
Computer Architecture and
Performance Tuning

“Modern processors and related
optimisation topics, including the seven

Performance Dimensions”

Sverre Jarp
CERN

openlab
CTO

IT Dept.

CERN

ESC 2013 – Bertinoro, Italy – October 2013

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

2

Goal of this lecture series

1. Give an understanding of modern computer
architectures from a performance point-of-view
 Processor, [Cache, Memory subsystem]
 Use x86-64 as a de-facto standard
 But keep an eye on GPUs/accelerators

2. Explain hardware factors that improve or degrade
program execution speed
 Prepare for writing well-performing software

3. Teach an approach to detailed performance
measurements
 Highlight the most important events for such

measurements

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

3

Contents

 Introduction:
 Setting the scene; Moore’s “law”
 Complexity in Computing

 Basic Architecture

 Performance Dimensions:
 Vectorisation
 Instruction level parallelism
 Multi-core parallelisation

 Memory subsystem

 Conclusion

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

4

Setting the scene (1)
 Somebody offers you something worth a 100 €. Nice!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

5

Setting the scene (2)
 However, when you “measure” the real value of this gift

5 € ! How come !

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

6

Why worry about performance?
 My arguments:
 Performance per €: There are important cost issues

associated with large scale computing
 Even when using “commodity equipment”

 Performance per watt: There are important thermal issues

associated with large scale computing
 Even when 1W processors exist!

 The “easy ride” disappeared: The frequency scaling we

enjoyed in the past does not exist any longer.
It stopped 10 years ago!
 ..and, as a “by-product”, computer architecture is becoming

(much) more complicated

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

7

Moore’s “law”
 A marching order established

~50 years ago

 “Let’s continue to double the
number of transistors every
other year!”

 First published as:
 Moore, G.E.: Cramming more

components onto integrated
circuits. Electronics, 38(8), April
1965.

 Accepted by all partners:
 Semiconductor manufacturers
 Hardware integrators
 Software companies
 Us, the consumers From Wikipedia

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

8

Moore’s “law” (cont’d)
 The consequences: An incredible

level of integration
 CPUs: Many-core, Hardware vectors,

Hardware threading
 GPUs: Enormous number of floating-

point units

 Today, we commonly acquire chips
with 1’000’000’000 (109) transistors!
 Server chips and high-end GPU

devices have much more

 Kepler GK110:

– 7.1 billion transistors

From Wikipedia

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

9

Real consequence of Moore’s law

 We are being “snowed under” by transistors:

 More (and more complex) execution units
 Hundreds of new instructions

 Longer SIMD/SSE hardware vectors
 More and more cores
 More hardware threading

 In order to profit we need to “think parallel”

 Data parallelism
 Task parallelism

“Data Oriented Design”

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

10

Semiconductor evolution
 Today’s silicon processes:
 32, 28, 22 nm

 Being introduced:
 14 nm (2013/14)

 In research:
 10 nm (2015/16)
 7 nm (2017/18)
 5 nm (2019/20)

– Source: Intel

 By the end of this decade we will have chips with
~100’000’000’000 (1011) transistors!

LHC data

We are here

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.

2 nm (2028?) TSMC

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

11

Complexity in Computing

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

12

Archaic Computing Units

 As “stupid” as 50 years ago

 Still based on the Von Neumann
architecture

 Primitive “machine language”

 Ferranti Mercury:
 Floating-point calculations

– Add: 3 cycles; Multiply: 5 cycles

 Today:
 Programming for performance

is the same headache as in the
past

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

13

And the language is ancient, too!
 Assembly/machine code!

__Z6matmulv (snippet):
 vmovlhps %xmm0, %xmm3, %xmm3
 vmovss +_b(%rip), %xmm4
 vinsertf128 $1, %xmm3, %ymm3, %ymm3
 vinsertps $0x10, 44+_b(%rip), %xmm7, %xmm0
 vmovss 48+_b(%rip), %xmm6
 vinsertps $0x10, 36+_b(%rip), %xmm1, %xmm2
 vmovlhps %xmm0, %xmm2, %xmm2
 vinsertps $0x10, 60+_b(%rip), %xmm4, %xmm0
 vxorps %xmm4, %xmm4, %xmm4
 vinsertf128 $1, %xmm2, %ymm2, %ymm2
 vinsertps $0x10, 52+_b(%rip), %xmm6, %xmm1
 vmovlhps %xmm0, %xmm1, %xmm1
 vmovaps _a(%rip), %ymm0
 vinsertf128 $1, %xmm1, %ymm1, %ymm1
 vpermilps $0, %ymm0, %ymm7
 vmulps %ymm5, %ymm7, %ymm7
 vaddps %ymm4, %ymm7, %ymm7
 vpermilps $85, %ymm0, %ymm6

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

14

Even assembly is “too high level”

 Intel translates “CISC” x86 assembly instructions
 into “RISC” micro-operations

 which can vary with each CPU generation

 NVIDIA translates PTX (parallel thread execution, or
virtual assembly)
 into machine instructions

 which can vary with each GPU generation

 So, what does it really mean (?) when the hardware
tells you:
 “XXN instructions executed”

CISC: Complex Instruction Set Computing

RISC: Reduced Instruction Set Computing

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

15

Performance: A complicated story!

