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Introduction to Parallel Computing 
 

Tim Mattson (Intel Labs)  
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Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners 

An Intel MIC processor 
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Disclaimer 
READ THIS … its very important 

• The views expressed in this talk are those of the 
speakers and not their employer. 

• This is an academic style talk and does not address 
details of any particular Intel product.  You will learn 
nothing about Intel products from this presentation.   

• This was a team effort, but if I say anything really 
stupid, it’s my fault … don’t blame my collaborators. 

 

Slides marked with this symbol were produced-with Kurt 
Keutzer and his team for CS194 … A UC Berkeley course 
on Architecting parallel applications with Design Patterns. 

Third party names are the property of their owners. 



Outline 

•  Motivation: We all must be parallel programmers 
•  Key concepts in parallel Computing 
•  An introduction to parallel hardware 
•  Software for parallel systems: key design patterns 
•  Closing comments 
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Moore's Law 

Moore’s Law 

Slide source: UCB CS 194 Fall’2010 

•  In 1965, Intel co-founder Gordon Moore predicted (from 
just 3 data points!) that semiconductor density would 
double every 18 months. 
– He was right! Transistors are still shrinking at the same rate 
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The good old days … 

From Hennessy and Patterson, Computer Architecture: A 
Quantitative Approach, 4th edition, Sept. 15, 2006 

Vax “Star”, CISC 
Vax-11/780 Vax “Nautilus”, 

CISC, Vax 8700 

Sparc V7 RISC 
5-stage 
Sun 4/260 
16.7 MHz PowerPC 604, 100 

MHz 
7 stage, 4 issue 

Pentium 4, 3.6 GHz, 
31 stage, 6 uop 
issue, 3 CISC issue 

Third party names are the property of their owners. 

(SPECint) 
Uniproccessor 
Performance 

Pentium 4, 3.0 GHz, 
20 stage, 3 CISC 
issue (6 uop issue) 



The Hardware/Software contract 

•  Write your software as 
you choose and we 
HW-geniuses will take 
care of performance. 
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•  The result: Generations of performance ignorant software 
engineers using performance-handicapped languages (such 
as Java) … which was OK since performance was a HW job. 
Third party names are the property of their owners. 
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… Computer architecture and the power wall 
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… partial solution: simple low power cores 
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Eventually Pentium 4 used 
over 30 pipeline stages!!!! 



For the rest of the solution consider 
power in a chip …  

Processor  

f 

Input Output 

Capacitance = C 
Voltage = V 
Frequency = f 
Power = CV2f 

C = capacitance  … it measures the ability 
of a circuit to store energy: 
 

C = q/V à    q = CV 
 
Work is pushing something (charge or q) 
across a “distance” … in electrostatic 
terms  pushing q from 0 to V: 
 

V * q = W.      
 
But for a circuit    q = CV   so  
     

 W = CV2      
 
power is work over time … or how many 
times in a second we oscillate the circuit  
 
      Power = W* F   à      Power = CV2f 



... The rest of the solution add cores 

Processor  

f 

Processor  

f/2 

Processor  

f/2 

f 

Input Output 

Input 

Output 

Capacitance = C 
Voltage = V 
Frequency = f 
Power = CV2f Capacitance = 2.2C 

Voltage = 0.6V 
Frequency = 0.5f 
Power = 0.396CV2f 

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., 
"Optimizing power using transformations," IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995  

Source:   
Vishwani Agrawal 
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Microprocessor trends  

IBM Cell	



NVIDIA Tesla 
C1060  Intel SCC Processor	



ATI RV770 

3rd party names are the property of their owners.	



Individual processors are many core (and often heterogeneous) processors. 

80 cores	

 30 cores	



8 wide SIMD	



1 CPU + 6 cores	



10 cores 	



16 wide SIMD	



48 cores	



Source:  OpenCL tutorial, Gaster, Howes, Mattson, and Lokhmotov,  HiPEAC 2011 

ARM MPCORE   Intel  Nehalem 

4 cores	


4 cores	





Summer School Lecture 1 12"

So how many cores? 

2X transistors/Chip Every 1.5 years 
Called “Moore’s Law” 
 
 
 
  

Moore’s Law 

Microprocessors have 
become smaller, denser, 

and more powerful. 

n  Let’s assume Moore’s law 
transistor doubling results in 
a doubling of the number of 
cores. 
n  50 cores in 2010 

n  100 cores in 2012 

n  200 cores in 2014 

n  400 cores in 2016 

n  800 cores in 2018 

n   1600 cores in 2020 

n  So 1000 cores in 10 years is 
not far fetched. 

Market forces, not technology, will drive core counts 



The result… 
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+ 

= 
A new contract … HW people will do what’s natural 
for them (lots of simple cores) and SW people will 
have to adapt (rewrite everything) 

The problem is this was presented as an ultimatum 
… nobody asked us if we were OK with this new 

contract … which is kind of rude.   
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The many core challenge 
•  A harsh assessment … 

– We have turned to multi-core chips not because of the success of our 
parallel software but because of our failure to continually increase CPU 
frequency. 

n  Result: a fundamental and dangerous (for the computer 
industry) mismatch 
¨  Parallel hardware is ubiquitous.  
¨  Parallel software is rare  

n  The Many Core challenge … 
n  Parallel software must become as common as parallel 

hardware 

Fortunately, we don’t have to start over “from scratch”.  
We can draw from past experience with parallelism 

from high performance computing 



Outline 

•  Motivation: We all must be parallel programmers 
•  Key concepts in parallel Computing 
•  An introduction to parallel hardware 
•  Software for parallel systems: key design patterns 
•  Closing comments 

15 



Outline 

•  Motivation: We all must be parallel programmers 
•  Key concepts in parallel Computing 

– Basic definitions: Parallelism and Concurrency 
– Notions of parallel performance   
– The limits of scalability 
– Sources of parallel overhead  

•  An introduction to parallel hardware 
•  Software for parallel systems: key design patterns 
•  Closing comments 
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Concurrency vs. Parallelism!

§  Two important definitions:"
§  Concurrency: A condition of a system in which multiple tasks 

are logically active at one time."
§  Parallelism: A condition of a system in which multiple tasks 

are actually active at one time."

Concurrent, parallel Execution 

Concurrent, non-parallel Execution 
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Concurrency vs. Parallelism!

§  Two important definitions:"
§  Concurrency: A condition of a system in which multiple tasks 

are logically active at one time."
§  Parallelism: A condition of a system in which multiple tasks 

are actually active at one time."

Programs 

Concurrent 
Programs 

Parallel 
Programs 
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Concurrency in Action: a web server!

§  A Web Server is a Concurrent Application (the problem is fundamentally 
defined in terms of concurrent tasks):"
§  An arbitrary, large number of clients make requests which reference 

per-client persistent state"
§  Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images "

Images 
The Internet 

Image 
Server 

HTML 
Server 

Client Client Client Client 



20"

Images 
The Internet 

Image 
Server 

HTML 
Server 

Client 

Concurrency in Action: a web server!

HTTP Request 

§  A Web Server is a Concurrent Application (the problem is fundamentally 
defined in terms of concurrent tasks):"
§  An arbitrary, large number of clients make requests which reference 

per-client persistent state"
§  Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images "

For each 
client … 
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Images 
The Internet 

Image 
Server 

HTML 
Server 

Client 

Concurrency in Action: a web server!

Image Request 

HTML doc. 

§  A Web Server is a Concurrent Application (the problem is fundamentally 
defined in terms of concurrent tasks):"
§  An arbitrary, large number of clients make requests which reference 

per-client persistent state"
§  Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images "

For each 
client … 
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Images 
The Internet 

Image 
Server 

HTML 
Server 

Client 

Concurrency in Action: a web server!

Images 

§  A Web Server is a Concurrent Application (the problem is fundamentally 
defined in terms of concurrent tasks):"
§  An arbitrary, large number of clients make requests which reference 

per-client persistent state"
§  Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images "

For each 
client … 
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Concurrency in Action: a web server!

§  The HTML server, image server, and clients (you have to plan on 
having many clients) all execute at the same time"

§  The problem of one or more clients interacting with a web server not 
only contains concurrency, the problem is fundamentally current.  It 
doesnʼt exist as a serial problem."

Concurrent application: An application for which 
the  problem definition is fundamentally concurrent."



24"

Concurrency in action: Mandelbrot Set!

§  The Mandelbrot set: An iterative map in the complex plane"

czz nn +=+
2

1 z0 = 0,       c is constant 

§  Plot rate of divergence 
for different values of C."
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Concurrency in action: Mandelbrot Set!
int mandel ( complex C) {"
   int n;"
   double a = C.real();"
   double b = C.imag();"
   double zr = 0.0 , zi = 0.0;"
   double tzr , tzi ;"
   n = 0;"
   while (n < max_iters && sqrt (zr*zr + zi*zi) < t) {"
      tzr = (zr*zr - zi*zi) + a;"
      tzi = (zr*zi + zr*zi) + b;"
      zr = tzr ;"
      zi = tzi ;"
      n = n+1;"
   }"
   return n;"
}"

Function to compute the iterative map for 
a single point C where 

C = a + b * i 

Where i is the square root of (-1) 

“t” is a constant that 
defines a threshold 
beyond which we 
consider the iterative 
map to diverge. 
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Concurrency in action: Mandelbrot Set!

§  To generate the famous Mandelbrot set image, we use the function 
mandel(C) where C comes from  the points in the complex plane. "

§  At each point C, use n=mandel
(C) to determine if:"
§  The map converges 

(n=max_iters), assign the 
color black"

§  The map diverges 
(n<max_iters), assign the 
color based on the value of 
n"

§  The computation for each point 
is independent of all the other 
points … a so-called 
embarrassingly parallel 
problem .  "

CReal   

C
im

aginary    
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Concurrency in action: Mandelbrot Set!

