU

DRAM

GMCH = graphics memory control hub,
ICH = Input/output control hub

• A modern platform has:
– CPU(s)
– GPU(s)
– DSP processors
– … other?

• Current designs put
this functionality
onto a single chip …
mitigates the PCIe
bottleneck in
GPGPU computing!

Intel® Core™ i5-2500K Desktop Processor
(Sandy Bridge) Intel HD Graphics 3000 (2011)

Absorption into CPU (remove “off chip” penalty) but
uncertain standards story à success unclear

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing
•  An introduction to parallel hardware
•  Software for parallel systems: key design patterns
•  Closing comments

124

125"

Recap: !

Original Problem Tasks, shared and local data

Find Concurrency
(Decomposition)

v  To expose concurrency in a problem, we need to understand how
the problem is decomposed into tasks AND how the problemʼs data
is decomposed to support efficient computation. YOU ALWAYS
NEED BOTH."

v  Consider the following two problems. Can you come up with a task
and data decomposition for these problems?"
§  Graphics rendering pipeline."
§  Finding the best route between two cities on a map."

126"

The Parallel programming process: !

Original Problem Tasks, shared and local data

Find Concurrency
(Decomposition)

Implementation
strategy

Corresponding source code

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int Num = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N, Data);
 for (int I= ID; I<N;I=I+Num){
 tmp = func(I, Data);
 Res.accumulate(tmp);
 }
}

Units of execution + new shared data for extracted
dependencies

Parallel computing: It’s old

127

Late 70’s

Cray 1 (1976) Cray 2 (1985) Cray C-90 (1991)

Cosmic cube (1983) Paragon (1993)

ASCI Red (1997)

Clusters (late 80’s)

Late 80’s Late 90’s

Vector Computers

Cluster Computers

Massively Parallel Processors (MPP)

Linux PC Clusters
(~1995)

Third party names are the property of their owners.

We tried to solve the parallel programming problem
by searching for the right programming environment

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
 Para++
Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
 SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
 XENOOPS
XPC
Zounds
ZPL

Parallel programming environments in the 90’s

Third party names are the property of their owners.

Pe
rc

en
ta

ge

60

tr

y

40

tr

y

24 6

Language obsessions: More isn’t always
better

•  The Draeger Grocery Store
experiment consumer choice :
– Two Jam-displays with coupon’s for

purchase discount.
– 24 different Jam’s
– 6 different Jam’s

– How many stopped by to try samples
at the display?

– Of those who “tried”, how many bought
jam?

The findings from this study show that an extensive array of options can at
first seem highly appealing to consumers, yet can reduce their subsequent
motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social
Psychology, 76, 995-1006.

3

bu
y

30

bu
y

130

Throwing new languages at the problem didn’t work:
the “Dead Architecture Society”

Alliant

ETA

Encore

Sequent

SGI

Myrias

Intel SSD

BBN

IBM

Workstation/PC clusters

Masspar

Thinking machines

ICL/DAP

Goodyear
Multiflow

FPS

KSR

Denelcore HEP

Tera/MTA – now Cray

Shared
Memory
MIMD

Distributed
Memory
MIMD

SIMD

Other

1980 1990 2000
Any product names on this slide are the property of their owners.

My optimistic view from 2005 …

We’ve learned our
lesson … we emphasize

a small number of
industry standards	

132 132

But we didn’t learn our lesson
History is repeating itself!

Third party names are the property of their owners.

 A small sampling of Programming environments from the
NEW golden age of parallel programming (from the literature 2010-2012)

Note: I’m not criticizing these technologies. I’m criticizing our collective
urge to create so many of them.