 We start with a concrete, real-life problem to solve
 For instance, simulate the passage of elementary particles

through matter

 We write programs in high level languages
 C++, JAVA, Python, etc.

 A compiler (or an interpreter) transforms the high-level code to
machine-level code

 We link in external libraries

 A sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

 In most cases, we have little clue as to the efficiency of this
transformation process

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

16

A Complicated Story (in 9 layers!)

Adapted from Y.Patt, U-Austin

 Computing problems are solved by
getting electrons to “dance”

Problem
Design, Algorithms, Data

Language, Source program

System architecture
Instruction set architecture

µ-architecture
Circuits

Electrons

Compilers, Libraries

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

17

But, let’s start with the basics!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

18

Von Neumann architecture

 From Wikipedia:
 The von Neumann

architecture is a computer
design model that uses a
processing unit and a single
separate storage structure
to hold both instructions
and data.

 It can be viewed as an entity
into which one streams
instructions and data in
order to produce results

Data Instructions

Results

Algorithms and Data Structures

Input

Processing

Some people think the architecture is out-dated.
But nobody has replaced it (yet)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

19

Von Neumann architecture (cont’d)

 The goal is to produce results
as fast as possible

 But, lots of problems can
occur:
 Instructions or data don’t

arrive in time
 Bandwidth issues?
 Latency issues?

 Clashes between input data
and output data

 Other “complexity-based”
problems inside an extreme
processing parallelism

Data Instructions

Results

Algorithms and Data Structures

Input

Processing

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

20

Simple processor layout

 A simple processor with
four key components:
 Control Logic

 Instruction Counter
 Program Status Word

 Register File

 Functional Unit
 Data Transfer Unit

 Data bus
 Address bus

R1

R0

RNN

Registers

IC

PSW

Control

Data
transfer
unit

FU

Data

Address

Keeps the state of execution

Flags

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

21

Simple server diagram

 Multiple components which
interact during the execution
of a program:
 Processors/cores

 w/private caches
– I-cache, D-cache

 Shared caches
 Instructions and Data

 Memory controllers
 Memory (non-uniform)
 I/O subsystem

 Network attachment
 Disk subsystem

Interconnect

I/O bus

Shared
cache

C2 C3
C4 C5

Mem-ctl

Shared
cache

C0 C1

C4 C5

Mem-ctl

Memory Memory

Socket 0 Socket 1

C0T0
C0T1 C0 C1
C2 C3

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

22

Performance Dimensions

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

23

In the days of the Pentium

 Life was really simple:

 Basically two dimensions
 The frequency of the pipeline
 The number of boxes

 The semiconductor industry

increased the frequency

 We acquired the right number of
(single-socket) boxes

Superscalar

Pipelining

Nodes

Sockets

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

24

Frequency scaling

 The 7 “fat” years of frequency scaling in HEP

 The Pentium Pro in 1996: 150 MHz
 The Pentium 4 in 2003: 3.8 GHz (~25x)

 Since then
 Core 2 systems:

 ~3 GHz
 Multi-core

 Recent CERN purchase:
 Intel Xeon E5-2630L

 “only” 2.00 GHz
From A. Nowak/openlab

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

25

Now: Seven dimensions of performance

 First three dimensions:
 Hardware vectors/SIMD
 Superscalar
 Pipelining

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

SIMD = Single Instruction Multiple Data

Vector width

Superscalar

Pipelining

Multithreading

Nodes
Multicore

Sockets

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

26

Seven multiplicative dimensions:
 First three dimensions:
 Hardware vectors/SIMD
 Superscalar
 Pipelining

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

Data and Instruction
Level parallelism

(Vectors/Matrices)

Task parallelism
(Events/Tracks)

Task/process
parallelism

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

27

Simple, but illustrative example
 Xeon Phi has 60 cores, 4-way hardware threading,

hardware vectors of size 8 (Double Precision):

 Program A: Threaded 60 x 4, vectorised 8x:
 Performance potential: 1920

 Program B: Not threaded: 1x, not vectorised: 1x
 Performance potential: 1

M
em

or
y

C
on

tro
lle

r

Sy
st

em

In
te

rfa
ce

D

is
pl

ay

In
te

rfa
ce

M
em

or
y

C
on

tro
lle

r

Te
xt

ur
e

Lo
gi

c
Fi

xe
d

Fu
nc

tio
n In Order, 4

threads, SIMD-
16 I$ D

$

In Order, 4
threads, SIMD-

16 I$ D
$

. . .

. . .

L2 Cache

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

28

GPUs: 7 dimensions of performance

 First four dimensions:
 Superscalar (dual issue)
 Pipelining
 Threads (32)
 Instruction Schedulers (4)

 Then, there are:
 Warps

 Last dimensions:
 Multiple SMs
 Multiple accelerators

Threads

Superscalar

Pipelining

Warps

Instruction Schedulers

Cards

SM

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

29

Streaming Multiprocessor Architecture

Source: NVIDIA white paper

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

30

Concurrency in High Energy Physics
 We are “blessed” with lots of it:
 Entire events
 Particles, hits, tracks and vertices
 Physics processes
 I/O streams (ROOT trees, branches)
 Buffer handling (also data compaction, etc.)
 Fitting variables
 Partial sums, partial histograms
 and many others …..