§  The following is simplified code for the serial Mandelbrot program."

for (i=0; i<N; i++){ 

   for (j=0; j<N; j++) { 

       complex c = get_const_at_pixel(i,j); 

       complex image[i][j] = mandel( c); 

   } 

} 



28"

Concurrency in action: Mandelbrot Set!

§  Loop iterations are independent, so we can create a parallel version of 
this program as follows … "

for (i=0; i<N; i++){ 

   for (j=0; j<N; j++) { 

       complex c = get_const_at_pixel(i,j); 

       complex image[i][j] = mandel( c); 

   } 

} 

•  Combine the two loops into one big loop 
and execute them in parallel  

#pragma omp parallel for collapse (2) 

§  The following is simplified code for the serial Mandelbrot program.… "
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Concurrency in action: Mandelbrot Set!

§  The problem of 
generating an image of 
the Mandelbrot set can 
be viewed serially."

§ We choose to exploit the 
concurrency contained in 
this problem so we can 
generate the image in 
less time"

Parallel application: An application composed of 
tasks that actually execute concurrently in order to (1) 

consider larger problems in fixed time or (2) complete in 
less time for a fixed size problem."
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Concurrency vs. Parallelism: wrap up!

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010 

§  Key points:"
§  A web server had concurrency in its problem definition … it doesnʼt 

make sense to even think of writing a “serial web server”."
§  The Mandelbrot program didnʼt have concurrency in its problem 

definition. It would take a long time, but it could be serial "

§  Both cases use concurrency:"
§  A concurrent application is 

concurrent  by definition. "
§  A parallel application solves a 

problem that could be serial, but 
it is run in parallel by …"

1.  find concurrency in the 
problem"

2.  expose the concurrency in 
the source code."

3.  exploit the exposed 
concurrency to complete a 
job in less time."
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The Parallel programming process: !

Original Problem Tasks, shared and local data 

Find Concurrency 
(Decomposition) 
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Decomposition in parallel programs!

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time."

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:"
§  Task decomposition: break the 

application down into a set of 
tasks that can execute 
concurrently.."

§  Data decomposition: How must 
the data be broken down into 
chunks and associated with 
threads/processes to make the 
parallel program run efficiently."
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Decomposition in parallel programs!

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time."

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:"
§  Task decomposition: break the 

application down into a set of 
tasks that can execute 
concurrently.."

§  Data decomposition: How must 
the data be broken down into 
chunks and associated with 
threads/processes to make the 
parallel program run efficiently."

What’s a task 
decomposition for this 
problem? 
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Decomposition in parallel programs!

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time."

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:"
§  Task decomposition: break the 

application down into a set of 
tasks that can execute 
concurrently.."

§  Data decomposition: How must 
the data be broken down into 
chunks and associated with 
threads/processes to make the 
parallel program run efficiently."

Hint: Think of the source 
code and work that is 
compute-intensive that can 
execute independently 

for (i=0; i<N; i++){ 

   for (j=0; j<N; j++) { 

       complex c = get_const_at_pixel(i,j); 

       complex image[i][j] = mandel( c); 

   } 

} 



35"

Decomposition in parallel programs!

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time."

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:"
§  Task decomposition: break the 

application down into a set of tasks 
that can execute concurrently.."

§  Data decomposition: How must the 
data be broken down into chunks 
and associated with threads/
processes to make the parallel 
program run efficiently."

Task: the computation required 
for each pixel … the body of the 
loop for a pair (i,j). 
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Decomposition in parallel programs!

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time."

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:"
§  Task decomposition: break the 

application down into a set of 
tasks that can execute 
concurrently.."

§  Data decomposition: How must 
the data be broken down into 
chunks and associated with 
threads/processes to make the 
parallel program run efficiently."

Suggest a data decomposition for 
this problem … assume a quad 
core shared memory PC.  
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Decomposition in parallel programs!

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time."

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:"
§  Task decomposition: break the 

application down into a set of 
tasks that can execute 
concurrently.."

§  Data decomposition: How must 
the data be broken down into 
chunks and associated with 
threads/processes to make the 
parallel program run efficiently."

Hint: you can define the data 
decomposition to match the task, 
but would that be efficient in this 
case? 

Task: the computation required 
for each pixel … the body of the 
loop for a pair (i,j). 
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Map the pixels into row blocks and 
deal them out to the cores.  This 
will give each core a memory 
efficient block to work on. 

Decomposition in parallel programs!

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time."

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:"
§  Task decomposition: break the 

application down into a set of tasks 
that can execute concurrently.."

§  Data decomposition: How must the 
data be broken down into chunks 
and associated with threads/
processes to make the parallel 
program run efficiently."
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Map the pixels into row blocks and 
deal them out to the cores.  This 
will give each core a memory 
efficient block to work on. 

Decomposition in parallel programs!

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time."

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:"
§  Task decomposition: break the 

application down into a set of tasks 
that can execute concurrently.."

§  Data decomposition: How must the 
data be broken down into chunks 
and associated with threads/
processes to make the parallel 
program run efficiently."

But given this data decomposition, it is 
effective to think of a task as the update 
to a pixel?  Should we update our task 
definition given the data decomposition?  



40"

Map the pixels into row blocks and 
deal them out to the cores.  This 
will give each core a memory 
efficient block to work on. 

Decomposition in parallel programs!

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time."

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:"
§  Task decomposition: break the 

application down into a set of tasks 
that can execute concurrently.."

§  Data decomposition: How must the 
data be broken down into chunks 
and associated with threads/
processes to make the parallel 
program run efficiently."

Yes.  You go back and forth between 
task and data decomposition until you 
have a pair that work well together.  In 
this case, let’s define a task as the 
update to a row-block 
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The Parallel programming process: !

Original Problem Tasks, shared and local data 

Find Concurrency 
(Decomposition) 
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The Parallel programming process: !

Original Problem Tasks, shared and local data 

Find Concurrency 
(Decomposition) 

Implementation 
strategy 

Corresponding source code 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int Num = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N, Data); 
   for (int I= ID; I<N;I=I+Num){ 
        tmp = func(I, Data); 
        Res.accumulate( tmp); 
   } 
} 

Units of execution + new shared data for extracted 
dependencies 
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The Parallel programming process: !

Original Problem Tasks, shared and local data 

Find Concurrency 
(Decomposition) 

Implementation 
strategy 

Corresponding source code 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int Num = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N, Data); 
   for (int I= ID; I<N;I=I+Num){ 
        tmp = func(I, Data); 
        Res.accumulate( tmp); 
   } 
} 

Units of execution + new shared data for extracted 
dependencies 

Programming Notations 
we will consider: 

•  OpenMP 
•  OpenACC 
•  OpenCL 
•  CUDA 
•  MPI 



Outline 

•  Motivation: We all must be parallel programmers 
•  Key concepts in parallel Computing 

– Basic definitions: Parallelism and Concurrency 
– Notions of parallel performance   
– The limits of scalability 
– Sources of parallel overhead  

•  An introduction to parallel hardware 
•  Software for parallel systems: key design patterns 
•  Closing comments 
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Parallel Performance!
§  MP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern)."
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§  Intel SCC 48  processor, 500 MHz core, 1 GHz router, DDR3 at 800 MHz."
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Talking about performance!

)(
)1(

)(
PTime

Time
PS

par

seq=

PPS =)(
n  Perfect Linear Speedup:   

happens when no parallel 
overhead and algorithm is 
100% parallel.   

n  Speedup:   the increased 
performance from running 
on P processors 
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Performance scalability!
§  HP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern)."

Intel SCC 48  processor, 
500 Mhz core, 1 Ghz 

router, DDR3 at 800 Mhz."
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The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,  
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010 



48"

Performance scalability!
§  HP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern)."

Intel SCC 48  processor, 
500 Mhz core, 1 Ghz 

router, DDR3 at 800 Mhz."
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Performance scalability!
§  HP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern)."

Intel SCC 48  processor, 
500 Mhz core, 1 Ghz 

router, DDR3 at 800 Mhz."
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The speedup is 
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Talking about performance!

)(
)1(

)(
PTime

Time
PS

par

seq=

PPS =)(

PPS >)(

n  Perfect Linear Speedup:   
happens when no parallel 
overhead and algorithm is 
100% parallel.   

n  Super-linear Speedup:  Speed 
grows faster than the number of 
processing elements 

n  Speedup:   the increased 
performance from running 
on P processors 
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Performance scalability!
§  HP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern)."

Intel SCC 48  processor, 
500 Mhz core, 1 Ghz 

router, DDR3 at 800 Mhz."
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What caused our 
superlinear speedup? 
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SuperLlnear Speedup!
§  HP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern)."
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Why the Superlinear speedup? 

R = router,  MC = Memory Controller,   

P54C 
16KB L1-D$ 
16KB L1-I$ 

256KB  
unified  

L2$ 

Mesh 
I/F 

To 
Router 

P54C 
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unified  
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Message  
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•  Intel SCC 48 core research chip 

•  SCC caches are so small, even a small portion of our O(1000) matrices won’t fit.   
Ø  Hence the  single node performance measures memory overhead.   

•  As you add more cores, the aggregate  cache size grows.  
Ø  Eventually the tiles of the matrices being processed fits in the caches and  

performance sharply increases à superlinear speedup. 

P54C = second generation 
Pentium® core,  

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,  
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010 
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A more typical speedup plot!
§  CHARMM molecular dynamics program running the myoglobin benchmark on an 

Intel Paragon XP/S supercomputer with 32 Mbyte nodes running OSF R 1.2.  (The 
nbody computational pattern).  Speedup relative to running the parallel program on one node."
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Strong scaling … the 
speedup trends for a fixed 

size problem. 

S
pe

ed
up

 =
 T

pa
r(1

)/T
pa

r(P
) 



55"

Efficiency!

v  Efficiency  measures how well the parallel systemʼs resources are 
being utilized.                           "

n  Where P is the number of nodes and T is the elapsed 
runtime. 