AM++
ArBB
BSP
C++11
C++AMP
Charm++
Chapel
Cilk++
CnC
coArray Fortran
Codelets

Copperhead
CUDA
DryadOpt
Erlang
Fortress
GA
GO
Gossamer
GPars
GRAMPS
Hadoop
HMPP

ISPC
Java
Liszt
MapReduce
MATE-CG
MCAPI
MPI
NESL
OoOJava
OpenMP
OpenCL
OpenSHMEM

OpenACC
PAMI
Parallel Haskell
ParalleX
PATUS
PLINQ
PPL
Pthreads
PXIF
PyPar
Plan42
RCCE

Scala
SIAL
STAPL
STM
SWARM
TBB
UPC
Win32
threads
X10
XMT
ZPL

Maybe its time to try something different?

133

134 13 dwarves

PLPP: Pattern
language of

Parallel
Programming	

135

Graph-Algorithms	

Dynamic-Programming	

Dense-Linear-Algebra	

Sparse-Linear-Algebra	

Model-View-Controller 	

Iterative-Refinement	

Map-Reduce	

Layered-Systems	

Puppeteer	

Pipe-and-Filter	

Agent-and-Repository	

Process-Control	

Event-Based/Implicit-Invocation	

Arbitrary-Static-Task-Graph	

Unstructured-Grids	

Structured-Grids	

Graphical-Models	

Finite-State-Machines	

Backtrack-Branch-and-Bound	

N-Body-Methods	

Circuits	

Spectral-Methods	

Monte-Carlo	

Applications	

Structural Patterns 	

 Computational Patterns	

OPL Pattern Language (Keutzer & Mattson 2010)	

Task-Parallelism���
Divide and Conquer	

Data-Parallelism���
Pipeline	

Discrete-Event ���
Geometric-Decomposition ���
Speculation	

SPMD ���
Kernel-Par.	

Fork/Join ���
Actors ���
Vector-Par	

Distributed-Array���
Shared-Data	

Shared-Queue���
Shared-Map ���
Parallel Graph Traversal	

Coordinating Processes ���
Stream processing 	

Parallel Execution Patterns	

Parallel Algorithm Strategy Patterns	

Implementation Strategy Patterns	

Communication	

Shared Address Space Threads	

Task Driven Execution	

Algorithms and Data structure	

Program structure	

Synchronization	

Loop-Par.���
Workpile	

Thread/proc management	

Concurrency Foundation constructs (not expressed as patterns)	

Task Decomposition ���
Data Decomposition	

Ordered task groups ���
Data sharing	

Design Evaluation	

Finding Concurrency Patterns 	

Source: Keutzer and Mattson Intel Technology Journal, 2010	

• Spectral methods

• MapReduce

136

• Pipe-and-Filter

Pattern examples

Structural Patterns: Define the software structure .. Not what is computed

• Iterative refinement

Computational Patterns: Define the computations “inside the boxes”

• Structured mesh

Parallel Patterns: Defines parallel algorithms

• Fork-join • SPMD • Data parallel

137"

Seven strategies for parallelizing
software!

§  These seven strategies for parallelizing software give us:"
§  Names: so we can communicate better"
§  Categories: so we can gather and share information"
§  A palette (like an artistʼs palette) of approaches that is:"

•  Necessary: we should consider them all and"
•  Sufficient: once we have considered them all then we donʼtʼ

have to worry that we forgot something"

138"

Parallel Algorithmic Strategies!

Result Parallelism

Geometric
Decomposition Task

Parallelism Divide and
Conquer Data

Parallelism

Specialist
Parallelism

Pipeline Discrete
Event

Agenda Parallelism

Speculation

Data Tasks Flow of Data

Application

139"

Data Parallelism Pattern!

§  Use when:"
§  Your problem is defined in terms of collections of data

elements operated on by a similar (if not identical)
sequence of instructions; i.e. the concurrency is in the
data. "

§  Solution"
§  Define collections of data elements that can be updated

in parallel."
§  Define computation as a sequence of collective

operations applied together to each data element."

Data 1 Data 2 Data 3 Data n

Tasks

……

140"

Task Parallelism Pattern!

