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Goal of this lecture series 

1. Give an understanding of modern computer 
architectures from a performance point-of-view 
 Processor, [Cache, Memory subsystem] 
 Use x86-64 as a de-facto standard 
 But keep an eye on GPUs/accelerators 

2. Explain hardware factors that improve or degrade 
program execution speed 
 Prepare for writing well-performing software 

3. Teach an approach to detailed performance 
measurements 
 Highlight the most important events for such 

measurements 
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Setting the scene (1) 
 Somebody offers you something worth a 100 €. Nice! 
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Setting the scene (2) 
 However, when you “measure” the real value of this gift 

5 € ! How come ! 
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Why worry about performance? 
 My arguments: 
 Performance per €: There are important cost issues 

associated with large scale computing 
 Even when using “commodity equipment” 

 
 Performance per watt: There are important thermal issues 

associated with large scale computing 
 Even when 1W processors exist! 

 
 The “easy ride” disappeared: The frequency scaling we 

enjoyed in the past does not exist any longer. 
It stopped 10 years ago! 
 ..and, as a “by-product”, computer architecture is becoming 

(much) more complicated 
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Moore’s “law” 
 A marching order established 

~50 years ago 

 “Let’s continue to double the 
number of transistors every 
other year!” 

 First published as: 
 Moore, G.E.: Cramming more 

components onto integrated 
circuits. Electronics, 38(8), April 
1965. 

 Accepted by all partners: 
 Semiconductor manufacturers 
 Hardware integrators 
 Software companies 
 Us, the consumers From Wikipedia 
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Moore’s “law” (cont’d) 
 The consequences: An incredible 

level of integration 
 CPUs: Many-core, Hardware vectors, 

Hardware threading 
 GPUs: Enormous number of floating-

point units 

 Today, we commonly acquire chips 
with 1’000’000’000 (109) transistors! 
 Server chips and high-end GPU 

devices have much more 
 
 Kepler GK110: 

– 7.1 billion transistors 

From Wikipedia 
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Real consequence of Moore’s law 

 We are being “snowed under” by transistors: 
 

 More (and more complex) execution units 
 Hundreds of new instructions 

 Longer SIMD/SSE hardware vectors 
 More and more cores 
 More hardware threading 

 

 In order to profit we need to “think parallel” 
 

 Data parallelism 
 Task parallelism 

 

“Data Oriented Design” 
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Semiconductor evolution 
 Today’s silicon processes:  
 32, 28, 22 nm 

 Being introduced: 
 14 nm (2013/14) 

 In research: 
 10 nm (2015/16) 
   7 nm (2017/18) 
   5 nm (2019/20) 

– Source: Intel 
 

 By the end of this decade we will have chips with 
~100’000’000’000 (1011) transistors! 

 

LHC data 

We are here 

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005. 

2 nm (2028?) TSMC 
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Complexity in Computing 
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Archaic Computing Units 

 As “stupid” as 50 years ago 

 Still based on the Von Neumann 
architecture 

 Primitive “machine language” 

 Ferranti Mercury: 
 Floating-point calculations 

–  Add: 3 cycles; Multiply: 5 cycles 

 Today:  
 Programming for performance 

is the same headache as in the 
past 
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And the language is ancient, too!  
 Assembly/machine code! 

__Z6matmulv (snippet): 
 vmovlhps %xmm0, %xmm3, %xmm3 
 vmovss  +_b(%rip), %xmm4 
 vinsertf128 $1, %xmm3, %ymm3, %ymm3 
 vinsertps $0x10, 44+_b(%rip), %xmm7, %xmm0 
 vmovss  48+_b(%rip), %xmm6 
 vinsertps $0x10, 36+_b(%rip), %xmm1, %xmm2 
 vmovlhps %xmm0, %xmm2, %xmm2 
 vinsertps $0x10, 60+_b(%rip), %xmm4, %xmm0 
 vxorps  %xmm4, %xmm4, %xmm4 
 vinsertf128 $1, %xmm2, %ymm2, %ymm2 
 vinsertps $0x10, 52+_b(%rip), %xmm6, %xmm1 
 vmovlhps %xmm0, %xmm1, %xmm1 
 vmovaps  _a(%rip), %ymm0 
 vinsertf128 $1, %xmm1, %ymm1, %ymm1 
 vpermilps $0, %ymm0, %ymm7 
 vmulps  %ymm5, %ymm7, %ymm7 
 vaddps  %ymm4, %ymm7, %ymm7 
 vpermilps $85, %ymm0, %ymm6 
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Even assembly is “too high level” 

 Intel translates “CISC” x86 assembly instructions 
 into “RISC” micro-operations 

 which can vary with each CPU generation 
 

 NVIDIA translates PTX (parallel thread execution, or 
virtual assembly) 
 into machine instructions 

 which can vary with each GPU generation  

 So, what does it really mean (?) when the hardware 
tells you: 
 “XXN instructions executed” 

CISC: Complex Instruction Set Computing 

RISC: Reduced Instruction Set Computing 
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Performance: A complicated story! 

 We start with a concrete, real-life problem to solve 
 For instance, simulate the passage of elementary particles 

through matter 

 We write programs in high level languages 
 C++, JAVA, Python, etc. 