P
PS

PTimeP
Time

par

seq )(
)(*
==ε
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Efficiency!
§  CHARMM molecular dynamics program running the myoglobin benchmark on an 

Intel Paragon XP/S supercomputer with 32 Mbyte nodes running OSF R 1.2.  (The 
nbody computational pattern).  Speedup relative to running the parallel program on one node."
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Supercomputers Userʼs Group meeting, 1995."

0	
  

0,2	
  

0,4	
  

0,6	
  

0,8	
  

1	
  

1,2	
  

0	
   100	
   200	
   300	
   400	
   500	
   600	
  



57"

Little's Law!

§ Consider a system where tasks arrive periodically. The 
system takes some finite amount of time to execute 
each job."

Black-Box 
System 

•  Suppose that the system is in Equilibrium: the average rate 
at which tasks arrive is equal to the average rate at which 
they are completed. Then, the average over time: 

# tasks in the system = response time * arrival rate  
  

Incoming Tasks Completed Tasks 
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Little's Law!

§  Tells us the number of "in flight" tasks we must have to 
keep our system busy, once we know how long tasks take 
to execute and the rate at which we can execute them."

§ Applies in many situations:"
§  # Outstanding load instrs = DRAM latency * DRAM bandwidth"
§  Pipeline Depth = Instruction Latency * Pipeline Width  "
§ Concurrency = latency * bandwidth!

# tasks in the system = response time * arrival rate  
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Littleʼs law example ...!

§  Consider an NVIDIA GTX285 GPU.  "
§  Bandwidth to DRAM, 128 byte/cycle"
§  Latency to DRAM, 500 cycles"
§  An OpenCL work-item on a GTX285 

issues 4 byte memory requests"
§  How many outstanding memory requests must 

be sustained to fully utilize the chip."
§  What does this suggest concerning how many 

work-items you need in your program to keep 
this utilized at peak clock-rate?" NVIDIA  GTX285 

(Tesla C1060)  

30 cores	



8 wide SIMD	



§  Littleʼs law  … concurrency = latency * bandwidth"
§  Key … pay attention to units.  Requests per clock cycle is what I need."
§  (128 bytes/cycle)*(1 request/4 bytes) = 32 requests/cycle"
§  Concurrency = 500 cycles * 32 requests/cycle = 16000 requests"

§  In other words, you need 16 K threads to fully saturate this GPU.  "

Source: GPU Computing Gems jade edition, Wen Mei Hwu 
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Granularity!

§ Granularity is the ratio of compute time to 
communication time"
§  Hardware: compute rate vs. communication rate … also 

expressed as flops relative to memory latency"
§  Software: How much computation you need to compensate 

for parallel overhead."

Key rule: Granularity demanded by software must be met or 
bettered by hardware.  Fine grained applications do not run 

well on coarse grained systems. 
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Parallel Architecture Granularity!
§  An NVIDIA GTX285 GPU.   "

§  30 1.3 GHz Nvidia Streaming SIMD cores 
each with 8-wide SIMD (240 “CUDA cores”)"

§  2.5 DP GFLOPS per ONE core!
§  Communication through shared memory"
§  Latency to DRAM, 500 cycles"

§  A Linux Cluster"
§  Many Linux PCʼs."

•  Intel Core 2 Q6600 Kensfield,  4  core, 
2.4 GHz. 38 GFLOP DP peak"

§  Communication over 1 gigbit ethernet"
§  Communication latency ~ 40 microseconds 

( 96 thousand cycles)"

§  A multiprocessor PC"
§  2 sockets each with a CPU"

•  Intel Core 2 Q6600 Kensfield,  4  core, 
2.4 GHz. 38 GFLOP DP peak"

§  Communication through shared memory"
§  Latency to DRAM, 200 .. to L3 40 cycles"

Consider how many FLOPS 
your algorithm needs to 

balance a single 
communication 

~1000 DP FLOPS 

1.5 * 106  DP FLOPS 

3200 DP FLOPS 
~150 DP FLOPS 
between cores 
sharing an L3 



Outline 

•  Motivation: We all must be parallel programmers 
•  Key concepts in parallel Computing 

– Basic definitions: Parallelism and Concurrency 
– Notions of parallel performance   
– The limits of scalability 
– Sources of parallel overhead  

•  An introduction to parallel hardware 
•  Software for parallel systems: key design patterns 
•  Closing comments 

62 
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Amdahl's Law: History!

§ Gene Amdahl was a computer 
architect in the 1960's at IBM"

§  In 1967, refuted the idea that parallel 
computing was a practical path to 
improving program performance."

§  Example: Compare these two systems" IBM System 360, ca. 1964 

•  The IBM System 360: 
•  A single-processor machine, running at 16 MHz.  
•  1 FP addition per 60 ns cycle, and 1 FP mul in ~10 60 ns cycles, 

and execute multiple instructions simultaneously  
•  ILLIAC IV:  

•  “The first Supercomputer”  … installed at NASA Ames in 1975. 
•  256 processors … could perform 256 FP adds in 240 ns.  
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Amdahl's Law!

§  Clearly, the ILLIAC will run programs much faster than the S/
360: It has 60x higher instruction throughput!"
§  ... if you always have 256 independent instructions"

§  Amdahl argued that large portions of many programs are not 
parallelizable. Parallel hardware does not help serial code: "

Each block is 1 s … 
Runtime = 3 s 

Runtime = 2.25 s The “middle 
second” runs 

perfectly parallel 
on 4 threads 
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Amdahl's Law!

!"#$%$&= ​​!"#$↓)$*"+, +!"#$↓.+*+,,$,"/+0,$  

§ What is the maximum speedup you can expect from a parallel program?"
§  Consider a sequential program with runtime: "

​​!"#$↓)$& ↓    

§ We can think of this program as consisting of two parts … one that can 
benefit from multiple processing elements (parallel) and a second part that 
is fundamentally serial."

§  The runtime is therefore:"

§ We can express this in terms of a fraction of the program that is serial and 
a fraction of the program that is parallel or"

!"#$%$&=%$*"+,_1*+23"45∗!"#$%$& + parallel_fraction * Timeseq
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Amdahlʼs Law!
v  If we run the program on P processing elements and assume linear 

speedup, then our time for the parallel program becomes:"
 "

seqpar Time
P
fractionparallelfractionserialPTime *)__()( +=

 
n  If you had an unlimited number of processors: 

n  If the serial_fraction is α and the parallel_fraction is (1- α), the speedup is:  
  

 
n  The maximum possible speedup is: 

α
1

=S Amdahl’s Law 

)(H)=   ​​!"#$↓%$&   /​!"#$↓.+* (H) = ​​!"#$↓%$& /(K+ ​1−K/H )∗​
!"#$↓%$&  = ​1/(K+ ​1−K/H )  

​​lim┬H→∞  ⁠​
1−K/H  =0 

0 
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Amdahl's Law and the CHARMM MD 
program!

§  We Profiled CHARMM running on the Paragon XPS to find the time 
spent in code that was not parallelized … concluded that CHARMM 
has a serial fraction of ~0.003."

 
n  The maximum possible speedup is: S= 1/0.003 = 333 
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What if the problem size grows!
§  Consider the dense linear algebra computational pattern (which we 

will cover in much more detail later)."
§  A key feature is that operations between matrices (such as LU 

factorization or matrix multiplication) scale as the cube of the order 
of the matrix."

§  Assume we can parallelize the linear algebra operation (O(N3)) but 
not the loading of the matrices from memory (O(N2)).  How does the 
serial fraction vary with matrix order (assume loading from memory 
is much slower than a floating point op)."

What would plots of runtime vs. problem size look like 
for the N squared and N cubed terms? 

 
What would plots of serial fraction vs. problem size look 

like for the N squared and N cubed terms?   
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What if the problem size grows!
§  Consider the dense linear algebra design pattern (which we will cover in 

much more detail later)."
§  A key feature is that operations between matrices (such as LU factorization 

or matrix multiplication) scale as the cube of the order of the matrix."
§  Assume we can parallelize the linear algebra operation (O(N3)) but not the 

loading of the matrices from memory (O(N2)).  How does the serial fraction 
vary with matrix order (assume loading from memory is much slower than a 
floating point op)."
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What if the problem size grows!
§  Consider the dense linear algebra design pattern (which we will cover in 

much more detail later)."
§  A key feature is that operations between matrices (such as LU factorization 

or matrix multiplication) scale as the cube of the order of the matrix."
§  Assume we can parallelize the linear algebra operation (O(N3)) but not the 

loading of the matrices from memory (O(N2)).  How does the serial fraction 
vary with matrix order (assume loading from memory is much slower than a 
floating point op)."
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Weak Scaling: a response to Amdhal!
§  Gary Montry and John Gustafson (1988, Sandia National Laboratories) 

observed that for many problems the serial fraction of a function of the 
problem size (N) decreases:"

§  In other words … if parallelizable computations asymptotically dominate the 
runtime, then you can increase a problem size until limitations due to 
Amdahlʼs law can be ignored.  This is an easier form of scalability for a 
programmer to meet … so its called “weak scaling”:"
§  Weak Scaling: Performance of an application when the problem size 

increases with the number of processors (fixed size problem per node)"
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Example of weak scaling!

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf 

A time dependent 
Quantum 
simulation of  
helium atoms 
with 20 grid units 
per processing 
element. 

IBM Blue Gene P, 
0.85 GHz, 
PowerPC 450, 4-
way processors 
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Example of weak scaling!

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf 

A time dependent 
Quantum 
simulation of  
helium atoms 
with 20 grid units 
per processing 
element. 

IBM Blue Gene P, 
0.85 GHz, 
PowerPC 450, 4-
way processors 

E
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n 
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Cores 

What does ideal scaling look 
on the time vs. cores plot when 
you have ideal scaling? 
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Example of weak scaling!

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf 

A time dependent 
Quantum 
simulation of  
helium atoms 
with 20 grid units 
per processing 
element. 