§  Solution"
§  Define the set of tasks and a way to detect when

the computation is done."
§  Manage (or “remove”) dependencies so the

correct answer is produced regardless of the
details of how the tasks execute. "

§  Schedule the tasks for execution in a way that
keeps the work balanced between the processing
elements of the parallel computer and "

§  Use when:"
§  The problem naturally decomposes into a

distinct collection of tasks"

141"

Task Parallelism in practice!

§  Embarrassingly parallel: "
§  The tasks are independent, so the parallelism is

“so easy to exploit itʼs embarrassing”."
§  Separable dependencies:"

§  Turn a problem with dependent tasks into an
“embarrassingly parallel” by “replicating data
between tasks, doing the work, then recombining
data (often a reduction) to restore global state."

§  Functional Decomposition"
§  A task is associated with a functional

decomposition of the problem to produce a coarse
grained parallel program " Its becoming common to associate

this case as the prototypical “task
parallel” approach … but to us old-
timers, the previous two cases are
overwhelming more common.

142"

Divide and Conquer Pattern!

§  Use when:"
§  A problem includes a method to divide into

subproblems and a way to recombine solutions of
subproblems into a global solution."

§  Solution"
§  Define a split operation"
§  Continue to split the problem until subproblems are

small enough to solve directly."
§  Recombine solutions to subproblems to solve original

global problem."
§  Note: "

§  Computing may occur at each phase (split, leaves,
recombine)."

143"

Divide and conquer!
§  Split the problem into smaller sub-problems. Continue until the sub-

problems can be solve directly."

n  3 Options:
¨  Do work as you split

into sub-problems.
¨  Do work only at the

leaves.
¨  Do work as you

recombine.

144"

Pipeline Pattern!

§  Use when:"
§  Your problem can be described as data flowing

through a sequence of computational stages"
n  Solution

¨ Define a set of stages setup
with data-flow connections
between them.

¨ Set up input/output channels
to support data driven
execution.

¨ Parallelism comes from
multiple stages acrive at one
time.

145"

Geometric Decomposition!

§  Use when:"
§  The problem is organized around a central data structure that

can be decomposed into smaller segments (chunks) that can be
updated concurrently."

§  Solution"
§  Typically, the data structure is updated iteratively where a new

value for one chunk depends on neighboring chunks."
§  The computation breaks down into three components: (1)

exchange boundary data, (2) update the interiors or each chunk,
and (3) update boundary regions. The optimal size of the chunks
is dictated by the properties of the memory hierarchy. "

x-sweep

z-
sw

ee
p

§  Note:"
§  This pattern is often used with the

Structured grid and linear algebra
computational strategy pattern."

146"

Speculation!

§  Use when:"
§  Suppose that the computation has been decomposed

into a number of tasks that are not completely
independent, but where conflicts are expected to only
infrequently occur when the computation is actually
executed. Solution"

§  Solution:"
§  An effective solution may be to just run the tasks independently,

that is speculate that no conflicts will occur, and then clean up
after the fact and retry in the rare situations where a conflict does
occur. Two essential element of this solution are: "
1.  Have an easily identifiable safety check to determine

whether the computation ran without conflicts and can thus
be committed"

2.  The ability to rollback and re-compute the cases where
conflicts occur. "

147"

Speculative Parallelism!
§  Speculative Parallelism:"

§  Speculate on state of dependencies "
§  Check validities of speculations"
§  Recompute as needed to correct any mis-speculations"

Source: Narayanan Sundaram of UC Berkeley

148"

Discrete-Event!

§  Use when:"
§  The computation has been structured as loosely connected

sequence of tasks that interact at unpredictable points in time. "
§  Solution"

§  Setup an event handler infrastructure"
§  Launch a collection of tasks whose interaction is handled

through the event handler. The handler is an intermediary
between tasks, and in many cases the tasks do not need to
know the source or destination for the events. "

§  Note:"
§  Discrete event is often used with problems, such as GUIs and

discrete event simulations, that are handled with the Event-
based implicit invocation, model-view-controller, or process
control patterns."