 A compiler (or an interpreter) transforms the high-level code to 
machine-level code 

 We link in external libraries 

 A sophisticated processor with a complex architecture and 
even more complex micro-architecture executes the code  

 In most cases, we have little clue as to the efficiency of this 
transformation process 
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A Complicated Story (in 9 layers!) 

Adapted from Y.Patt, U-Austin 

 Computing problems are solved by 
getting electrons to “dance” 

Problem 
Design, Algorithms, Data 

Language, Source program 

System architecture 
Instruction set architecture 

µ-architecture 
Circuits 

Electrons 

Compilers, Libraries 
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But, let’s start with the basics! 
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Von Neumann architecture 

 From Wikipedia: 
 The von Neumann 

architecture is a computer 
design model that uses a 
processing unit and a single 
separate storage structure 
to hold both instructions 
and data. 

 It can be viewed as an entity 
into which one streams 
instructions and data in 
order to produce results 

 
 

Data Instructions 

Results 

Algorithms and Data Structures  

Input 

Processing 

Some people think the architecture is out-dated. 
But nobody has replaced it (yet) 
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Von Neumann architecture (cont’d) 

 The goal is to produce results 
as fast as possible 

 But, lots of problems can 
occur: 
 Instructions or data don’t 

arrive in time 
 Bandwidth issues? 
 Latency issues? 

 Clashes between input data 
and output data 

 

 Other “complexity-based” 
problems inside an extreme 
processing parallelism 
 

 

 
 

Data Instructions 

Results 

Algorithms and Data Structures  

Input 

Processing 
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Simple processor layout 

 A simple processor with 
four key components: 
 Control Logic 

 Instruction Counter 
 Program Status Word 

 Register File 
 

 Functional Unit  
 Data Transfer Unit 

 Data bus 
 Address bus 

R1 

R0 

RNN 

Registers 

IC 

PSW 

Control 

Data 
transfer 
unit 

FU 

Data 

Address 

Keeps the state of execution 

Flags 
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Simple server diagram 

 Multiple components which 
interact during the execution 
of a program: 
 Processors/cores 

 w/private caches 
– I-cache, D-cache 

 Shared caches 
 Instructions and Data 

 Memory controllers 
 Memory (non-uniform) 
 I/O subsystem 

 Network attachment 
 Disk subsystem 

 

Interconnect 

I/O bus 

Shared 
cache 

C2 C3 
C4 C5 

Mem-ctl 

Shared 
cache 

C0 C1 

C4 C5 

Mem-ctl 

Memory Memory 

Socket 0 Socket 1 

C0T0 
C0T1 C0 C1 
C2 C3 



Sverre Jarp - CERN 

Computer Architecture and Performance Tuning 

22 

Performance Dimensions 
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In the days of the Pentium 

 Life was really simple: 
 

 Basically two dimensions 
 The frequency of the pipeline 
 The number of boxes 

 
 The semiconductor industry 

increased the frequency 
 

 We acquired the right number of 
(single-socket) boxes  

Superscalar 

Pipelining 

Nodes 

Sockets 
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Frequency scaling 

 The 7 “fat” years of frequency scaling in HEP 
 

 The Pentium Pro in 1996: 150 MHz 
 The Pentium 4 in 2003: 3.8 GHz (~25x) 

 Since then 
 Core 2 systems: 

 ~3 GHz 
 Multi-core 

 Recent CERN purchase: 
 Intel Xeon E5-2630L 

 “only” 2.00 GHz 
From A. Nowak/openlab 
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Now: Seven dimensions of performance 

 First three dimensions: 
 Hardware vectors/SIMD 
 Superscalar 
 Pipelining 

 Next dimension is a “pseudo” 
dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes  

SIMD = Single Instruction Multiple Data 

Vector width 

Superscalar 

Pipelining 

Multithreading 

Nodes 
Multicore 

Sockets 
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Seven multiplicative dimensions: 
 First three dimensions: 
 Hardware vectors/SIMD 
 Superscalar  
 Pipelining 

 Next dimension is a “pseudo” 
dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes  

Data and Instruction 
Level parallelism 

(Vectors/Matrices) 

Task parallelism 
(Events/Tracks) 

Task/process 
parallelism 
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Simple, but illustrative example 
 Xeon Phi has 60 cores, 4-way hardware threading, 

hardware vectors of size 8 (Double Precision): 

 Program A: Threaded 60 x 4, vectorised 8x: 
 Performance potential: 1920 

 Program B: Not threaded: 1x, not vectorised: 1x 
 Performance potential:       1  
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GPUs: 7 dimensions of performance 

 First four dimensions: 
 Superscalar (dual issue) 
 Pipelining 
 Threads (32) 
 Instruction Schedulers (4) 

 Then, there are: 
 Warps 

 Last dimensions: 
 Multiple SMs 
 Multiple accelerators 

Threads 

Superscalar 

Pipelining 

Warps 

Instruction Schedulers 

Cards 

SM 
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Streaming Multiprocessor Architecture 

Source: NVIDIA white paper 
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Concurrency in High Energy Physics 
 We are “blessed” with lots of it: 
 Entire events 
 Particles, hits, tracks and vertices 
 Physics processes 
 I/O streams (ROOT trees, branches) 
 Buffer handling (also data compaction, etc.) 
 Fitting variables 
 Partial sums, partial histograms 
 and many others ….. 