IBM Blue Gene P, 
0.85 GHz, 
PowerPC 450, 4-
way processors 
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For a “perfectly scalable” 
application, the trend line for 
weak scaling should be flat. 



Outline 

•  Motivation: We all must be parallel programmers 
•  Key concepts in parallel Computing 

– Basic definitions: Parallelism and Concurrency 
– Notions of parallel performance   
– The limits of scalability 
– Sources of parallel overhead  

•  An introduction to parallel hardware 
•  Software for parallel systems: key design patterns 
•  Closing comments 

75 
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Limitations to scalability!

§  Remember the speedup plot we discussed earilier?"
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Limitations to scalability!

§  Remember the speedup plot we discussed from last time?"

Why does the app. 
Scale worse than 
we’d expect from 
Amdahl’s law? 
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Why does the app. 
Scale worse than 
we’d expect from 
Amdahl’s law? 

Limitations to scalability!

§  Remember the speedup plot we discussed from last time?"

Amdahl’s law ignores 
overheads associated 
with the implementation 
of  the parallelism.   
 
These overheads may 
have a huge impact on 
observed speedups. 
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Parallel overheads: The algorithmic 
structure of many HPC codes (part 1)!

§  A large fraction of HPC applications (such as CHARMM) use a message 
passing notation with the Single Program Multiple Data or SPMD design 
pattern."

Original program Parallel program 
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Parallel overheads: The algorithmic 
structure of many HPC codes (part 2)!

§  And many SPMD programs use an 
additional simplification … “Bulk 
Synchronous Processing”."

§  Each process maintains a local view of 
the global data"

§  A problem is  broken down into phases 
each composed of two subphases:"

•  Compute on local view of data (the 
“squiggles” in the figure)"

•  Communicate to update global view 
on all processes (collective 
communication)."

§  Continue phases until complete"

0 1 2 3 
Process  IDs 

Tim
e 
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Parallel overheads  with the Bulk 
Synchronous Processing pattern!

§  Two major sources of parallel 
overhead:"

0 1 2 3 
Process  IDs 

Tim
e 

1. Load imbalance: the slowest process 
determines when everyone is done.  
Time waiting for other processes to 
finish (i.e. unequal lengths of the 
“squiggles” in the figure ) is time 
wasted."

2. Communication overhead:  A cost 
only incurred by the parallel 
program. Grows with the number of 
processes for collective comm."



82"Source: CS267 Lecture 7"

More Collective Data Movement!

A 
B 

D 
C 

A B C D 
A B C D 

A B C D 
A B C D 

Allgather 
P0 
P1 

P2 

P3 

P0 
P1 

P2 

P3 

A 
B 

D 
C 

A+B+C+D 
AllReduce A+B+C+D 

A+B+C+D 
A+B+C+D 

P0 
P1 

P2 

P3 

P0 
P1 

P2 

P3 



83"

Molecular dynamics!

v  The potential energy, U(r), is divided 
into two parts:"
§  Bonded terms – Groups of atoms 

connected by chemical bonds."
§  Non-bonded terms – longer range 

forces (e.g. electrostatic). "
•  An N-body problem … i.e. every 

atom depends on every other 
atom, an O(N2) problem."

Bonds, angles and torsions 
Source: Izaguirre, Ma and Skeel, SAC’03 slides, March 10 2003 

n  Models motion of atoms in 
molecular systems by solving 
Newton’s equations of motion: 
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Molecular dynamics simulation!

real atoms(3,N) 
real force(3,N) 

int neighbors(MX,N) 
// Every PE has a copy of atoms and force 
loop over time steps 

    parallel loop over atoms 
Compute neighbor list (for my atoms) 
Compute nonbonded forces (my atoms and neighbors) 

Barrier   
All reduce (Sum force arrays, each PE gets a copy) 
Compute bonded forces (for my atoms) 
Integrate to Update position (for my atoms) 
All_gather(update atoms array) 

    end loop over atoms 
end loop 

We used a cutoff method … the 
potential energy drops off quickly so 
atoms beyond a neighborhood can be 
ignored in the nonbonded force calc. 
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Molecular dynamics simulation!

real atoms(3,N) 
real force(3,N) 

int neighbors(MX,N)  //MX = max neighbors an atom may have  
 
// Every PE has a copy of atoms and force 

loop over time steps 
    parallel loop over atoms 

Compute neighbor list (for my atoms) 

Compute long range forces (my atoms and neighbors) 
Barrier   
All reduce (Sum force arrays, each PE gets a copy) 
Compute bonded forces (for my atoms) 
Integrate to Update position (for my atoms) 

All_gather(update atoms array) 
    end loop over atoms 
end loop 

synchronization 

Collective 
Communication 
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Limitations to scalability!

§  Remember the speedup plot we discussed from last time?"

Why does the app. 
Scale worse than 
we’d expect from 
Amdahl’s law? 
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CHARMM Myoglobin Benchmark !
§  Percent of runtime for the different phases of the computation"
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CHARMM running on 
a distributed memory, 
MPP supercomputer 
using a  message 
passing library (NX) 
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Charm Myoglobin Benchmark !
§  Percent of runtime for the different phases of the computation"
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Enon (the n-body term) scales better than 
the other computational terms.  This was 
taken into account in the Serial fraction 
estimate for the Amdahl’s law analysis 
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Charm Myoglobin Benchmark !
§  Percent of runtime for the different phases of the computation"
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The fraction of time spent waiting grows 
with the number of nodes due to two 
factors: (1) the cost of the barrier grows 
with the number of nodes, and (2) variation 
in the work for each node increases as 
node count grows … load imbalance. 
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Synchronization overhead!

§  Processes finish their work and must assure that all processes are 
finished before the results are combined into the global force array."
§  This is parallel overhead since this doesnʼt occur in a serial 

program."
§  The synchronization construct itself takes time and in some 

cases (such as a barrier) the cost grows with the number of 
nodes."

CPU 3 
CPU 2 
CPU 1 
CPU 0 

CPU 3 
CPU 2 
CPU 1 
CPU 0 

Time 



91"

CPU 3 
CPU 2 
CPU 1 

Load imbalance !

§  If some processes finish their share of the computation early, the 
time spent waiting for other processors is wasted."
§  This is an example of Load Imbalance!

Time 

CPU 0 

CPU 3 
CPU 2 
CPU 1 
CPU 0 
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Charm Myoglobin Benchmark !
§  Percent of runtime for the different phases of the computation"
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The communication growth is the chief 
culprit limiting performance in this case. 
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Communication!

§  On distributed-memory machines (e.g. a cluster), communication 
can only occur by sending discrete messages over a network"
§  The sending processor marshals the shared data from the 

application's data structures into a message buffer"
§  The receiving processor must wait for the message to arrive ..."
§  ... and un-pack the data back into data structures  "
"

Time 

CPU 0 

CPU 3 
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Communication!

§  On distributed-memory machines (e.g. a cluster), communication 
can only occur by sending discrete messages over a network"
§  The sending processor marshals the shared data from the 

application's data structures into a message buffer"
§  The receiving processor must wait for the message to arrive ..."
§  ... and un-pack the data back into data structures"

§  If the communication protocol is synchronous, then the sending 
processor must wait for acknowledgement that the message was 
received  "
"

Time 

CPU 0 

CPU 3 
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Charm Myoglobin Benchmark !
§  Percent of runtime for the different phases of the computation"
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collective  comms. 

Composed of multiple 
messages each of 
which incur these 
overheads 
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Limitations to scalability!

§  Remember the speedup plot we discussed from last time?"

Sync, wait, and 
comm. overheads 
combined explain 
this gap 



Outline 

•  Motivation: We all must be parallel programmers 
•  Key concepts in parallel Computing 
•  An introduction to parallel hardware 
•  Software for parallel systems: key design patterns 
•  Closing Comments 
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The Essence of supercomputing: 
Amazing science 

Scientific supercomputing is 
addictive.  Once you wrap your 
brain around these sorts of 
problems, there is no going back. 

A study of the H1N1 virus 
and how mutations render 
anti-virus drugs ineffective."
The video shows the 
electrostatic surface 
potential around the drug 
binding site of the H1N1 
neuraminidase enzyme… 
with unbinding and 
rebinding of Tamiflu into 
the active site on the 
protein."

Source: http://www.ks.uiuc.edu/Research/influenza,    Klaus Schulten’s biophysics group at UIUC 
using their NAMD program running on clusters (Ranger at TACC) and Nvidia GPUs  
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Tracking Supercomputers: Top500!
§  Top500: a list of the 500 fastest computers in the world 

(www.top500.org)"§  Computers ranked by solution to the MPLinpack benchmark:"
§  Solve Ax=b problem  for any order of A"

§  List released twice per year: in June and November"
Current number 1 (June 2013)  Rmax=33.9 PFLOPS 
Tianhe-2, NUDT, Intel Ivy Bridge + Xeon Phi cluster 
17.8 megawatts,   >3million cores 

1 PFLOP 

1 TFLOP 

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf 



101"

Hardware Architectures for High 
Performance Computing (HPC)!

Symmetric 
Multiprocessor 
(SMP) 

Non-uniform 
Memory 
Architecture  
(NUMA) 

Massively 
Parallel 
Processor  
(MPP) 

Cluster 

Single Instruction 
Multiple Data (SIMD) Multiple Instruction 

Multiple Data (MIMD) 

Parallel Computers 

Shared Address Space Disjoint Address Space 

Distributed 
Computing 
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Hardware Architectures for High 
Performance Computing (HPC)!

Symmetric 
Multiprocessor 
(SMP) 

Non-uniform 
Memory 
Architecture  
(NUMA) 

Massively 
Parallel 
Processor  
(MPP) 

Cluster 

Single Instruction 
Multiple Data (SIMD) Multiple Instruction 

Multiple Data (MIMD) 

Parallel Computers 

Shared Address Space Disjoint Address Space 

Distributed 
Computing 

The dominant branch and 
our focus in this lecture 

Discussed later 
with GPUs  
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The birth of Supercomputing!