 Usable for both data and task parallelism!

 But, fine-grained parallelism is not well exposed in
the “first-generation” software frameworks

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

31

Autoparallelization/Autovectorization

 Would it not be wonderful if the compilers could do all
the (vectorization/parallelisation) work automatically?

 GNU compiler (4.3.0 or later):
 Autovectorization: YES, but needs “-ftree-vectorize”

– “-ftree-vectorizer-verbose=[0-7]” for reports
 Autoparallelization support in preparation

– OpenMP support available

 Intel compiler (10.1 or later):
 Autovectorization: YES, included in “-O”

– “-vec-reportN” for reports
 Autoparallelization: YES with “-parallel”

– “-par-reportN” for reports

Autovectorization is beginning to look serious in recent compiler versions!

Use “-guide” for
both scenarios to
get advice [“Guided
Auto Parallelisation”
or “GAP”]

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

32

Part 1: Opportunities for scaling
performance inside a core
 Here are the first three dimensions

 The resources:
 HW vectors: Fill the computational

width
 Superscalar: Fill the ports
 Pipelining: Fill the stages

 Best approach: Data Oriented
Design

 In HEP today, we extract less than
10% of peak execution capability!

Superscalar

Pipelining

HW vector width

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

33

First topic: Vector registers
 Until recently, Steaming SIMD Extensions (SSE):

 16 “XMM” registers with 128 bits each (in 64-bit mode)

 New (as of 2011): Advanced Vector eXtensions (AVX 1):
 16 “YMM” registers with 256 bits each

E3 E2 E1 E0

E7 E6 E5 E4 E3 E2 E1 E0

Bit 0 Bit 255

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E0 16 Words

8 Dwords/Single

4 Qwords/Double

256 bits (AVX 1)

128 bits

32 Byte elements 32 Bytes

Future: 512 bits (AVX 3)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

34

Four floating-point data flavours
 Single precision
 Scalar single (SS)
 Packed single (PS)

 Double precision
 Scalar Double (SD)
 Packed Double (PD)

 Note:
 Scalar mode (with AVX) means using only:

 1/8 of the width (single precision)
 1/4 of the width (double precision)

 Even longer vectors are coming! have been announced !
 Definitely 512 bits (already used in the Xeon Phi co-processors)

E3 E2 E1 E0

- - - E0

E7 E6 E5 E4 E3 E2 E1 E0

- - - - - - - E0

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

35

Scalable programming
inside a core
 Easiest way to fill the

execution capabilities is to
program software vectors

 But, which ones?
 Standard C arrays

 Intel has added C Extended
Array Notation (CEAN) to their
12.0 compiler
 As well as CILK+

 STL vectors
 TBB vectors (thread-safe)
 Intrinsics
 etc.

float u[100], v[100];

for (int i = 0; i<50; ++i) u[i] = 0.0;

for (i = 0; i<50; ++i) u[i] = sin(v[i]);

for (int i = 0; i<50; ++i) u[i] = v[i*2+1];

CEAN example:

A[i:n] = 2.5 * B[j:n];

Courtesy: INTEL

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

36

Inside-the-core: HEP and vectors
 Too little common ground!
 Practically all attempts in the past failed.

 w/CRAY, CYBER 205, IBM 3090-Vector Facility, etc.
 Interesting reading: Dekeyser J 1987 “Vectorization of the GEANT3

geometrical routines for a Cyber 205”

 From time to time, we see a good vector example
 For example: Track Fitting code from ALICE trigger

  Explained in the HEP examples

 Interesting development from ALICE (Matthias Kretz):
 Vc (Vector Classes) being implemented into ROOT

 http://compeng.uni-frankfurt.de/index.php?id=vc

 Hopefully, there will be renewed efforts to use vectors
efficiently (Geant-V and others)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

37

Second topic: Superscalar architecture

 In this simplified design,
instructions are decoded
in sequence, but
dispatched to two
Functional Units.
 The decoder and

dispatcher must be
able to handle two
instructions per cycle

 The FUs can have
identical or different
execution capabilities

Decode

Dispatch

FU 0 FU 1

Results

Instruction stream

Port 0 Port 1

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

38

Enhanced superscalar architecture

 A more realistic
architecture will have
multiple FUs hanging
off the same port
 An instruction can be

dispatched to either
matching execution
unit on a given port,
but not to both units
on the same port in a
given cycle

Dispatch

FU 0
(i-add)

FU 1
(i-add)

Results

Instruction stream

Port 0 Port 1

FU 2
(i-shift)

FU 3
(i-mul)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

39

Latest superscalar architecture

 Intel’s Haswell micro-architecture will
execute four instructions in parallel
(across eight ports) in each cycle.