 Usable for both data and task parallelism! 

 But, fine-grained parallelism is not well exposed in 
the “first-generation” software frameworks 
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Autoparallelization/Autovectorization 

 Would it not be wonderful if the compilers could do all 
the (vectorization/parallelisation) work automatically? 

 GNU compiler (4.3.0 or later): 
 Autovectorization: YES, but needs “-ftree-vectorize” 

– “-ftree-vectorizer-verbose=[0-7]” for reports 
 Autoparallelization support in preparation 

– OpenMP support available 

 Intel compiler (10.1 or later): 
 Autovectorization: YES, included in “-O” 

– “-vec-reportN” for reports 
 Autoparallelization: YES  with “-parallel” 

– “-par-reportN” for reports 

 
Autovectorization is beginning to look serious in recent compiler versions! 

Use “-guide” for 
both scenarios to 
get advice [“Guided 
Auto Parallelisation” 
or “GAP”] 
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Part 1: Opportunities for scaling 
performance inside a core 
 Here are the first three dimensions 

 

 The resources: 
 HW vectors: Fill the computational 

width 
 Superscalar: Fill the ports 
 Pipelining: Fill the stages 

 Best approach: Data Oriented 
Design 

 In HEP today, we extract less than 
10% of peak execution capability! 

 

Superscalar 

Pipelining 

HW vector width 
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First topic: Vector registers 
 Until recently, Steaming SIMD Extensions (SSE): 

 16 “XMM” registers with 128 bits each (in 64-bit mode) 

 New (as of 2011): Advanced Vector eXtensions (AVX 1): 
 16 “YMM” registers with 256 bits each 

E3 E2 E1 E0 

E7 E6 E5 E4 E3 E2 E1 E0 

Bit 0 Bit 255 

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E0 16 Words 

8 Dwords/Single 

4 Qwords/Double 

256 bits (AVX 1) 

128 bits 

32 Byte elements 32 Bytes 

Future: 512 bits (AVX 3) 
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Four floating-point data flavours 
 Single precision 
 Scalar single (SS) 
 Packed single (PS) 

 

 Double precision 
 Scalar Double (SD) 
 Packed Double (PD) 

 Note: 
 Scalar mode (with AVX) means using only: 

 1/8 of the width (single precision) 
 1/4 of the width (double precision) 

 Even longer vectors are coming! have been announced ! 
 Definitely 512 bits (already used in the Xeon Phi co-processors) 

 

E3 E2 E1 E0 

- - - E0 

E7 E6 E5 E4 E3 E2 E1 E0 

- - - - - - - E0 
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Scalable programming 
inside a core 
 Easiest way to fill the 

execution capabilities is to 
program software vectors 

 But, which ones? 
 Standard C arrays 

 Intel has added C Extended 
Array Notation (CEAN) to their 
12.0 compiler 
 As well as CILK+ 

 STL vectors 
 TBB vectors (thread-safe) 
 Intrinsics 
 etc. 

float  u[100], v[100]; 
 
for (int i = 0; i<50; ++i) u[i] = 0.0; 
 
for (i = 0; i<50; ++i) u[i] = sin(v[i]); 
 
for (int i = 0; i<50; ++i) u[i] = v[i*2+1]; 

CEAN example: 
 
A[i:n] = 2.5 * B[j:n]; 

Courtesy: INTEL 
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Inside-the-core: HEP and vectors 
 Too little common ground! 
 Practically all attempts in the past failed. 

 w/CRAY, CYBER 205, IBM 3090-Vector Facility, etc. 
 Interesting reading: Dekeyser J 1987 “Vectorization of the GEANT3 

geometrical routines for a Cyber 205”  

 From time to time, we see a good vector example 
 For example: Track Fitting code from ALICE trigger 

  Explained in the HEP examples 

 Interesting development from ALICE (Matthias Kretz): 
 Vc (Vector Classes) being implemented into ROOT 

 http://compeng.uni-frankfurt.de/index.php?id=vc  

 Hopefully, there will be renewed efforts to use vectors 
efficiently (Geant-V and others) 
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Second topic: Superscalar architecture 

 In this simplified design, 
instructions are decoded 
in sequence, but 
dispatched to two 
Functional Units. 
 The decoder and 

dispatcher must be 
able to handle two 
instructions per cycle 

 The FUs can have 
identical or different 
execution capabilities 

Decode 

Dispatch 

FU 0 FU 1 

Results 

Instruction stream 

Port 0 Port 1 
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Enhanced superscalar architecture 

 A more realistic 
architecture will have 
multiple FUs hanging 
off the same port 
 An instruction can be 

dispatched to either 
matching execution 
unit on a given port, 
but not to both units 
on the same port in a 
given cycle 

Dispatch 

FU 0 
(i-add) 

FU 1 
(i-add) 

Results 

Instruction stream 

Port 0 Port 1 

FU 2 
(i-shift) 

FU 3 
(i-mul) 
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Latest superscalar architecture 

 Intel’s Haswell micro-architecture will 
execute four instructions in parallel 
(across eight ports) in each cycle. 