§  The CRAY-1A:"
§  2.5-nanosecond clock, "
§  64 vector registers,"
§  1 million 64-bit words of high-

speed memory. "
§  Peak speed:"

•  80 MFLOPS scalar."
•  250 MFLOPS vector (but 

this was VERY hard to 
achieve)"

§  Cray software … by 1978 "
§  Cray Operating System 

(COS), "
§  the first automatically 

vectorizing Fortran compiler 
(CFT),"

§  Cray Assembler Language 
(CAL) were introduced. "

§  On July 11, 1977, the CRAY-1A, serial 
number 3, was delivered to NCAR. The 
system cost was $8.86 million ($7.9 
million plus $1 million for the disks). "

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp 
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History of Supercomputing:  
The Era of the Vector Supercomputer!§  Large mainframes that operated on vectors of data"

§  Custom built, highly specialized hardware and software"
§  Multiple processors in an shared memory configuration"
§  Required modest changes to software (vectorization)"

The Cray C916/512 at the Pittsburgh 
Supercomputer Center 
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The attack of the killer micros!

§  The Caltech Cosmic 
Cube developed by 
Charles Seitz and 
Geoffrey Fox in1981"

§  64 Intel 8086/8087 
processors"

§  128kB of memory per 
processor"

§  6-dimensional hypercube 
network"

http://calteches.library.caltech.edu/3419/1/Cubism.pdf 
 

The cosmic cube, Charles Seitz 
Communications of the ACM, Vol 28, number 1 January 
1985, p. 22  

Launched the “attack of 
the killer micros”  
Eugene Brooks, SC’90 
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It took a while, but MPPs came to 
dominate supercomputing!

§  Parallel computers with large numbers of microprocessors "
§  High speed, low latency, scalable interconnection networks "
§  Lots of custom hardware to support scalability"
§  Required massive changes to software (parallelization) "

Paragon XPS-140 at Sandia 
National labs in Albuquerque 
NM 
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The cost advantage of mass market COTS!

§  MPPs using Mass market Commercial off the shelf (COTS) 
microprocessors  and standard memory and I/O components"

§  Decreased hardware and software costs makes huge systems 
affordable"
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ASCI  Red TFLOP Supercomputer 

Vector          MPP       COTS MPP 
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The MPP future looked bright … but 
then clusters took over!

§  A cluster is a collection of connected, independent computers that work 
in unison to solve a problem."

§  Nothing is custom … motivated users could build cluster on their own"
§  First clusters appeared in 

the late 80ʼs (Stacks of 
“SPARC pizza boxes”)"

§  The Intel Pentium Pro in 
1995 coupled with Linux 
made them competitive."
§  NASA Goddardʼs Beowulf 

cluster demonstrated 
publically that high visibility 
science could be done on 
clusters."

§  Clusters made it easier to 
bring the benefits due to 
Mooresʼs law into working 
supercomputers"
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Top 500 list: System Architecture !

*Constellation: A cluster for which the  number of processors on a node is greater than the number of 
nodes in the cluster.  I’ve never seen anyone use this term outside of the top500 list. 

*

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf 
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How do we connect cores together?  
n  A symmetric multiprocessor (SMP) consists of a collection 

of processors that share a single address space: 
n  Multiple processing elements. 
n  A shared address space with “equal-time” access for each processor. 
n  The OS treats every processor the same 

Proc3 Proc2 Proc1 ProcN 

Shared Address Space 



112 

How realistic is this model? 
n  Some of the old 

supercomputer 
mainframes followed this 
model,  

n  But as soon as we added caches to 
CPUs, the SMP model fell apart. 
¨  Caches … all memory is equal, but 

some memory is more equal than 
others. 

A CPU with lots of cache … 



8/19/2013 Parallel Architecture: 113 John Kubiatowicz 

Example of modern core: Nahalem 

•  ON-chip cache resources: 
–  For each core: L1: 32K instruction and 32K data cache, L2: 1MB 
–  L3: 8MB shared among all 4 cores 

•  Integrated, on-chip memory controller (DDR3) 
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Memory Hierarchies!

§  A typical microprocessor memory hierarchy"

I-cache 

TLB 

CPU D-cache 

U
nified C

ache 

R
eg File 

RAM 

n  Instruction cache and data cache pull data from a unified cache that maps onto 
RAM. 

n  TLB implements virtual memory and brings in pages to support large memory 
foot prints.   

1 ns 

1 ns 

10 ns 100 ns 

1 ns 
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NUMA* issues on a Multicore Machine  
2-socket Clovertown Dell PE1950!

2 threads, 2 cores, 
sharing a cache 

2 threads, 2 cores, 1 
socket, no shared cache 

A single quad-
core chip is a 
NUMA 
machine! 

2 threads, 2 cores, 2 sockets  

$ $

Xeon® 5300  
Processor block 
diagram 

Third party names are the property of their owners. 

*NUMA == Non Uniform Memory architecture … memory is shared but access times vary. 
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Do you need to worry about the TLB?!
Transpose: 2 threads on a Dual Proc Xeon 
Ti
m
e 
(s
ec
s)
 

Matrix Order 

Tiled to optimize 
use of TLB 

Ignore TLB issues (no 
tiling)  

Source: M Frumkin, R. van de Wijngaart, T. G. Mattson, Intel 
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What happened to SIMD?!

Symmetric 
Multiprocessor 
(SMP) 

Non-uniform 
Memory 
Architecture  
(NUMA) 

Massively 
Parallel 
Processor  
(MPP) 

Cluster 

Single Instruction 
Multiple Data (SIMD)* Multiple Instruction 

Multiple Data (MIMD) 

Parallel Computers 

Shared Address Space Disjoint Address Space 

Distributed 
Computing 
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Data-Parallelism in HW Architecture!

§  Notions of "Data-Parallelism" in HW 
architecture were originally developed in the 
context of the strict-SIMD machines of the 
1980's"
§  Some of the first massively parallel 

systems: e.g. the Connection Machine 
with up to 64K processors"

§  Have recently become relevant again 
(after a decade of dormancy) due to the 
wide availability of wide SIMD"

§  Called "Data-Parallel" because the source of 
parallelism is simultaneous operations 
across large sets of data, rather than from 
multiple threads of control"

§  The semantics of "pure" Data-Parallel 
languages are sequential, and parallelization 
is implicit"
§  The program produces "equivalent" 

results if executed serially"
§  Much easier to reason about 

correctness!"
"Data Parallel Algorithms", Hillis and Steele, CACM 1986. Vol. 29, no. 12   

“Vector Models for Data-Parallel 
Computing”, Guy E. Blelloch 



SIMD and sx86 multimedia extensions. 

12
0 

Source: Bryan Catanzaro, NVIDIA, UCB Parlab Bootcamp, 2013 



A brief history of the GPU: 
Coprocessors to support Graphics (and more) 
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1st generation: 
Voodoo 3dfx (1996) 

2nd Generation:  
GeForce 256/Radeon 7500 
(1998) 

3rd  Generation: GeForce3/Radeon 8500 
(2001). The first GPU to allow a limited 
programmability in the vertex pipeline.   

4th  Generation: Radeon 9700/GeForce FX 
(2002): The first generation of “fully-
programmable” graphics cards. 

Third party names are the property of their owners 

5th Generation: GeForce 8800/HD2900 
(2006) and the birth of CUDA 
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NVIDIA	
  GTX	
  480	
  

Graphics only 
i.e. texture cache,  
interpolation hardware 

General compute + graphics 
16 “Streaming multiprocessors” 

Memory Controllers 

500 Double-precision GFLOPs 
16 Multiprocessors 
32 ALUs/processor 
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The end of the discrete GPU 

GMCH GPU 

ICH 

CPU CPU 

DRAM 

GMCH = graphics memory control hub,   
ICH = Input/output control hub 

• A modern platform has: 
– CPU(s) 
– GPU(s) 
– DSP processors 
– … other? 

• Current designs put 
this functionality 
onto a single chip … 
mitigates the PCIe 
bottleneck in 
GPGPU computing! 

Intel® Core™ i5-2500K Desktop Processor  
(Sandy Bridge)  Intel HD Graphics 3000 (2011) 

Absorption into CPU (remove “off chip” penalty) but 
uncertain standards story à success unclear 
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Recap: !

Original Problem Tasks, shared and local data 

Find Concurrency 
(Decomposition) 

v  To expose concurrency in a problem, we need to understand how 
the problem is decomposed into tasks AND how the problemʼs data 
is decomposed to support efficient computation.    YOU ALWAYS 
NEED BOTH."

v  Consider the following two problems.  Can you come up with a task 
and data decomposition for these problems?"
§  Graphics rendering pipeline."
§  Finding the best route between two cities on a map."



126"

The Parallel programming process: !

Original Problem Tasks, shared and local data 

Find Concurrency 
(Decomposition) 

Implementation 
strategy 

Corresponding source code 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int Num = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N, Data); 
   for (int I= ID; I<N;I=I+Num){ 
        tmp = func(I, Data); 
        Res.accumulate( tmp); 
   } 
} 

Units of execution + new shared data for extracted 
dependencies 



Parallel computing:  It’s old 
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Late 70’s 

Cray 1 (1976) Cray 2 (1985) Cray C-90 (1991) 

Cosmic cube (1983) Paragon (1993) 

ASCI Red (1997)  

Clusters (late 80’s) 

Late 80’s Late 90’s 

Vector Computers 

Cluster Computers 

Massively Parallel Processors (MPP) 

Linux PC Clusters 
(~1995) 

Third party names are the property of their owners. 