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Vec Int
ALU

x87 FP
Multiply

Vec FMA
Vec FMul

Vector
Logical

Vector
Shift

Integer
Alu

Integer
Alu

Vec Int
ALU

Vector
Logical

Vector
Shuffle

Load
Data

Store
Data

Branch
Unit

DIV
SQRT

x87 FP
Add

Vec FMA
Vec FMul
Vec FAdd

Integer
Shift

Integer
MUL

Integer
LEA

PSAD

String
Compare

Integer
LEA

Port 6 Port 7

Store
 Address

Load
Data

Store
 Address

Integer
Alu

Store
Address

Integer
Shift

Branch
Unit

Vector
Logical

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

40

Third topic: Instruction pipelining

 Instructions are broken up into stages.
 With a one-cycle execution latency (simplified):

 With a three-cycle execution latency:

I-fetch I-decode Execute Write-back
I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Exec-1 Write-back Exec-2 Exec-3
I-fetch I-decode Exec-1 Write-back Exec-2 Exec-3

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

41

Real-life latencies
 Most integer/logic instructions have a one-cycle execution

latency:
 For example:

 ADD, AND, SHL (shift left), ROR (rotate right)

 Amongst the exceptions:
 IMUL (integer multiply): 3
 IDIV (integer divide): 13 – 23

 Floating-point latencies are typically multi-cycle
 FADD (3), FMUL (5)

 Same for both x87 and SIMD double-precision variants

 Exception: FABS (absolute value): 1
 Many-cycle: FDIV (20), FSQRT (27)
 Other math functions: even more Latencies in the Core micro-architecture

(Intel Manual No. 248966-020 or later).
AMD processor latencies are similar.

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

42

Latencies and serial code (1)
 In serial programs, we

typically pay the penalty of a
multi-cycle latency during
execution:
 In this example:

 Statement 2 cannot be
started before statement 1
has finished
 Statement 3 cannot be

started before statement 2
has finished

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c; // Statement 1

d = a + e; // Statement 2

f = fabs(d); // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-B EX-1 EX-2 EX-3

I-F I-D - - - - W-B - - EX-1

Everything
moves slowly!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

43

Summary of Last Two Dimensions

 Commonly referred to as:
 Instruction level parallelism (ILP)

 Very dependent on algorithms and/or data structures

 Issues are equally valid for vector and scalar computing

 Multiplies with what we get from all the other dimensions
 Vectorisation
 Threading

 But, difficult to understand or manipulate
 Both micro-architecture and compilers get in the way

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

44

Mini-example of real-life scalar, serial code
 Suffers long latencies:

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

 if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), %xmm0
subsd 48(%rdi), %xmm0 // load & subtract
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask
comisd 24(%rdi), %xmm0 // load and compare
jbe ..B5.3 # Prob 43% // jump if FALSE

High level C++ code 

Machine instructions 

Same
instructions
laid out
according to
latencies on
the Nehalem
processor 

NB: Out-of-
order
scheduling
not taken
into account.

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

45

Out-of-order (OOO) scheduling

 Modern x86 processors use OOO scheduling
 This means that they will speculatively execute

instructions ahead of time (inside a “window” of ~150
instructions)

 In certain cases the results of such executed
instructions must be discarded

 At the end, there is a difference between “executed
instructions” and “retired instructions”
 One typical reason for this is mispredicted branches

 Potential problem with OOO:
 A lot of extra energy is needed!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

46

Important performance measurements
(that can tell you if things go wrong)

 Related to what we have
discussed:
 The total cycle count (C)
 The total instruction count (I)
 Derived value: CPI

 Resource Stall count: Cycles

when no execution occurred

 Total number of executed
branch instructions

 Total number of mispredicted
branches

 Plus:
 The total number (and the

type) of computational
SSE/AVX instructions

 The total number of
SSE/AVX instructions

 Total number of cache
accesses

 Total number of (last-level)
cache misses

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

47

Part 2: Parallel execution across
hw-threads and cores
 Next dimension is a “pseudo”

dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

 Multiple nodes will not be
discussed here
 Our focus is scalability inside

a node
Compute nodes

Processor cores

Sockets

Multithreading

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

48

Definition of a hardware core/thread

 Core
 A complete ensemble

of execution logic, and
cache storage as well
as register files plus
instruction counter (IC)
for executing a
software process or
thread

 Hardware thread
 Addition of a set of

register files plus IC

Execution
logic

State: Registers, IC

Caches,
etc.

State: Registers, IC

The sharing of the execution logic can
be coarse-grained or fine-grained.

State: R
egisters, IC

 St
at

e:
 R

eg
is

te
rs

, I
C

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

49

Definition of a software
process and thread
 Process (OS process):
 An instance of a computer program that is being executed

(sequentially). It typically runs as a program with its
private set of operating system resources, i.e. in its own
“address space” with all the program code and data, its
own file descriptors with the operating system
permissions, its own heap and its own stack.

 Thread:
 A process may have multiple threads of execution. These

threads run in the same address space, share the same
program code, the operating system resources as the
process they belong to. Each thread gets its own stack.