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 

Integer 
Alu 

Vec Int 
ALU 

x87 FP 
Multiply 

Vec FMA 
Vec FMul 

Vector 
Logical 

Vector 
Shift 

Integer 
Alu 

Integer 
Alu 

Vec Int 
ALU 

Vector 
Logical 

Vector 
Shuffle 

Load 
Data 

Store 
Data 

Branch 
Unit 

DIV 
SQRT 

x87 FP 
Add 

Vec FMA 
Vec FMul 
Vec FAdd 

Integer 
Shift 

Integer 
MUL 

Integer 
LEA 

PSAD 

String 
Compare 

Integer 
LEA 

Port 6 Port 7 

Store 
 Address 

Load 
Data 

Store 
 Address 

Integer 
Alu 

Store 
Address 

Integer 
Shift 

Branch 
Unit 

Vector 
Logical 
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Third topic: Instruction pipelining 

 Instructions are broken up into stages. 
 With a one-cycle execution latency (simplified): 

 
 
 
 
 

 With a three-cycle execution latency: 

I-fetch I-decode Execute Write-back 
I-fetch I-decode Execute Write-back 

I-fetch I-decode Execute Write-back 

I-fetch I-decode Exec-1 Write-back Exec-2 Exec-3 
I-fetch I-decode Exec-1 Write-back Exec-2 Exec-3 
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Real-life latencies 
 Most integer/logic instructions have a one-cycle execution 

latency: 
 For example:  

 ADD, AND, SHL (shift left), ROR (rotate right) 

 Amongst the exceptions: 
 IMUL (integer multiply): 3 
 IDIV (integer divide): 13 – 23 

 Floating-point latencies are typically multi-cycle 
 FADD (3), FMUL (5) 

 Same for both x87 and SIMD double-precision variants 

 Exception: FABS (absolute value): 1 
 Many-cycle: FDIV (20), FSQRT (27) 
 Other math functions: even more  Latencies in the Core micro-architecture 

(Intel Manual No. 248966-020 or later). 
AMD processor latencies are similar. 
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Latencies and serial code (1) 
 In serial programs, we 

typically pay the penalty of a 
multi-cycle latency during 
execution: 
 In this example: 

 Statement 2 cannot be 
started before statement 1 
has finished 
 Statement 3 cannot be 

started before statement 2 
has finished  

double a, b, c, d, e, f; 
 
b = 2.0; c = 3.0; e = 4.0; 
 
a = b * c;  // Statement 1 
 
 
d = a + e;  // Statement 2 
 
 
f = fabs(d);   // Statement 3 

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B 

I-F I-D - - - - W-B EX-1 EX-2 EX-3 

I-F I-D - - - - W-B - - EX-1 

Everything 
moves slowly! 
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Summary of Last Two Dimensions 

 Commonly referred to as: 
 Instruction level parallelism (ILP) 

 Very dependent on algorithms and/or data structures 

 Issues are equally valid for vector and scalar computing 

 Multiplies with what we get from all the other dimensions 
 Vectorisation 
 Threading 

 But, difficult to understand or manipulate 
 Both micro-architecture and compilers get in the way 
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Mini-example of real-life scalar, serial code 
 Suffers long latencies: 

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 

1 load point[0] 

2 load origin[0] 

3 

4 

5 

6 subsd  load float-packet 

7 

8 load xhalfsz 

9 

10 andpd 

11 

12 comisd 

13 jbe 

  if (abs(point[0] - origin[0]) > xhalfsz) return FALSE; 

movsd 16(%rsi), %xmm0 
subsd 48(%rdi), %xmm0   // load & subtract 
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask 
comisd 24(%rdi), %xmm0 // load and compare 
jbe ..B5.3      # Prob 43% // jump if FALSE 

High level C++ code  

Machine instructions  

Same 
instructions 
laid out 
according to 
latencies on 
the Nehalem 
processor  
 
NB: Out-of-
order 
scheduling 
not taken 
into account.  
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Out-of-order (OOO) scheduling 

 Modern x86 processors use OOO scheduling 
 This means that they will speculatively execute 

instructions ahead of time (inside a “window” of ~150 
instructions) 

 In certain cases the results of such executed 
instructions must be discarded 

 At the end, there is a difference between “executed 
instructions” and “retired instructions” 
 One typical reason for this is mispredicted branches 

 Potential problem with OOO: 
 A lot of extra energy is needed! 
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Important performance measurements 
(that can tell you if things go wrong) 

 Related to what we have 
discussed: 
 The total cycle count (C) 
 The total instruction count (I) 
 Derived value: CPI 

 
 Resource Stall count: Cycles 

when no execution occurred 
 

 Total number of executed 
branch instructions 

 Total number of mispredicted 
branches 

 
 

 Plus: 
 The total number (and the 

type) of computational 
SSE/AVX instructions 

 The total number of 
SSE/AVX instructions 
 

 Total number of cache 
accesses 

 Total number of (last-level) 
cache misses 
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Part 2: Parallel execution across 
hw-threads and cores 
 Next dimension is a “pseudo” 

dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes 

 Multiple nodes will not be 
discussed here 
 Our focus is scalability inside 

a node 
Compute nodes 

Processor cores 

Sockets 

Multithreading 
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Definition of a hardware core/thread 

 Core 
 A complete ensemble 

of execution logic, and 
cache storage as well 
as register files plus 
instruction counter (IC) 
for executing a 
software process or 
thread 

 Hardware thread 
 Addition of a set of 

register files plus IC 

Execution  
logic 

State: Registers, IC 

Caches, 
etc. 