We tried to solve the parallel programming problem 
by searching for the right programming environment 

ABCPL 
ACE  
ACT++  
Active messages  
Adl 
Adsmith 
ADDAP 
AFAPI 
ALWAN 
AM 
AMDC 
AppLeS 
Amoeba  
ARTS 
Athapascan-0b 
Aurora 
Automap 
bb_threads  
Blaze 
BSP 
BlockComm  
C*.  
"C* in C  
C**  
CarlOS 
Cashmere 
C4 
CC++  
Chu 
Charlotte 
Charm 
Charm++ 
Cid 
Cilk 
CM-Fortran  
Converse 
Code 
COOL 

CORRELATE  
CPS  
CRL 
CSP 
Cthreads  
CUMULVS 
DAGGER 
DAPPLE  
Data Parallel C  
DC++  
DCE++  
DDD 
DICE. 
DIPC  
DOLIB 
DOME  
DOSMOS. 
DRL 
DSM-Threads 
Ease . 
ECO 
Eiffel  
Eilean  
Emerald  
EPL  
Excalibur 
Express 
Falcon 
Filaments 
FM 
FLASH 
The FORCE  
Fork 
Fortran-M 
FX 
GA  
GAMMA  
Glenda 

GLU 
GUARD 
HAsL. 
Haskell  
HPC++ 
JAVAR. 
HORUS 
HPC 
IMPACT 
ISIS. 
JAVAR 
JADE  
Java RMI 
javaPG 
JavaSpace 
JIDL 
Joyce 
Khoros 
Karma  
KOAN/Fortran-S 
LAM 
Lilac  
Linda 
JADA  
WWWinda 
ISETL-Linda  
ParLin  
Eilean  
P4-Linda 
Glenda  
POSYBL 
Objective-Linda 
LiPS 
Locust 
Lparx 
Lucid 
Maisie  
Manifold 

Mentat 
Legion 
Meta Chaos  
Midway 
Millipede 
CparPar 
Mirage 
MpC 
MOSIX 
Modula-P 
Modula-2* 
Multipol 
MPI 
MPC++ 
Munin 
Nano-Threads 
NESL 
NetClasses++  
Nexus 
Nimrod 
NOW 
Objective Linda 
Occam 
Omega 
OpenMP 
Orca 
OOF90 
P++ 
P3L 
p4-Linda 
Pablo 
PADE 
PADRE  
Panda  
Papers  
AFAPI. 
 Para++ 
Paradigm 

Parafrase2  
Paralation  
Parallel-C++  
Parallaxis 
ParC  
ParLib++ 
ParLin 
Parmacs 
Parti 
pC 
pC++ 
PCN 
PCP:  
PH 
PEACE 
PCU 
PET 
PETSc 
PENNY 
Phosphorus  
POET. 
Polaris  
POOMA 
POOL-T 
PRESTO 
P-RIO  
Prospero 
Proteus  
QPC++  
PVM 
PSI 
PSDM 
Quake 
Quark 
Quick Threads 
Sage++ 
SCANDAL 
 SAM 

pC++  
SCHEDULE 
SciTL  
POET  
SDDA. 
SHMEM  
SIMPLE 
Sina  
SISAL. 
distributed smalltalk  
SMI. 
SONiC 
Split-C. 
SR 
Sthreads  
Strand. 
SUIF. 
Synergy 
Telegrphos 
SuperPascal  
TCGMSG. 
Threads.h++. 
TreadMarks 
TRAPPER 
uC++  
UNITY  
UC  
V  
ViC*  
Visifold V-NUS  
VPE 
Win32 threads  
WinPar  
WWWinda  
 XENOOPS   
XPC 
Zounds 
ZPL 

Parallel programming environments in the 90’s 

Third party names are the property of their owners. 
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Language obsessions: More isn’t always 
better 

•  The Draeger Grocery Store 
experiment consumer choice : 
– Two Jam-displays with coupon’s for 

purchase discount. 
– 24 different Jam’s 
– 6 different Jam’s 

– How many stopped by to try samples 
at the display? 

– Of those who “tried”, how many bought 
jam? 

The findings from this study show that an extensive array of options can at 
first seem highly appealing to consumers, yet can reduce their subsequent 
motivation to purchase the product. 
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social 
Psychology, 76, 995-1006.  
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Throwing new languages at the problem didn’t work: 
the “Dead Architecture Society” 

Alliant 

ETA 

Encore 

Sequent 

SGI 

Myrias 

Intel SSD 

BBN 

IBM 

Workstation/PC  clusters  

Masspar 

Thinking machines 

ICL/DAP 

Goodyear 
Multiflow 

FPS 

KSR 

Denelcore HEP 

Tera/MTA – now Cray 

Shared 
Memory 
MIMD 

Distributed 
Memory 
MIMD 

SIMD 

Other 

1980 1990 2000 
Any product names on this slide are the property of their owners. 



My optimistic view from 2005 … 

We’ve learned our 
lesson … we emphasize 

a small number of 
industry standards	





132 132 

But we didn’t learn our lesson 
History is repeating itself! 

Third party names are the property of their owners. 

 A small sampling of Programming environments from the 
NEW golden age of parallel programming (from the literature 2010-2012) 

Note: I’m not criticizing these technologies.  I’m criticizing our collective 
urge to create so many of them. 

AM++   
ArBB 
BSP 
C++11   
C++AMP  
Charm++ 
Chapel  
Cilk++ 
CnC  
coArray Fortran  
Codelets  

Copperhead  
CUDA 
DryadOpt 
Erlang 
Fortress 
GA  
GO  
Gossamer 
GPars 
GRAMPS 
Hadoop 
HMPP 

ISPC 
Java 
Liszt 
MapReduce  
MATE-CG 
MCAPI  
MPI 
NESL 
OoOJava 
OpenMP  
OpenCL 
OpenSHMEM 

OpenACC  
PAMI  
Parallel Haskell 
ParalleX  
PATUS  
PLINQ  
PPL  
Pthreads  
PXIF  
PyPar 
Plan42 
RCCE 

Scala  
SIAL 
STAPL  
STM  
SWARM  
TBB  
UPC 
Win32 
threads  
X10  
XMT  
ZPL 



Maybe its time to try something different? 
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Parallel Algorithm Strategy Patterns	
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Communication	



Shared Address Space Threads	
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Algorithms and Data structure	
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Loop-Par.���
Workpile	
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Concurrency Foundation constructs (not expressed as patterns)	



Task Decomposition ���
Data Decomposition	



Ordered task groups ���
Data sharing	



Design Evaluation	



Finding Concurrency Patterns 	



Source: Keutzer and Mattson Intel Technology Journal, 2010	





• Spectral methods 

• MapReduce 
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• Pipe-and-Filter 

Pattern examples 

Structural Patterns: Define the software structure .. Not what is computed 

• Iterative refinement 

Computational Patterns: Define the computations “inside the boxes” 

• Structured mesh 

Parallel Patterns: Defines parallel algorithms 

• Fork-join • SPMD • Data parallel 



137"

Seven strategies for parallelizing 
software!

§  These seven strategies for parallelizing software give us:"
§  Names: so we can communicate better"
§  Categories: so we can gather and share information"
§  A palette (like an artistʼs palette) of approaches that is:"

•  Necessary: we should consider them all and"
•  Sufficient: once we have considered them all then we donʼtʼ 

have to worry that we forgot something"



138"

Parallel Algorithmic Strategies!

Result Parallelism 

Geometric 
Decomposition Task 

Parallelism Divide and 
Conquer Data 

Parallelism 

Specialist 
Parallelism 

Pipeline Discrete 
Event 

Agenda Parallelism 

Speculation 

Data Tasks  Flow of Data 

Application  
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Data Parallelism Pattern!

§  Use when:"
§  Your problem is defined in terms of collections of data 

elements operated on by a similar (if not identical) 
sequence of instructions; i.e. the concurrency is in the 
data.   "

§  Solution"
§  Define collections of data elements that can be updated 

in parallel."
§  Define computation as a sequence of collective 

operations applied together to each data element."

Data 1 Data 2 Data 3 Data n 

Tasks 

…… 
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Task Parallelism Pattern!

§  Solution"
§  Define the set of tasks and a way to detect when 

the computation is done."
§  Manage (or “remove”) dependencies so the 

correct answer is produced regardless of the 
details of how the tasks execute. "

§  Schedule the tasks for execution in a way that 
keeps the work balanced between the processing 
elements of the parallel computer and "

§  Use when:"
§  The problem naturally decomposes into a 

distinct collection of tasks"
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Task Parallelism in practice!

§  Embarrassingly parallel: "
§  The tasks are independent, so the parallelism is 

“so easy to exploit itʼs embarrassing”."
§  Separable dependencies:"

§  Turn a problem with dependent tasks into an 
“embarrassingly parallel” by “replicating data 
between tasks, doing the work, then recombining 
data (often a reduction) to restore global state."

§  Functional Decomposition"
§  A task is associated with a functional 

decomposition of the problem to produce a coarse 
grained parallel program " Its becoming common to associate 

this case as the prototypical “task 
parallel” approach … but to us old-
timers, the previous two cases are 
overwhelming more common. 
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Divide and Conquer Pattern!

§  Use when:"
§  A problem includes a method to divide into 

subproblems and a way to recombine solutions of 
subproblems into a global solution."

§  Solution"
§  Define a split operation"
§  Continue to split the problem until subproblems are 

small enough to solve directly."
§  Recombine solutions to subproblems to solve original 

global problem."
§  Note: "

§  Computing may occur at each phase (split, leaves, 
recombine)."
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Divide and conquer!
§  Split the problem into smaller sub-problems. Continue until the sub-

problems can be solve directly."

n  3 Options: 
¨  Do work as you split 

into sub-problems. 
¨  Do work only at the 

leaves. 
¨  Do work as you 

recombine. 
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Pipeline Pattern!

§  Use when:"
§  Your problem can be described as data flowing 

through a sequence of computational stages"
n  Solution 

¨ Define a set of stages setup 
with data-flow connections 
between them. 

¨ Set up input/output channels 
to support data driven 
execution. 