149

Graph-Algorithms	

Dynamic-Programming	

Dense-Linear-Algebra	

Sparse-Linear-Algebra	

Model-View-Controller 	

Iterative-Refinement	

Map-Reduce	

Layered-Systems	

Puppeteer	

Pipe-and-Filter	

Agent-and-Repository	

Process-Control	

Event-Based/Implicit-Invocation	

Arbitrary-Static-Task-Graph	

Unstructured-Grids	

Structured-Grids	

Graphical-Models	

Finite-State-Machines	

Backtrack-Branch-and-Bound	

N-Body-Methods	

Circuits	

Spectral-Methods	

Monte-Carlo	

Applications	

Structural Patterns 	

 Computational Patterns	

OPL Pattern Language (Keutzer & Mattson 2010)	

Task-Parallelism���
Divide and Conquer	

Data-Parallelism���
Pipeline	

Discrete-Event ���
Geometric-Decomposition ���
Speculation	

SPMD ���
Kernel-Par.	

Fork/Join ���
Actors ���
Vector-Par	

Distributed-Array���
Shared-Data	

Shared-Queue���
Shared-Map ���
Parallel Graph Traversal	

Coordinating Processes ���
Stream processing 	

Parallel Execution Patterns	

Parallel Algorithm Strategy Patterns	

Implementation Strategy Patterns	

Communication	

Shared Address Space Threads	

Task Driven Execution	

Algorithms and Data structure	

Program structure	

Synchronization	

Loop-Par.���
Workpile	

Thread/proc management	

Concurrency Foundation constructs (not expressed as patterns)	

Task Decomposition ���
Data Decomposition	

Ordered task groups ���
Data sharing	

Design Evaluation	

Finding Concurrency Patterns 	

Source: Keutzer and Mattson Intel Technology Journal, 2010	

7 patterns to turn
algorithms into code

150"

Seven strategies for implementing our
algorithms as software!

§  These seven strategies for implementing our parallel algorithms give
us:"
§  Names: so we can communicate better"
§  Categories: so we can gather and share information"
§  A palette (like an artistʼs palette) of approaches that is:"

•  Necessary: we should consider them all and"
•  Sufficient: once we have considered them all then we donʼtʼ

have to worry that we forgot something"

SPMD ���
Actors	

Fork/Join ���
Workpile	

Program structure	

Loop-Parallel���
Kernel-Parallel���
Vector-Parallel	

Implementation Strategy Patterns	

151"

Implementation Strategy patterns!

§  The most commonly used implementation strategy patterns:"
SPMD One program replicated, specialized by ID and NumProcs
Fork-Join Single thread forks a team as needed and later joins
Work-pile Create a pile of tasks for a set of workers to process
Loop-Parallel Make expensive loops independent and use a “parallel for”
Vector-Parallel Unroll loops to expose blocks, vector ops process blocks
Kernel-Parallel Fine-Grained SPMD kernels . Large numbers to address little’s law.

§  Programming models are often optimized around the needs
of these patterns. For “our” programming models:"
§  MPI: SPMD, work-pile"
§  OpenMP: Loop-parallel, fork-join … SPMD on large NUMA systems."
§  OpenCL and CUDA: Kernel-parallelism"
§  OpenACC: Loop-parallel and Kernel Parallel"

152 152

Turning patterns into code: High
level frameworks and the future of

software development

153

Computer Games: one of the few (only?) consumer SW
industries that have successfully embraced many-core industry-wide

•  Divide Software group into two teams:

Source: Tim Sweeney, Epic Games

Third party names are the property of their owners.

– Productivity programmers:
– 90% of the SW group.
– Responsible for game content

seen by a user (story line,
characters, art, etc).