State: Registers, IC 

The sharing of the execution logic can 
be coarse-grained or fine-grained. 

State: R
egisters, IC
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Definition of a software 
process and thread 
 Process (OS process): 
 An instance of a computer program that is being executed 

(sequentially). It typically runs as a program with its 
private set of operating system resources, i.e. in its own 
“address space” with all the program code and data, its 
own file descriptors with the operating system 
permissions, its own heap and its own stack. 

 Thread: 
 A process may have multiple threads of execution. These 

threads run in the same address space, share the same 
program code, the operating system resources as the 
process they belong to. Each thread gets its own stack. 

Adapted from Wikipedia 
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Seven multiplicative dimensions: 
 First three dimensions: 
 Hardware vectors/SIMD 
 Superscalar  
 Pipelining 

 Next dimension is a “pseudo” 
dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes  

Task parallelism 
(Events/Tracks) 

Task/process 
parallelism 

Data and Instruction 
Level parallelism 

(Vectors/Matrices) 
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The move to many-core systems 

 Examples of “CPU slots”: Sockets * Cores * HW-threads 
 Basically what you observe in “cat /proc/cpuinfo” 

 Conservative: 
 Dual-socket AMD six-core (Istanbul):   2 * 6 * 1 = 12 
 Dual-socket Intel six-core (Westmere-EP):  2 * 6 * 2 = 24 

 More aggressive: 
 Quad-socket AMD Interlagos (16-core)  4 * 16 * 1 =  64 
 Quad-socket Westmere-EX “octo-core”:  4 * 10 * 2 =  80 

 In the near future: Hundreds of CPU slots ! 
 Quad-socket Oracle/Sun Niagara (T3) processors 

w/16 cores and 8 threads (each):    4 * 16 * 8 = 512 

 And, by the time new software is ready: Thousands !!  
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HEP programming paradigm 
 Event-level parallelism has been used for decades 

 And, we should not lose this advantage: 
 Large jobs can be split into N efficient “chunks”, each 

responsible for processing M events 
 Has been our “forward scalability” 

 Disadvantage with current approach: 
 Memory must be made available to each process 

 A dual-socket server with eight-core processors needs 32 – 48 GB (or 
more) 

 The double (64 – 96 GB), if SMT is enabled! 

 Although large memories are now coming, we must not let 
memory limitations decide our ability to compute efficiently! 

SMT (Symmetric Multi-Threading) 
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What are the options? 
 There is currently a discussion in the community about 

the best way forward (in a many-core world): 
 

1) Stay with event-level parallelism (and entirely  
independent processes) 
 Assume that the necessary memory remains affordable 
 Or rely on tools, such as KSM, to help share pages 

2) Rely on forking: 
 Start the first process; Fork N others 
 Rely on the OS to do “copy on write”, in case pages are modified 

3) Move to a fully multi-threaded paradigm 
 Still using coarse-grained (event-level) parallelism 

– But, watch out for increased complexity 
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Let’s briefly introduce parallelism 
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Getting to Parallel Execution 

 Multiple steps must be kept in mind: 
 Concurrency 
 Decomposition 
 Communication 
 Synchronization 
 Mapping 
 Execution 

 Keeping Amdahl’s law for max speedup in mind 

n
ppp nS

+−
=

1
1max )( where: 

p (parallel portion) 
s (serial portion) 
p + s = 1.0 
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Parallelization support (C++ and others) 
 Large selection of tools (inside the compiler or as 

additions): 
 Native: pthreads/Windows threads 
 New C++ standard: std::thread 
 OpenMP 
 Intel Threading Building Blocks (TBB; also open source) 
 Intel CILK+ 
 OpenACC 
 Thread wrapper classes 
 MPI (from multiple providers), etc. 
 CUDA (from Nvidia) 
 OpenCL 
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Accelerators (1): Intel Xeon Phi 
 Intel Many Integrated Cores (MIC): 
 Announced at ISC10 (end-May 2010) 
 Based on the x86 architecture, 22nm 
 Many-core (up to 62 cores) + 4-way 

multithreaded + 512-bit vector unit 
 Limited memory: 8 – 16 Gigabytes 

 

 

   
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In Order, 4 
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. . . 