¨ Parallelism comes from 
multiple stages acrive at one 
time. 
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Geometric Decomposition!

§  Use when:"
§  The problem is organized around a central data structure that 

can be decomposed into smaller segments (chunks) that can be 
updated concurrently."

§  Solution"
§  Typically, the data structure is updated iteratively where a new 

value for one chunk depends on neighboring chunks."
§  The computation breaks down into three components: (1) 

exchange boundary data, (2) update the interiors or each chunk, 
and (3) update boundary regions. The optimal size of the chunks 
is dictated by the properties of the memory hierarchy. "

x-sweep  

z-
sw

ee
p 

 

§  Note:"
§  This pattern is often used with the 

Structured grid and linear algebra 
computational strategy pattern."
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Speculation!

§  Use when:"
§  Suppose that the computation has been decomposed 

into a number of tasks that are not completely 
independent, but where conflicts are expected to only 
infrequently occur  when the computation is actually 
executed. Solution"

§  Solution:"
§  An effective solution may be to just run the tasks independently, 

that is speculate that no conflicts will occur, and then clean up 
after the fact and retry in the rare situations where a conflict does 
occur.  Two essential element of this solution are: "
1.  Have an easily identifiable safety check to determine 

whether the computation ran without conflicts and can thus 
be committed"

2.  The ability to rollback and re-compute the cases where 
conflicts occur. "



147"

Speculative Parallelism!
§  Speculative Parallelism:"

§  Speculate on  state of dependencies "
§  Check validities of speculations"
§  Recompute as needed to correct any mis-speculations"

Source: Narayanan Sundaram of UC Berkeley 
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Discrete-Event!

§  Use when:"
§  The computation has been structured as loosely connected 

sequence of tasks that interact at unpredictable points in time. "
§  Solution"

§  Setup an event handler infrastructure"
§  Launch a collection of tasks whose interaction is handled 

through the event handler.   The handler is an intermediary 
between tasks, and in many cases the tasks do not need to 
know the source or destination for the events.   "

§  Note:"
§  Discrete event is often used with problems, such as GUIs and 

discrete event simulations, that are handled with the Event-
based implicit invocation, model-view-controller, or process 
control patterns."
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Graph-Algorithms	



Dynamic-Programming	



Dense-Linear-Algebra	



Sparse-Linear-Algebra	



Model-View-Controller 	



Iterative-Refinement	



Map-Reduce	



Layered-Systems	



Puppeteer	



Pipe-and-Filter	



Agent-and-Repository	



Process-Control	



Event-Based/Implicit-Invocation	



Arbitrary-Static-Task-Graph	



Unstructured-Grids	



Structured-Grids	


Graphical-Models	


Finite-State-Machines	


Backtrack-Branch-and-Bound	


N-Body-Methods	


Circuits	


Spectral-Methods	


Monte-Carlo	



Applications	



Structural Patterns 	

 Computational Patterns	



OPL Pattern Language (Keutzer & Mattson 2010)	



Task-Parallelism���
Divide and Conquer	



Data-Parallelism���
Pipeline	



Discrete-Event ���
Geometric-Decomposition ���
Speculation	



SPMD ���
Kernel-Par.	



Fork/Join ���
Actors ���
Vector-Par	



Distributed-Array���
Shared-Data	



Shared-Queue���
Shared-Map ���
Parallel Graph Traversal	



Coordinating Processes ���
Stream processing 	



Parallel Execution Patterns	



Parallel Algorithm Strategy Patterns	



Implementation Strategy Patterns	



Communication	



Shared Address Space Threads	



Task Driven Execution	



Algorithms and Data structure	

Program structure	



Synchronization	



Loop-Par.���
Workpile	



Thread/proc management	



Concurrency Foundation constructs (not expressed as patterns)	



Task Decomposition ���
Data Decomposition	



Ordered task groups ���
Data sharing	



Design Evaluation	



Finding Concurrency Patterns 	



Source: Keutzer and Mattson Intel Technology Journal, 2010	



7 patterns to turn 
algorithms into code 
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Seven strategies for implementing our 
algorithms as software!

§  These seven strategies for implementing our parallel algorithms give 
us:"
§  Names: so we can communicate better"
§  Categories: so we can gather and share information"
§  A palette (like an artistʼs palette) of approaches that is:"

•  Necessary: we should consider them all and"
•  Sufficient: once we have considered them all then we donʼtʼ 

have to worry that we forgot something"

SPMD ���
Actors	



Fork/Join ���
Workpile	



Program structure	



Loop-Parallel���
Kernel-Parallel���
Vector-Parallel	



Implementation Strategy Patterns	





151"

Implementation Strategy patterns!

§  The most commonly used implementation strategy patterns:"
SPMD One program replicated, specialized by ID and NumProcs 
Fork-Join Single thread forks a team as needed and later joins 
Work-pile Create a pile of tasks for a set of workers to process 
Loop-Parallel Make expensive loops independent and use a “parallel for” 
Vector-Parallel Unroll loops to expose blocks, vector ops process blocks 
Kernel-Parallel Fine-Grained SPMD kernels . Large numbers to address little’s law.  

§  Programming models are often optimized around the needs 
of these patterns.  For “our” programming models:"
§  MPI: SPMD, work-pile"
§  OpenMP: Loop-parallel, fork-join … SPMD on large NUMA systems."
§  OpenCL and CUDA: Kernel-parallelism"
§  OpenACC: Loop-parallel and Kernel Parallel"
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Turning patterns into code: High 
level frameworks and the future of 

software development 
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Computer Games: one of the few (only?) consumer  SW 
industries that have successfully embraced many-core industry-wide 

•  Divide Software group into two teams: 

Source: Tim Sweeney, Epic Games 

Third party names are the property of their owners. 

– Productivity programmers: 
– 90% of the SW group. 
– Responsible for game content 

seen by a user (story line, 
characters, art, etc). 

– Efficiency programmers: 
– 10% of the software group 
– optimize the game software 

for specific platforms (C, 
assembly, etc)  

 •  The full group needs to grapple with concurrency (tools cannot 
discover it automatically) … but only a small group (efficiency 
programmers) must understand the details of how to exploit 
concurrency in an efficient parallel program. 
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Verification 

Dynamic 
Checking 

Debugging 
with Replay 

Directed 
Testing 

Autotuners 

C&CL Compiler/Interpreter 

Efficiency Languages 

Type 
Systems 

High level, safe, concurrency 
through high level frameworks 

Low level, risky, hardware 
details fully exposed 

Par Lab (UC Berkeley) Overview 



156 13 dwarves 

To get frameworks 
right … start with an 
understanding of 
software architecture  

PLPP: Pattern 
language of 

Parallel 
Programming	
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Structural Patterns 	

 Computational Patterns	



OPL Pattern Language (Keutzer & Mattson 2010)	



Task-Parallelism���
Divide and Conquer	
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Parallel Algorithm Strategy Patterns	
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Shared Address Space Threads	



Task Driven Execution	



Algorithms and Data structure	
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Loop-Par.���
Workpile	
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Concurrency Foundation constructs (not expressed as patterns)	



Task Decomposition ���
Data Decomposition	



Ordered task groups ���
Data sharing	



Design Evaluation	



Finding Concurrency Patterns 	



Source: Keutzer and Mattson Intel Technology Journal, 2010	
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Parallel Algorithm Strategy Patterns	
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Concurrency Foundation constructs (not expressed as patterns)	



Task Decomposition ���
Data Decomposition	



Ordered task groups ���
Data sharing	



Design Evaluation	



Finding Concurrency Patterns 	



Source: Keutzer and Mattson Intel Technology Journal, 2010	



Patterns travel together … informs 
framework design (a pathway for cactus 

is shown here)	



Distributed memory cluster 
and MPP computers	

 Multiprocessors (SMP and NUMA)	





159	
  
	
  

Application	
  driven	
  Framework	
  development	
  

Speaker 
Diarization 

•  Who spoke when? 
 
•  20 – 60 min meeting 

recordings 

corpus.amiproject.org/ 

Music 
Recommendation 

•  Recommend songs 
most similar to a query 

 
 

1 Million Song Dataset 
labrosa.ee.columbia.edu/millionsong/ 

Video Event 
Detection 

•  Detect events in 
videos based on the 

soundtrack 
• 1-50K video files 

www-nlpir.nist.gov/ 
projects/tv2011/ 

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.  
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Mining	
  Patterns	
  from	
  	
  
Multi	
  media	
  Content	
  Analysis	
  

Speaker 
Diarization 

Music 
Recommendation 

Video Event 
Detection 

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.  
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What	
  the	
  Framework	
  Will	
  Look	
  Like	
  

GMM Eval 

Wiener Filter 
GMM training 

FFT SVM 

Library	
  Components	
  

HMM 
 
 

€ 

aij

€ 

bi(ot ) ;

FFT 

SVM 
 
 

€ 

φ(xi,x j )
HMM 

 
 

€ 

aij

€ 

bi(ot ) ;

Customizable	
  Components	
  

+	
  

SVM 

GMM GMM GMM GMM GMM 

+	
  

	
  	
  

Structural	
  Patterns	
  

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.  
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Library	
  Component	
  Example:	
  GMM	
  EM	
  Training	
  

§  GMM = probabilistic model for clustering data 

Example GMM in two dimensions 
(Source: www.mathworks.com) 

“CUDA-level Performance with Python-level Productivity for Gaussian Mixture Model 
Applications” Henry Cook, Ekaterina Gonina, Shoaib Kamil, Gerald Friedland, David 
Patterson, Armando Fox. In Proceedings of the 3rd USENIX conference on Hot topics in 
parallelism (HotPar'11). USENIX Association, Berkeley, CA, USA. 