– Efficiency programmers:
– 10% of the software group
– optimize the game software

for specific platforms (C,
assembly, etc)

 •  The full group needs to grapple with concurrency (tools cannot
discover it automatically) … but only a small group (efficiency
programmers) must understand the details of how to exploit
concurrency in an efficient parallel program.

154

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Pattern Language (OPL)

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Par Lab (UC Berkeley) Overview
Easy to write correct software that runs efficiently on manycore

Legacy OS

Intel Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency Languages

Type
Systems

155

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Pattern Language (OPL)

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Easy to write correct software that runs efficiently on manycore

Legacy OS

Intel Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency Languages

Type
Systems

High level, safe, concurrency
through high level frameworks

Low level, risky, hardware
details fully exposed

Par Lab (UC Berkeley) Overview

156 13 dwarves

To get frameworks
right … start with an
understanding of
software architecture

PLPP: Pattern
language of

Parallel
Programming	

157

Graph-Algorithms	

Dynamic-Programming	

Dense-Linear-Algebra	

Sparse-Linear-Algebra	

Model-View-Controller 	

Iterative-Refinement	

Map-Reduce	

Layered-Systems	

Puppeteer	

Pipe-and-Filter	

Agent-and-Repository	

Process-Control	

Event-Based/Implicit-Invocation	

Arbitrary-Static-Task-Graph	

Unstructured-Grids	

Structured-Grids	

Graphical-Models	

Finite-State-Machines	

Backtrack-Branch-and-Bound	

N-Body-Methods	

Circuits	

Spectral-Methods	

Monte-Carlo	

Applications	

Structural Patterns 	

 Computational Patterns	

OPL Pattern Language (Keutzer & Mattson 2010)	

Task-Parallelism���
Divide and Conquer	

Data-Parallelism���
Pipeline	

Discrete-Event ���
Geometric-Decomposition ���
Speculation	

SPMD ���
Kernel-Par.	

Fork/Join ���
Actors ���
Vector-Par	

Distributed-Array���
Shared-Data	

Shared-Queue���
Shared-Map ���
Parallel Graph Traversal	

Coordinating Processes ���
Stream processing 	

Parallel Execution Patterns	

Parallel Algorithm Strategy Patterns	

Implementation Strategy Patterns	

Communication	

Shared Address Space Threads	

Task Driven Execution	

Algorithms and Data structure	

Program structure	

Synchronization	

Loop-Par.���
Workpile	

Thread/proc management	

Concurrency Foundation constructs (not expressed as patterns)	

Task Decomposition ���
Data Decomposition	

Ordered task groups ���
Data sharing	

Design Evaluation	

Finding Concurrency Patterns 	

Source: Keutzer and Mattson Intel Technology Journal, 2010	

158

Graph-Algorithms	

Dynamic-Programming	

Dense-Linear-Algebra	

Sparse-Linear-Algebra	

Model-View-Controller 	

Iterative-Refinement	

Map-Reduce	

Layered-Systems	

Puppeteer	

Pipe-and-Filter	

Agent-and-Repository	

Process-Control	

Event-Based/Implicit-Invocation	

Arbitrary-Static-Task-Graph	

Unstructured-Grids	

Structured-Grids	

Graphical-Models	

Finite-State-Machines	

Backtrack-Branch-and-Bound	

N-Body-Methods	

Circuits	

Spectral-Methods	

Monte-Carlo	

Applications	

Structural Patterns 	

 Computational Patterns	

OPL Pattern Language	

Task-Parallelism���
Divide and Conquer	

Data-Parallelism���
Pipeline	

Discrete-Event ���
Geometric-Decomposition ���
Speculation	

SPMD ���
Kernel-Par.	