L2 Cache 

In Order, 4 
threads, SIMD-16 

I$ D$ 

In Order, 4 
threads, SIMD-16 

I$ D$ 

48’000 such 
accelerators are 
used in the 
world’s fastest 
supercomputer 
(Tianhe-2 Xeon-
cluster in China) 
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Accelerators (2): Nvidia Fermi GPU 

 Streaming Multiprocessing 
(SM) Architecture 

 

 32 “CUDA cores” per SM (512 total) 
 

 Peak single precision floating point 
performance (at 1.15 GHz”: 
 Above 1 Tflops 

 Double-precision: ~300 Gigaflops 
 

 Dual Thread Scheduler 
 

 64 KB of RAM for shared memory and  
L1 cache (configurable) 

 

 A few Gigabytes of main memory 

Register File 

Scheduler 

Dispatch 

Scheduler 

Dispatch 

Load/Store Units x 16 
Special Func Units x 4 

Interconnect Network 

64K Configurable 
Cache/Shared Mem 

Uniform Cache 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Instruction Cache 

Adapted from Nvidia 

Considerable 
interest in the 
physics 
community 
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Accelerators (3): Nvidia Kepler GPU 

 Made available in 
4Q2012 
 GK110 GPU 
 3x DP performance: 

 1 Teraflops 

 Innovative design: 
 SMX (streaming 

multiprocessors) 
 Dynamic parallelism 

for spawning new 
threads 
 Hyper-Q enables 

multiple CPU cores to 
utilise CUDA cores 
 

Adapted from Nvidia 

18’688 such accelerators are used 
in the world’s second-fastest 
supercomputer (Titan Cray XK7) 
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Memory Subsystem 
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Optimal Memory Programming 
 What needs to be understood: 
 The memory hierarchy 

 Caches 
– Physical layout, Line sizes 
– Levels/Sharing 
– Latency 

 Main memory 
– Physical layout 
– Latency 
– Bandwidth 

 Programmer/Compiler 
– Data Layout 
– Data Locality 

 Execution environment: 
– Affinity 
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Recent Intel Server Architecture 

 Basic building block (as shown in 
the introduction): 
 Multiple cores with dedicated Level1 

(I&D) and Level2 (unified) caches 
 Shared Level-3 cache 
 Integrated Memory Controller 

attaches memory directly to the 
multi-core processor 

 Multiple memory channels 
 Intel Quick Path Interconnect (QPI) 

or AMD HyperTransport (HT) 
Memory 

Shared 
L3 cache 

Mem-ctl 

C0 C1 

C2 C3 

C4 C5 
QPI 
links 

AMD was the first company to introduce an on-chip memory 
controller and processor interconnection (HyperTransport) 

Local caches 
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Cache Hierarchy 

 From CPU to 
main memory 
on a Haswell 
processor 
 With 

multicore, 
memory 
bandwidth is 
shared 
between 
cores in the 
same 
processor 
(socket) 

c = cycle 

Processor Core 
(Registers) 

Local memory 
(large) 

R: 64B/1c 
11c latency 

~24 B/c for all cores 
> 200c latency 

(R:64B + W:32B)/1c 
4c latency 

Shared L3 
(8192 KB) 

32B/1c for all cores 
> 21c latency 

L2 
(256 KB) 

L1D 
(32 KB) 

L1I 
(32 KB) 
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Cache lines (1) 

 When a data element or an instruction is requested by the 
processor, a cache line is ALWAYS moved (as the 
minimum quantity), usually to Level-1 

 

 A cache line is a contiguous section of memory, typically 
64B in size (8 * double) and 64B aligned 
 A 32KB Level-1 cache can hold 512 lines 

 When cache lines have to be moved come from memory 
 Latency is long (>200 cycles) 

 It is even longer if the memory is remote 

 Memory controller stays busy (~8 cycles) 

 

requested 
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Cache lines (2) 
 Good utilisation is vital 
 When only one element (4B or 8B) element is used inside 

the cache line: 
 A lot of bandwidth is wasted! 
 

 Multidimensional C arrays should be accessed with the last 
index changing fastest: 

 
 
 

 Pointer chasing (in linked lists) can easily lead to “cache 
thrashing” (too much memory traffic) 

 

requested 

for (i = 0; i < rows; ++i) 
 for (j = 0; j < columns; ++j)  
  mymatrix [i] [j]   += increment; 
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Cache lines (3) 
 Prefetching: 
 Fetch a cache line before it is requested 

 Hiding latency 

 Normally done by the hardware 
 Especially if processor executes Out-of-order 

 Done also by software instructions 
 Especially when In-order (IA-64, Xeon Phi, etc.)  

 Locality is vital: 
 Spatial locality – Use all elements in the line 
 Temporal locality – Complete the execution whilst the 

element is certain to be in the cache 
 
 

Programming the memory hierarchy is an art in itself. 
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Non-Uniform Memory Access 
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Quad Socket Design 

 All processors are interconnected via QPI links (in blue): 
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Latency Measurements (3) 

 Memory Latency on Sandy Bridge-EP 4650 (quad-socket): 
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Some 
Recommendations 

(based on observations in openlab) 
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A proposal for “agile” software 
1) Seek out parallelism at all levels 

a. Events, tracks, vertices, etc. 
b. Perform “chunk” processing (removing event separation) 

2) Build forward scalability 

3) Create compute-intensive kernels 

4) Optimise the Memory Hierarchy 

5) Create Performance-oriented Code 

6) Combine broad programming talents 

7) Use best-of-breed tools 
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Concurrency in High Energy Physics 
 We are “blessed” with lots of it: 
 Entire events 
 Particles, hits, tracks and vertices 
 Physics processes 
 I/O streams (ROOT trees, branches) 
 Buffer handling (also data compaction, etc.) 
 Fitting variables 
 Partial sums, partial histograms 
 and many others ….. 