Adapted from Wikipedia

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

50

Seven multiplicative dimensions:
 First three dimensions:
 Hardware vectors/SIMD
 Superscalar
 Pipelining

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

Task parallelism
(Events/Tracks)

Task/process
parallelism

Data and Instruction
Level parallelism

(Vectors/Matrices)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

51

The move to many-core systems

 Examples of “CPU slots”: Sockets * Cores * HW-threads
 Basically what you observe in “cat /proc/cpuinfo”

 Conservative:
 Dual-socket AMD six-core (Istanbul): 2 * 6 * 1 = 12
 Dual-socket Intel six-core (Westmere-EP): 2 * 6 * 2 = 24

 More aggressive:
 Quad-socket AMD Interlagos (16-core) 4 * 16 * 1 = 64
 Quad-socket Westmere-EX “octo-core”: 4 * 10 * 2 = 80

 In the near future: Hundreds of CPU slots !
 Quad-socket Oracle/Sun Niagara (T3) processors

w/16 cores and 8 threads (each): 4 * 16 * 8 = 512

 And, by the time new software is ready: Thousands !!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

52

HEP programming paradigm
 Event-level parallelism has been used for decades

 And, we should not lose this advantage:
 Large jobs can be split into N efficient “chunks”, each

responsible for processing M events
 Has been our “forward scalability”

 Disadvantage with current approach:
 Memory must be made available to each process

 A dual-socket server with eight-core processors needs 32 – 48 GB (or
more)

 The double (64 – 96 GB), if SMT is enabled!

 Although large memories are now coming, we must not let
memory limitations decide our ability to compute efficiently!

SMT (Symmetric Multi-Threading)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

53

What are the options?
 There is currently a discussion in the community about

the best way forward (in a many-core world):

1) Stay with event-level parallelism (and entirely
independent processes)
 Assume that the necessary memory remains affordable
 Or rely on tools, such as KSM, to help share pages

2) Rely on forking:
 Start the first process; Fork N others
 Rely on the OS to do “copy on write”, in case pages are modified

3) Move to a fully multi-threaded paradigm
 Still using coarse-grained (event-level) parallelism

– But, watch out for increased complexity

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

54

Let’s briefly introduce parallelism

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

55

Getting to Parallel Execution

 Multiple steps must be kept in mind:
 Concurrency
 Decomposition
 Communication
 Synchronization
 Mapping
 Execution

 Keeping Amdahl’s law for max speedup in mind

n
ppp nS

+−
=

1
1max)(where:

p (parallel portion)
s (serial portion)
p + s = 1.0

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

56

Parallelization support (C++ and others)
 Large selection of tools (inside the compiler or as

additions):
 Native: pthreads/Windows threads
 New C++ standard: std::thread
 OpenMP
 Intel Threading Building Blocks (TBB; also open source)
 Intel CILK+
 OpenACC
 Thread wrapper classes
 MPI (from multiple providers), etc.
 CUDA (from Nvidia)
 OpenCL

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

57

Accelerators (1): Intel Xeon Phi
 Intel Many Integrated Cores (MIC):
 Announced at ISC10 (end-May 2010)
 Based on the x86 architecture, 22nm
 Many-core (up to 62 cores) + 4-way

multithreaded + 512-bit vector unit
 Limited memory: 8 – 16 Gigabytes



In Order, 4
threads, SIMD-16

M
em

or
y

C
on

tro
lle

r

S
ys

te
m

In

te
rfa

ce

D
is

pl
ay

In

te
rfa

ce

M
em

or
y

C
on

tro
lle

r

Te
xt

ur
e

Lo
gi

c
Fi

xe
d

Fu
nc

tio
n

In Order, 4
threads, SIMD-16

I$ D$

In Order, 4
threads, SIMD-16

I$ D$

. . .

. . .

L2 Cache

In Order, 4
threads, SIMD-16

I$ D$

In Order, 4
threads, SIMD-16

I$ D$

48’000 such
accelerators are
used in the
world’s fastest
supercomputer
(Tianhe-2 Xeon-
cluster in China)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

58

Accelerators (2): Nvidia Fermi GPU

 Streaming Multiprocessing
(SM) Architecture

 32 “CUDA cores” per SM (512 total)

 Peak single precision floating point
performance (at 1.15 GHz”:
 Above 1 Tflops

 Double-precision: ~300 Gigaflops

 Dual Thread Scheduler

 64 KB of RAM for shared memory and
L1 cache (configurable)

 A few Gigabytes of main memory

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16
Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Adapted from Nvidia

Considerable
interest in the
physics
community

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

59

Accelerators (3): Nvidia Kepler GPU

 Made available in
4Q2012
 GK110 GPU
 3x DP performance:

 1 Teraflops

 Innovative design:
 SMX (streaming

multiprocessors)
 Dynamic parallelism

for spawning new
threads
 Hyper-Q enables

multiple CPU cores to
utilise CUDA cores

Adapted from Nvidia

18’688 such accelerators are used
in the world’s second-fastest
supercomputer (Titan Cray XK7)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