Fork/Join ���
Actors ���
Vector-Par	

Distributed-Array���
Shared-Data	

Shared-Queue���
Shared-Map ���
Parallel Graph Traversal	

Coordinating Processes ���
Stream processing 	

Parallel Execution Patterns	

Parallel Algorithm Strategy Patterns	

Implementation Strategy Patterns	

Communication	

Shared Address Space Threads	

Task Driven Execution	

Algorithms and Data structure	

Program structure	

Synchronization	

Loop-Par.���
Workpile	

Thread/proc management	

Concurrency Foundation constructs (not expressed as patterns)	

Task Decomposition ���
Data Decomposition	

Ordered task groups ���
Data sharing	

Design Evaluation	

Finding Concurrency Patterns 	

Source: Keutzer and Mattson Intel Technology Journal, 2010	

Patterns travel together … informs
framework design (a pathway for cactus

is shown here)	

Distributed memory cluster
and MPP computers	

 Multiprocessors (SMP and NUMA)	

159	

	

Application	
 driven	
 Framework	
 development	

Speaker
Diarization

•  Who spoke when?

•  20 – 60 min meeting

recordings

corpus.amiproject.org/

Music
Recommendation

•  Recommend songs
most similar to a query

1 Million Song Dataset
labrosa.ee.columbia.edu/millionsong/

Video Event
Detection

•  Detect events in
videos based on the

soundtrack
• 1-50K video files

www-nlpir.nist.gov/
projects/tv2011/

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.

160	

	

Mining	
 Patterns	
 from	
 	

Multi	
 media	
 Content	
 Analysis	

Speaker
Diarization

Music
Recommendation

Video Event
Detection

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.

161	

	

What	
 the	
 Framework	
 Will	
 Look	
 Like	

GMM Eval

Wiener Filter
GMM training

FFT SVM

Library	
 Components	

HMM

€

aij

€

bi(ot) ;

FFT

SVM

€

φ(xi,x j)
HMM

€

aij

€

bi(ot) ;

Customizable	
 Components	

+	

SVM

GMM GMM GMM GMM GMM

+	

	
 	

Structural	
 Patterns	

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.

162	

	

Library	
 Component	
 Example:	
 GMM	
 EM	
 Training	

§  GMM = probabilistic model for clustering data

Example GMM in two dimensions
(Source: www.mathworks.com)

“CUDA-level Performance with Python-level Productivity for Gaussian Mixture Model
Applications” Henry Cook, Ekaterina Gonina, Shoaib Kamil, Gerald Friedland, David
Patterson, Armando Fox. In Proceedings of the 3rd USENIX conference on Hot topics in
parallelism (HotPar'11). USENIX Association, Berkeley, CA, USA.

GMM

	

§  Expectation	
 Maximization	
 (EM)	
 Algorithm	
 for	
 training	

GMMs	
 (find	
 mean,	
 covariance	
 and	
 weights)	

§  Multiple	
 parallelization	
 strategies	
 based	
 on	
 problem	
 size	
 and	

hardware	
 platform	
 characteristics	

§  Written	
 in	
 C/CUDA/Cilk+	
 templates	

§  Select	
 best-­‐performing	
 strategy	
 at	
 runtime	

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.

163	

	

Customizable	
 Component	
 Example:	
 HMM	
 EM	
 Training	

€

s0

€

s1

€

s2

€

s3

€

s4

€

s5

€

o0

€

o1

€

o2

€

o3

€

o4

€

o5
€

aij

€

bi(ot)

€

si

€

ot

€

aij

€

bi(ot)

-­‐	
 hidden	
 state	
 i	

-­‐	
 observation	
 at	
 time	
 t	

-­‐	
 Transition	
 probability	
 from	

state	
 i	
 to	
 state	
 j	

-­‐	
 observation	
 probability	
 of	

obs	
 t	
 given	
 state	
 i	

§  Model temporal sequences

§  Training – find parameters A and B given observation
sequence O using the Baum-Welsh algorithm (generalized
EM)

§  Decoding – find the state sequence S that best matches an
observation sequence O (Viterbi algorithm)

HMM

€

aij

€

bi(ot) ;

-­‐	
 customizable	
 element	

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.