 Usable for both data and task parallelism! 
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The holy grail: Forward scalability 
 Not only should a program be written in such a way that it 

extracts maximum performance from today’s hardware 

 On future processors, performance should scale 
automatically 
 In the worst case, one would have to recompile or relink 

 Additional CPU/GPU hardware, be it cores/threads or 
vectors, would automatically be put to good use 

 Scaling would be as expected: 
 If the number of cores (or the vector size) doubled: 

 Scaling would be close to 2x, but certainly not just a few percent 

 We cannot afford to “rewrite” our software for every 
hardware change! 
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Kernel-oriented Programming 
 Take the whole program and its execution behaviour 

into account 
 Get yourself a global overview as soon as possible 

 Via early prototyping with realistic algorithms/data 
 Influence early the design and definitely the implementation 

 Foster clear split: 
 Prepare to compute 
 Do the heavy computation 

 In kernels, where you go after all the available parallelism 

 Post-processing 

 Often, a single kernel is not sufficient 
 A sequence of kernels may be needed 

Heavy compute Pre Post 

The 90 – 10 rule 
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CPU / GPU co-existence 

 What I would like to see happen to a (possibly dusty, 
sequential) x86 application: 

 A strong porting effort to move it to the GPU 
 A good “kernel-oriented design” that aims for a triple-digit 

speed-up 

 Then, a solid port back to the CPU servers 
 Exploiting vectors and cores 

 Outcome: 
 Applications that can profit from new breakthroughs on 

either side of the fence  
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Data layout: SoA versus AoS 

 In general, both GPUs and 
CPUs prefer the former! 

 Structure of Arrays (SoA): 

 

 Array of Structures (AoS): 

 

 

 Also possible: AoSoA 

Z1 Z2 Z3 Z4 Z5 Z6 

Y1 Y2 Y3 Y4 Y5 Y6 

X1 X2 X3 X4 X5 X6 

SP1 
X,Y, Z 

SP2 
X,Y, Z 

SP3 
X,Y, Z 

SP4 
X,Y, Z 

SP5 
X,Y, Z 

SP6 
X,Y, Z 

Spacepoints 
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Performance-oriented code 

 C++ for performance 
Use light-weight C++ constructs 
Minimize virtual functions 
 Inline whenever important 
Optimize the use of math functions 

– SQRT, DIV 
– LOG, EXP, POW 
– SIN, COS, ATAN2 

 
 

 
 
 

 

 

Learn to inspect the compiler-generated assembly, 
especially of kernels 

Use vector 
libraries 
whenever 
possible, 
but master 
the 
accuracy! 
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Performance tools 

 Surround yourself with good tools: 
 Compilers (not just one!) 
 Libraries 
 Profilers 
 Debuggers 
 Thread 

checkers 
 Thread 

profilers 
Image: software.intel.com 
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Broad Programming Talent 
 In order to cover as many layers as possible 

Problem 
Algorithms, abstraction 

Language/Source program 

System architecture 
Instruction set 
µ-architecture 

Circuits 
Electrons 

Compiled code, libraries 

Solution 
specialists 

Technology 
specialists 
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Two HEP examples 
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Examples of parallelism: 
CBM/ALICE track-fitting 

 Extracted from the High 
Level Trigger (HLT) Code 
 Originally ported to IBM’s 

Cell processor 

 Tracing particles in a 
magnetic field  
 Embarrassingly parallel 

code 

 Re-optimization on x86-64 
systems 
 Using vectors instead of 

scalars 

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit” 
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf 

“Compressed Baryonic Matter” 
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CBM/ALICE track-fitting 

 Details of the re-optimization on x86-64: 
 Part 1: use SSE vectors instead of scalars 

 Operator overloading allows seamless change of data types 
 Intrinsics (from Intel/GNU header file): Map directly to 

instructions: 
– __mm_add_ps  corresponds directly to ADDPS, the instruction 

that operates on four packed, single-precision FP numbers 
● 128 bits in total 

 Classes 
– P4_F32vec4 – packed single class with overloaded operators 

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) { 
return _mm_add_ps(a,b); } 

 
 Result: 4x speed increase from x87 scalar to packed SSE 

(single precision) 
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Examples of parallelism: 
CBM track-fitting 
 Re-optimization on x86-64 systems 
 Step 1: Data parallelism using SIMD instructions 
 Step 2: use TBB (or OpenMP) to scale across cores 

From H.Bjerke/CERN openlab, I.Kisel/GSI 

V T 
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Analysis of Track-fitting speed-up 

 From paper of I.Kisel (2008): 

Stage Description Time/track Speed-up 

Initial scalar version 12 ms - 

1 Approximation of magnetic 
field 

240 µs 50 

2 Optimisation of the algorithm 7.2 µs 33.3 

3 Vectorisation 1.6 µs 4.5 

4 Porting to IBM Cell/SPE 1.1 µs 1.45 

5 Parallelisation on 16 SPEs 0.1 µs 10 

Final SIMD parallel version 0.1 µs 120’000 

72x 

1667x 

Don’t underestimate software optimisation! 
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Track-fitting: Port to NVIDIA GPU 
 David Rohr/ALICE: 
 Integration: GPU and CPU tracker share a common set of 

source files 
 Performance Comparison: GTX580 GPU is almost three 

times faster than a six-core Westmere processor 

GPU Workshop in DESY (April 2013): 
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Examples of parallelism: GEANT4 

 Initially; ParGeant4 (Gene Cooperman/NEU) 
 implemented event-level parallelism to simulate separate 

events across remote nodes. 