60

Memory Subsystem

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

61

Optimal Memory Programming
 What needs to be understood:
 The memory hierarchy

 Caches
– Physical layout, Line sizes
– Levels/Sharing
– Latency

 Main memory
– Physical layout
– Latency
– Bandwidth

 Programmer/Compiler
– Data Layout
– Data Locality

 Execution environment:
– Affinity

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

62

Recent Intel Server Architecture

 Basic building block (as shown in
the introduction):
 Multiple cores with dedicated Level1

(I&D) and Level2 (unified) caches
 Shared Level-3 cache
 Integrated Memory Controller

attaches memory directly to the
multi-core processor

 Multiple memory channels
 Intel Quick Path Interconnect (QPI)

or AMD HyperTransport (HT)
Memory

Shared
L3 cache

Mem-ctl

C0 C1

C2 C3

C4 C5
QPI
links

AMD was the first company to introduce an on-chip memory
controller and processor interconnection (HyperTransport)

Local caches

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

63

Cache Hierarchy

 From CPU to
main memory
on a Haswell
processor
 With

multicore,
memory
bandwidth is
shared
between
cores in the
same
processor
(socket)

c = cycle

Processor Core
(Registers)

Local memory
(large)

R: 64B/1c
11c latency

~24 B/c for all cores
> 200c latency

(R:64B + W:32B)/1c
4c latency

Shared L3
(8192 KB)

32B/1c for all cores
> 21c latency

L2
(256 KB)

L1D
(32 KB)

L1I
(32 KB)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

64

Cache lines (1)

 When a data element or an instruction is requested by the
processor, a cache line is ALWAYS moved (as the
minimum quantity), usually to Level-1

 A cache line is a contiguous section of memory, typically
64B in size (8 * double) and 64B aligned
 A 32KB Level-1 cache can hold 512 lines

 When cache lines have to be moved come from memory
 Latency is long (>200 cycles)

 It is even longer if the memory is remote

 Memory controller stays busy (~8 cycles)

requested

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

65

Cache lines (2)
 Good utilisation is vital
 When only one element (4B or 8B) element is used inside

the cache line:
 A lot of bandwidth is wasted!

 Multidimensional C arrays should be accessed with the last
index changing fastest:

 Pointer chasing (in linked lists) can easily lead to “cache
thrashing” (too much memory traffic)

requested

for (i = 0; i < rows; ++i)
 for (j = 0; j < columns; ++j)
 mymatrix [i] [j] += increment;

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

66

Cache lines (3)
 Prefetching:
 Fetch a cache line before it is requested

 Hiding latency

 Normally done by the hardware
 Especially if processor executes Out-of-order

 Done also by software instructions
 Especially when In-order (IA-64, Xeon Phi, etc.)

 Locality is vital:
 Spatial locality – Use all elements in the line
 Temporal locality – Complete the execution whilst the

element is certain to be in the cache

Programming the memory hierarchy is an art in itself.

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

67

Non-Uniform Memory Access

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

68

Quad Socket Design

 All processors are interconnected via QPI links (in blue):

M
em

ory

Shared
cache

M
em

-ctl

C
0

C
1

C
2

C
3

C
4

C
5 M
em

or
y

Sh
ar

ed

ca
ch

e
M

em
-c

tl

C
0

C
1

C
2

C
3

C
4

C
5

M
em

ory

Shared
cache

M
em

-ctl

C
0

C
1

C
2

C
3

C
4

C
5 M

em
or

y

Sh
ar

ed

ca
ch

e
M

em
-c

tl

C
0

C
1

C
2

C
3

C
4

C
5

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

69

Latency Measurements (3)

 Memory Latency on Sandy Bridge-EP 4650 (quad-socket):

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

70

Some
Recommendations

(based on observations in openlab)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

71

A proposal for “agile” software
1) Seek out parallelism at all levels

a. Events, tracks, vertices, etc.
b. Perform “chunk” processing (removing event separation)

2) Build forward scalability

3) Create compute-intensive kernels

4) Optimise the Memory Hierarchy

5) Create Performance-oriented Code

6) Combine broad programming talents

7) Use best-of-breed tools

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

72

Concurrency in High Energy Physics
 We are “blessed” with lots of it:
 Entire events
 Particles, hits, tracks and vertices
 Physics processes
 I/O streams (ROOT trees, branches)
 Buffer handling (also data compaction, etc.)
 Fitting variables
 Partial sums, partial histograms
 and many others …..