164	

	

PyCASP	
 Productivity	

§  Create a tractable framework scope by using patterns
§  Applications written in Python

§  Glue language

 Application
Lines of Python

Code

Approximated
LOC Reduction

(vs. C/C++)

50 60X

500 10-50X

50 + 1 60X + 20X

Speaker Diarization

Music
Recommendation

Impossibile
trovare nel
file la parte

Video Event Detection

Specializer LOC

GMM
1500 C/
CUDA

800 Python

Map-Reduce 80 Python

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.

165	

	

Efficiency	

§  Speaker Diarization
§  Average faster-than-real-time factor &error rate
§  Averaged across 12 meetings (AMI corpus) [1]

Implementation	

Diarization	
 Error	

Rate	

Faster-­‐than-­‐real-­‐time	

factor	

State-­‐of-­‐the-­‐art	
 C++	
 ~22%	
 1x	

PyCASP	
 24.7%	
 115x	

[1] E. Gonina, G. Friedland, H. Cook and K. Keutzer. “Fast Speaker Diarization Using a High-Level Scripting
Language” In Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),
Dec 11-15, 2011, Waikoloa, Hawaii

Speaker Diarization

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.

166	

	

PyCASP	
 Portability	

§  Speaker Diarization
§  Average faster-than-real-time factor
§  Intel Westmere and two CUDA GPUs
§  Averaged over 12 meetings (AMI corpus)

§  (Augmented Multi-party Interaction corpus)
§  100 hours of meetings captured using many synchronized

recording devices

Platform	

Faster-­‐than-­‐real-­‐time	

factor	

Intel	
 Westmere	
 	
 56x	

Nvidia	
 GTX285	
 101x	

Nvidia	
 GTX480	
 115x	

Speaker Diarization

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.

167	

	

PyCASP	
 Scalability	

§  Music Recommendation

Number of features in query

Recommendation Time vs. Query Size – 1 Million Songs

T
im

e(
m

s)

30 songs
“Elton John”

400-500 songs
“Elton John or Eric Clapton or
Lady Gaga or Britney Spears”

Total
recommendation

time

Query GMM
training time

Under 1 second
recommendation

time for all
queries!

Music
Recommendation

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.

168	

	

PyCASP	
 Scalability	

§  Video Event Detection

•  Nearly-optimal scaling on a cluster of GPUs:
•  15.5x on 16-node cluster for 500 and 1000 videos

Number of videos

S
pe

ed
up

Scaling of Video Event Detection

Impossibil
e trovare
nel file la
parte

Video Event
Detection

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.

Outline

•  Motivation: We all must be parallel programmers
•  Key concepts in parallel Computing
•  An introduction to parallel hardware
•  Software for parallel systems: key design patterns
•  Closing comments

169

170 170

Writing Parallel software isn’t enough
• Modern applications are built from multiple modules and

libraries.

• We can parallelize them all … but ultimately they need to run
together and “do the right thing” when put together.

•  This is the parallel composition problem.

– How do you manage resources between different modules?

– How do you maintain isolation between modules to keep them
from colliding?

– How do you optimize resource allocation to produce the best
results?

• We do not have a good solution to this problem. The
starting point is a common runtime to support
multiple programming models.

171 171

For example … consider what’s
happening at Intel?
Intel has developed a whole series of programming models that map onto three different

runtime libraries (RTL) that all sit on top of a common RML. This gives us a
foundation to work on as we attack the composability problem	

Shared Address Space

Proc3 Proc2 Proc1 ProcN

H
W

TBB RTL

OS/system support for shared memory and threading S
ys

te
m

 la
ye

r

TBB ArBB OpenMP P
ro

g.

La
ye

r

CnC

Third party names are the property of their owners.

(RML) resource management layer

Cilk Plus RTL OpenMP RTL

Cilk Plus OpenCL
MKL Coarray Fortran

Parallel programming is really hard

•  Programming is hard whether you write serial or parallel
code.
– Parallel programming is just a new wrinkle added to the already

tough problem of writing high quality, robust and efficient code.