GMM 

	
  
§  Expectation	
  Maximization	
  (EM)	
  Algorithm	
  for	
  training	
  
GMMs	
  (find	
  mean,	
  covariance	
  and	
  weights)	
  
§  Multiple	
  parallelization	
  strategies	
  based	
  on	
  problem	
  size	
  and	
  

hardware	
  platform	
  characteristics	
  
§  Written	
  in	
  C/CUDA/Cilk+	
  templates	
  
§  Select	
  best-­‐performing	
  strategy	
  at	
  runtime	
  

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.  
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Customizable	
  Component	
  Example:	
  HMM	
  EM	
  Training	
  

€ 

s0

€ 

s1

€ 

s2

€ 

s3

€ 

s4

€ 

s5

€ 

o0

€ 

o1

€ 

o2

€ 

o3

€ 

o4

€ 

o5
€ 

aij

€ 

bi(ot )

€ 

si

€ 

ot

€ 

aij

€ 

bi(ot )

-­‐	
  hidden	
  state	
  i	
  

-­‐	
  observation	
  at	
  time	
  t	
  

-­‐	
  Transition	
  probability	
  from	
  
state	
  i	
  to	
  state	
  j	
  

-­‐	
  observation	
  probability	
  of	
  
obs	
  t	
  given	
  state	
  i	
  

§  Model temporal sequences 

§  Training – find parameters A and B given observation 
sequence O using the Baum-Welsh algorithm (generalized 
EM) 

§  Decoding – find the state sequence S that best matches an 
observation sequence O (Viterbi algorithm) 

HMM 
 
 

€ 

aij

€ 

bi(ot ) ;

-­‐	
  customizable	
  element	
  
Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.  
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PyCASP	
  Productivity	
  
§  Create a tractable framework scope by using patterns 
§  Applications written in Python 

§  Glue language 
 

 Application 
Lines of Python 

Code 

Approximated 
LOC Reduction 

(vs. C/C++) 

50 60X 

500 10-50X 

50 + 1 60X + 20X 

Speaker Diarization 

Music 
Recommendation 

Impossibile 
trovare nel 
file la parte 

Video Event Detection 

Specializer LOC 

GMM 
1500 C/
CUDA 

800 Python 

Map-Reduce 80 Python 

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.  
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Efficiency	
  

§  Speaker Diarization 
§  Average faster-than-real-time factor &error rate 
§  Averaged across 12 meetings (AMI corpus) [1] 

Implementation	
  
Diarization	
  Error	
  

Rate	
  
Faster-­‐than-­‐real-­‐time	
  

factor	
  

State-­‐of-­‐the-­‐art	
  C++	
   ~22%	
   1x	
  

PyCASP	
   24.7%	
   115x	
  

[1] E. Gonina, G. Friedland, H. Cook and K. Keutzer. “Fast Speaker Diarization Using a High-Level Scripting 
Language” In Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 
Dec 11-15, 2011, Waikoloa, Hawaii  

Speaker Diarization 

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.  
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PyCASP	
  Portability	
  

§  Speaker Diarization 
§  Average faster-than-real-time factor  
§  Intel Westmere and two CUDA GPUs 
§  Averaged over 12 meetings (AMI corpus) 

§  (Augmented  Multi-party Interaction corpus)  
§  100 hours of meetings captured using many synchronized 

recording devices 

Platform	
  
Faster-­‐than-­‐real-­‐time	
  

factor	
  

Intel	
  Westmere	
  	
   56x	
  

Nvidia	
  GTX285	
   101x	
  

Nvidia	
  GTX480	
   115x	
  

Speaker Diarization 

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.  
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PyCASP	
  Scalability	
  

§  Music Recommendation 

Number of features in query 

Recommendation Time vs. Query Size – 1 Million Songs 

T
im

e(
m

s)
 

30 songs 
“Elton John” 

400-500 songs 
“Elton John or Eric Clapton or 
Lady Gaga or Britney Spears” 

Total 
recommendation 

time 

Query GMM 
training time 

Under 1 second 
recommendation 

time for all 
queries! 

Music 
Recommendation 

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.  



168	
  
	
  

PyCASP	
  Scalability	
  

§  Video Event Detection 

•  Nearly-optimal scaling on a cluster of GPUs: 
•  15.5x on 16-node cluster for 500 and 1000 videos 

Number of videos 

S
pe

ed
up

 

Scaling of Video Event Detection 

Impossibil
e trovare 
nel file la 
parte 

Video Event 
Detection 

Source: Keutzer and Gonina, non-numeric computing workshop, Summer 2012.  



Outline 

•  Motivation: We all must be parallel programmers 
•  Key concepts in parallel Computing 
•  An introduction to parallel hardware 
•  Software for parallel systems: key design patterns 
•  Closing comments 
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Writing Parallel software isn’t enough 
• Modern applications are built from multiple modules and 

libraries. 

• We can parallelize them all … but ultimately they need to run 
together and “do the right thing” when put together. 

•  This is the parallel composition problem. 

– How do you manage resources between different modules? 

– How do you maintain isolation between modules to keep them 
from colliding? 

– How do you optimize resource allocation to produce the best 
results? 

• We do not have a good solution to this problem.  The 
starting point is a common runtime to support 
multiple programming models. 
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For example … consider what’s 
happening at Intel? 
Intel has developed a whole series of programming models that map onto three different 

runtime libraries (RTL) that all sit on top of a common RML.  This gives us a 
foundation to work on as we attack the composability problem	



Shared Address Space 

Proc3 Proc2 Proc1 ProcN 

H
W

 

TBB  RTL 

OS/system support for shared memory and threading S
ys

te
m

 la
ye

r 

TBB ArBB OpenMP P
ro

g.
 

La
ye

r 

CnC 

Third party names are the property of their owners. 

(RML) resource management layer 

Cilk Plus  RTL OpenMP RTL 

Cilk Plus OpenCL 
MKL Coarray Fortran 



Parallel programming is really hard 

•  Programming is hard whether you write serial or parallel 
code.    
– Parallel programming is just a new wrinkle added to the already 

tough problem of writing high quality, robust and efficient code. 

•  Why does Parallel programming seems so complex? 
– The literature overwhelms with hundreds of languages/APIs and a 

countless assortment of algorithms. 
– Experienced parallel programmers love to tell “war stories” of 

Herculean efforts  to make applications scale … which can scare 
people away. 

–  It’s new: synchronization, scalable algorithms, distributed data 
structures, concurrency bugs, memory models … hard or not it’s a 
bunch of new stuff to learn. 

17
2 



Third party names are the property of their owners. 

But it’s really not that bad (part 1): parallel libraries 
 

The Networking and Information Technology Research and Development (NITRD)  

Source: Kathy Yelick 
Source: Kathy Yelick 



But its really not that bad: part 2 
•  Don’t let the glut of parallel programming languages confuse 

you. 
•  Leave research languages to C.S. researchers and stick to the 

small number of broadly used languages/APIs: 
–  Industry standards: 

–  Pthreads and OpenMP 
– MPI 
– OpenCL 
–  TBB (… and maybe Cilk?) 

– or a broadly deployed solutions tied to your platform of choice 
– CUDA and OpenACC (for NVIDIA platforms and PGI compilers) 
–  .NET and C++ AMP (Microsoft) 

– For HPC programmers dreaming of Exascale … maybe a PGAS 
language/API? 
– UPC 
– GA 
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But its really not that bad : part 3 

•  Most algorithms 
are based on a 
modest number 
of recurring 
patterns (see Kurt 
Kreutzer's lecture 
tomorrow). 
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•  Almost every parallel program is written in terms of just 7 
basic patterns: 

– SPMD 
– Kernel Parallelism  
– Fork/join 
– Actors 

– Vector Parallelism 
– Loop Parallelism 
– Work Pile 



Parallel programming is easy 
•  So all  you need to do is: 

– Pick your language. 
–  I suggest sticking to industry standards and open source so you can 

move around between hardware platforms: 
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– SPMD 
– Kernel Parallelism  
– Fork/join 
– Actors 

– Vector Parallelism 
– Loop Parallelism 
– Work Pile 

– Learn the key 7 patterns 

– Master the few patterns common to your platform and application 
domain … for example, most application programmers just use 
these three patterns 

– SPMD – Loop Parallelism – Kernel Parallelism  

– pthreads – OpenCL – OpenMP – MPI – TBB 

Third party names are the property of their owners. 
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Comparing parallel programming 
languages/APIs!

Units of 
Execution 

A distinct executable agent that carries out the work 
of a program.  Examples include the threads 
managed by an OS, processes running on the node 
of a cluster, or work-items in an OpenCL program  

Tasks/mapping Tasks are a logically related set of operations used to 
organize the computations in a program.  A key 
aspect of a parallel program is how these tasks are 
associated (or mapped) onto the units of execution. 

Coordination Mechanisms to manage units of execution (e.g. 
create, destroy, suspend) and how they interact (e.g. 
synchronization and communication). 

Hardware targets Most programming models were designed with a 
particular class of parallel hardware in mind.   

§  To compare programming languages and APIs at a high level, we can 
think in terms of four key elements"
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* MIMD (multiple instruction multiple data) and heterogeneous computers will be covered in a latter lecture on 
parallel hardware. The SPMD (single Program Multiple Data)  and kernel parallelism patterns will be covered in 
our parallel design patterns lecture. 

Comparing parallel programming 
languages/APIs!

Units of 
execution 

Tasks/mapping Coordination Hardware 
targets 

Pthreads threads Fork join Shared variables 
and explicit 
synchronization  
constructs 

Shared 
address space 
computers 

OpenMP threads Teams of threads 
with worksharing 
(loops and tasks) 

Shared variables 
and 
synchronization  
constructs 

Shared 
address space 
computers 

MPI processes SPMD* Message passing Any MIMD* 
computer 

OpenCL Work-items Kernel parallelism* Heterogeneous 
computers* 

CUDA CUDA-threads Kernel parallelism* NVIDIA GPUs 



If you become overwhelmed during this course … 
•  Come back to this slide and remind yourself … things are not 

as bad as they seem 
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