 Usable for both data and task parallelism!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

73

The holy grail: Forward scalability
 Not only should a program be written in such a way that it

extracts maximum performance from today’s hardware

 On future processors, performance should scale
automatically
 In the worst case, one would have to recompile or relink

 Additional CPU/GPU hardware, be it cores/threads or
vectors, would automatically be put to good use

 Scaling would be as expected:
 If the number of cores (or the vector size) doubled:

 Scaling would be close to 2x, but certainly not just a few percent

 We cannot afford to “rewrite” our software for every
hardware change!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

74

Kernel-oriented Programming
 Take the whole program and its execution behaviour

into account
 Get yourself a global overview as soon as possible

 Via early prototyping with realistic algorithms/data
 Influence early the design and definitely the implementation

 Foster clear split:
 Prepare to compute
 Do the heavy computation

 In kernels, where you go after all the available parallelism

 Post-processing

 Often, a single kernel is not sufficient
 A sequence of kernels may be needed

Heavy compute Pre Post

The 90 – 10 rule

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

75

CPU / GPU co-existence

 What I would like to see happen to a (possibly dusty,
sequential) x86 application:

 A strong porting effort to move it to the GPU
 A good “kernel-oriented design” that aims for a triple-digit

speed-up

 Then, a solid port back to the CPU servers
 Exploiting vectors and cores

 Outcome:
 Applications that can profit from new breakthroughs on

either side of the fence

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

76

Data layout: SoA versus AoS

 In general, both GPUs and
CPUs prefer the former!

 Structure of Arrays (SoA):

 Array of Structures (AoS):

 Also possible: AoSoA

Z1 Z2 Z3 Z4 Z5 Z6

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6

SP1
X,Y, Z

SP2
X,Y, Z

SP3
X,Y, Z

SP4
X,Y, Z

SP5
X,Y, Z

SP6
X,Y, Z

Spacepoints

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

77

Performance-oriented code

 C++ for performance
Use light-weight C++ constructs
Minimize virtual functions
 Inline whenever important
Optimize the use of math functions

– SQRT, DIV
– LOG, EXP, POW
– SIN, COS, ATAN2

Learn to inspect the compiler-generated assembly,
especially of kernels

Use vector
libraries
whenever
possible,
but master
the
accuracy!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

78

Performance tools

 Surround yourself with good tools:
 Compilers (not just one!)
 Libraries
 Profilers
 Debuggers
 Thread

checkers
 Thread

profilers
Image: software.intel.com

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

79

Broad Programming Talent
 In order to cover as many layers as possible

Problem
Algorithms, abstraction

Language/Source program

System architecture
Instruction set
µ-architecture

Circuits
Electrons

Compiled code, libraries

Solution
specialists

Technology
specialists

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

80

Two HEP examples

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

81

Examples of parallelism:
CBM/ALICE track-fitting

 Extracted from the High
Level Trigger (HLT) Code
 Originally ported to IBM’s

Cell processor

 Tracing particles in a
magnetic field
 Embarrassingly parallel

code

 Re-optimization on x86-64
systems
 Using vectors instead of

scalars

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit”
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf

“Compressed Baryonic Matter”

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

82

CBM/ALICE track-fitting

 Details of the re-optimization on x86-64:
 Part 1: use SSE vectors instead of scalars

 Operator overloading allows seamless change of data types
 Intrinsics (from Intel/GNU header file): Map directly to

instructions:
– __mm_add_ps corresponds directly to ADDPS, the instruction

that operates on four packed, single-precision FP numbers
● 128 bits in total

 Classes
– P4_F32vec4 – packed single class with overloaded operators

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) {
return _mm_add_ps(a,b); }

 Result: 4x speed increase from x87 scalar to packed SSE

(single precision)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

83

Examples of parallelism:
CBM track-fitting
 Re-optimization on x86-64 systems
 Step 1: Data parallelism using SIMD instructions
 Step 2: use TBB (or OpenMP) to scale across cores

From H.Bjerke/CERN openlab, I.Kisel/GSI

V T

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

84

Analysis of Track-fitting speed-up

 From paper of I.Kisel (2008):

Stage Description Time/track Speed-up

Initial scalar version 12 ms -

1 Approximation of magnetic
field

240 µs 50

2 Optimisation of the algorithm 7.2 µs 33.3

3 Vectorisation 1.6 µs 4.5

4 Porting to IBM Cell/SPE 1.1 µs 1.45

5 Parallelisation on 16 SPEs 0.1 µs 10

Final SIMD parallel version 0.1 µs 120’000

72x

1667x

Don’t underestimate software optimisation!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

85

Track-fitting: Port to NVIDIA GPU
 David Rohr/ALICE:
 Integration: GPU and CPU tracker share a common set of

source files
 Performance Comparison: GTX580 GPU is almost three

times faster than a six-core Westmere processor

GPU Workshop in DESY (April 2013):

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

86

Examples of parallelism: GEANT4

 Initially; ParGeant4 (Gene Cooperman/NEU)
 implemented event-level parallelism to simulate separate

events across remote nodes.

 New prototype re-implements thread-safe event-level
parallelism inside a multi-core node

 Done by NEU PhD student Xin Dong:
– Using FullCMS and TestEM examples

 Required change of lots of existing classes (10% of 1 MLOC):
– Especially global, “extrn”, and static declarations
– Preprocessor used for automating the work.

 Major reimplementation:
– Now in separate branch in the G4 source tree

 Additional memory: Only 25 MB/thread (!)