•  Why does Parallel programming seems so complex?
– The literature overwhelms with hundreds of languages/APIs and a

countless assortment of algorithms.
– Experienced parallel programmers love to tell “war stories” of

Herculean efforts to make applications scale … which can scare
people away.

–  It’s new: synchronization, scalable algorithms, distributed data
structures, concurrency bugs, memory models … hard or not it’s a
bunch of new stuff to learn.

17
2

Third party names are the property of their owners.

But it’s really not that bad (part 1): parallel libraries

The Networking and Information Technology Research and Development (NITRD)

Source: Kathy Yelick
Source: Kathy Yelick

But its really not that bad: part 2
•  Don’t let the glut of parallel programming languages confuse

you.
•  Leave research languages to C.S. researchers and stick to the

small number of broadly used languages/APIs:
–  Industry standards:

–  Pthreads and OpenMP
– MPI
– OpenCL
–  TBB (… and maybe Cilk?)

– or a broadly deployed solutions tied to your platform of choice
– CUDA and OpenACC (for NVIDIA platforms and PGI compilers)
–  .NET and C++ AMP (Microsoft)

– For HPC programmers dreaming of Exascale … maybe a PGAS
language/API?
– UPC
– GA

174 Third party names are the property of their owners.

But its really not that bad : part 3

•  Most algorithms
are based on a
modest number
of recurring
patterns (see Kurt
Kreutzer's lecture
tomorrow).

175

•  Almost every parallel program is written in terms of just 7
basic patterns:

– SPMD
– Kernel Parallelism
– Fork/join
– Actors

– Vector Parallelism
– Loop Parallelism
– Work Pile

Parallel programming is easy
•  So all you need to do is:

– Pick your language.
–  I suggest sticking to industry standards and open source so you can

move around between hardware platforms:

176

– SPMD
– Kernel Parallelism
– Fork/join
– Actors

– Vector Parallelism
– Loop Parallelism
– Work Pile

– Learn the key 7 patterns

– Master the few patterns common to your platform and application
domain … for example, most application programmers just use
these three patterns

– SPMD – Loop Parallelism – Kernel Parallelism

– pthreads – OpenCL – OpenMP – MPI – TBB

Third party names are the property of their owners.

177"

Comparing parallel programming
languages/APIs!

Units of
Execution

A distinct executable agent that carries out the work
of a program. Examples include the threads
managed by an OS, processes running on the node
of a cluster, or work-items in an OpenCL program

Tasks/mapping Tasks are a logically related set of operations used to
organize the computations in a program. A key
aspect of a parallel program is how these tasks are
associated (or mapped) onto the units of execution.

Coordination Mechanisms to manage units of execution (e.g.
create, destroy, suspend) and how they interact (e.g.
synchronization and communication).

Hardware targets Most programming models were designed with a
particular class of parallel hardware in mind.

§  To compare programming languages and APIs at a high level, we can
think in terms of four key elements"

178"

* MIMD (multiple instruction multiple data) and heterogeneous computers will be covered in a latter lecture on
parallel hardware. The SPMD (single Program Multiple Data) and kernel parallelism patterns will be covered in
our parallel design patterns lecture.

Comparing parallel programming
languages/APIs!

Units of
execution

Tasks/mapping Coordination Hardware
targets

Pthreads threads Fork join Shared variables
and explicit
synchronization
constructs

Shared
address space
computers

OpenMP threads Teams of threads
with worksharing
(loops and tasks)

Shared variables
and
synchronization
constructs

Shared
address space
computers

MPI processes SPMD* Message passing Any MIMD*
computer

OpenCL Work-items Kernel parallelism* Heterogeneous
computers*

CUDA CUDA-threads Kernel parallelism* NVIDIA GPUs

If you become overwhelmed during this course …
•  Come back to this slide and remind yourself … things are not

as bad as they seem

179 Third party names are the property of their owners.