T

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

87

Multithreaded GEANT4 benchmark
 Excellent scaling on 32 (real) cores

 With a 4-socket server

From A.Nowak/CERN openlab

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

88

If you think that all of this is “crazy”

 Please read:
 “Optimizing matrix multiplication for a short-vector

SIMD architecture – CELL processor”
 J.Kurzak, W.Alvaro, J.Dongarra
 Parallel Computing 35 (2009) 138–150

 In this paper, single-precision matrix
multiplication kernels are presented
implementing the C = C – A x BT operation
and the C = C – A x B operation for
matrices of size 64x64 elements. For the
latter case, the performance of 25.55
Gflop/s is reported, or 99.80% of the peak,
using as little as 5.9 kB of storage for code
and auxiliary data structures.

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

89

So, what does it all mean?

 Here is what we tried to say in these
lectures:

 You must get your code to use vectors

 You must understand if your ILP is seriously
limited by serial code, complex math
functions, and other contracts

 You must parallelise across all “CPU slots”
 Hardware threads, Cores, Sockets

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

90

Concluding remarks
 The aim of these lectures was to help understand:
 Changes in modern computer architecture
 Impact on our programming methodologies
 Keeping in mind that there is not always a straight path to

reach (all of) the available performance by our
programming community.

 In most HEP programming domains event-level
processing will (continue to) dominate
 In some case, “multi-event” could be even better!

 Will you be ready for 1000 cores and long vectors?
 Are you thinking “parallel, parallel, parallel” ?

 It helps to know the seven hardware dimensions in order
to get close to the best software design !

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

91

Further reading:
 “Designing and Building Parallel Programs”, I. Foster, Addison-Wesley,

1995

 “Foundations of Multithreaded, Parallel and Distributed Programming”, G.R.
Andrews, Addison-Wesley, 1999

 “Computer Architecture: A Quantitative Approach”, J. Hennessy and D.
Patterson, 3rd ed., Morgan Kaufmann, 2002

 “Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

 “Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd
edition, Addison Wesley, 2006

 “The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006

 “The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith
and X. Tian; Intel Press, 2nd edition, 2006

 “Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism”, J. Reinders, O’Reilly, 1st edition, 2007

 “Inside the Machine”, J. Stokes, Ars Technica Library, 2007

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

92

Thank you! FastFlow

	Slide Number 1
	Goal of this lecture series
	Contents
	Setting the scene (1)
	Setting the scene (2)
	Why worry about performance?
	Moore’s “law”
	Moore’s “law” (cont’d)
	Real consequence of Moore’s law
	Semiconductor evolution
	Complexity in Computing
	Archaic Computing Units
	And the language is ancient, too!
	Even assembly is “too high level”
	Performance: A complicated story!
	A Complicated Story (in 9 layers!)
	But, let’s start with the basics!
	Von Neumann architecture
	Von Neumann architecture (cont’d)
	Simple processor layout
	Simple server diagram
	Performance Dimensions
	In the days of the Pentium
	Frequency scaling
	Now: Seven dimensions of performance
	Seven multiplicative dimensions:
	Simple, but illustrative example
	GPUs: 7 dimensions of performance
	Streaming Multiprocessor Architecture
	Concurrency in High Energy Physics
	Autoparallelization/Autovectorization
	Part 1: Opportunities for scaling performance inside a core
	First topic: Vector registers
	Four floating-point data flavours
	Scalable programming inside a core
	Inside-the-core: HEP and vectors
	Second topic: Superscalar architecture
	Enhanced superscalar architecture
	Latest superscalar architecture
	Third topic: Instruction pipelining
	Real-life latencies
	Latencies and serial code (1)
	Summary of Last Two Dimensions
	Mini-example of real-life scalar, serial code
	Out-of-order (OOO) scheduling
	Important performance measurements�(that can tell you if things go wrong)
	Part 2: Parallel execution across hw-threads and cores
	Definition of a hardware core/thread
	Definition of a software process and thread
	Seven multiplicative dimensions:
	The move to many-core systems
	HEP programming paradigm
	What are the options?
	Let’s briefly introduce parallelism
	Getting to Parallel Execution
	Parallelization support (C++ and others)
	Accelerators (1): Intel Xeon Phi
	Accelerators (2): Nvidia Fermi GPU
	Accelerators (3): Nvidia Kepler GPU
	Memory Subsystem
	Optimal Memory Programming
	Recent Intel Server Architecture
	Cache Hierarchy
	Cache lines (1)
	Cache lines (2)
	Cache lines (3)
	Non-Uniform Memory Access
	Quad Socket Design
	Latency Measurements (3)
	Some Recommendations�(based on observations in openlab)
	A proposal for “agile” software
	Concurrency in High Energy Physics
	The holy grail: Forward scalability
	Kernel-oriented Programming
	CPU / GPU co-existence
	Data layout: SoA versus AoS
	Performance-oriented code
	Performance tools
	Broad Programming Talent
	Two HEP examples
	Examples of parallelism:�CBM/ALICE track-fitting
	CBM/ALICE track-fitting
	Examples of parallelism:�CBM track-fitting
	Analysis of Track-fitting speed-up
	Track-fitting: Port to NVIDIA GPU
	Examples of parallelism: GEANT4
	Multithreaded GEANT4 benchmark
	If you think that all of this is “crazy”
	So, what does it all mean?
	Concluding remarks
	Further reading:
	Thank you!