 New prototype re-implements thread-safe event-level 
parallelism inside a multi-core node 

 Done by NEU PhD student Xin Dong: 
– Using FullCMS and TestEM examples 

 Required change of lots of existing classes (10% of 1 MLOC): 
– Especially global, “extrn”, and static declarations 
– Preprocessor used for automating the work. 

 Major reimplementation: 
– Now in separate branch in the G4 source tree 

 Additional memory: Only 25 MB/thread (!) 

T 
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Multithreaded GEANT4 benchmark 
 Excellent scaling on 32 (real) cores 

 With a 4-socket server 

From A.Nowak/CERN openlab 



Sverre Jarp - CERN 

Computer Architecture and Performance Tuning 

88 

If you think that all of this is “crazy” 

 Please read: 
 “Optimizing matrix multiplication for a short-vector 

SIMD architecture – CELL processor” 
 J.Kurzak, W.Alvaro, J.Dongarra 
 Parallel Computing 35 (2009) 138–150 

 In this paper, single-precision matrix 
multiplication kernels are presented 
implementing the C = C – A x BT operation 
and the C = C –  A x B operation for 
matrices of size 64x64 elements. For the 
latter case, the performance of 25.55 
Gflop/s is reported, or 99.80% of the peak, 
using as little as 5.9 kB of storage for code 
and auxiliary data structures. 
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So, what does it all mean? 

 Here is what we tried to say in these 
lectures: 

 You must get your code to use vectors 

 You must understand if your ILP is seriously 
limited by serial code, complex math 
functions, and other contracts 

 You must parallelise across all “CPU slots” 
 Hardware threads, Cores, Sockets 
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Concluding remarks 
 The aim of these lectures was to help understand: 
 Changes in modern computer architecture 
 Impact on our programming methodologies 
 Keeping in mind that there is not always a straight path to 

reach (all of) the available performance by our 
programming community. 

 In most HEP programming domains event-level 
processing will (continue to) dominate 
 In some case, “multi-event” could be even better! 

 Will you be ready for 1000 cores and long vectors? 
 Are you thinking “parallel, parallel, parallel” ? 

 It helps to know the seven hardware dimensions in order 
to get close to the best software design ! 
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Further reading: 
 “Designing and Building Parallel Programs”, I. Foster, Addison-Wesley, 

1995 

 “Foundations of Multithreaded, Parallel and Distributed Programming”, G.R. 
Andrews, Addison-Wesley, 1999 

 “Computer Architecture: A Quantitative Approach”, J. Hennessy and D. 
Patterson, 3rd ed., Morgan Kaufmann, 2002 

 “Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004 

 “Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd 
edition, Addison Wesley, 2006 

 “The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006 

 “The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith 
and X. Tian; Intel Press, 2nd edition, 2006 

 “Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor 
Parallelism”, J. Reinders, O’Reilly, 1st edition, 2007 

 “Inside the Machine”, J. Stokes, Ars Technica Library, 2007 
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Thank you! FastFlow 


	Slide Number 1
	Goal of this lecture series
	Contents
	Setting the scene (1)
	Setting the scene (2)
	Why worry about performance?
	Moore’s “law”
	Moore’s “law” (cont’d)
	Real consequence of Moore’s law
	Semiconductor evolution
	Complexity in Computing
	Archaic Computing Units
	And the language is ancient, too! 
	Even assembly is “too high level”
	Performance: A complicated story!
	A Complicated Story (in 9 layers!)
	But, let’s start with the basics!
	Von Neumann architecture
	Von Neumann architecture (cont’d)
	Simple processor layout
	Simple server diagram
	Performance Dimensions
	In the days of the Pentium
	Frequency scaling
	Now: Seven dimensions of performance
	Seven multiplicative dimensions:
	Simple, but illustrative example
	GPUs: 7 dimensions of performance
	Streaming Multiprocessor Architecture
	Concurrency in High Energy Physics
	Autoparallelization/Autovectorization
	Part 1: Opportunities for scaling performance inside a core
	First topic: Vector registers
	Four floating-point data flavours
	Scalable programming inside a core
	Inside-the-core: HEP and vectors
	Second topic: Superscalar architecture
	Enhanced superscalar architecture
	Latest superscalar architecture
	Third topic: Instruction pipelining
	Real-life latencies
	Latencies and serial code (1)
	Summary of Last Two Dimensions
	Mini-example of real-life scalar, serial code
	Out-of-order (OOO) scheduling
	Important performance measurements�(that can tell you if things go wrong)
	Part 2: Parallel execution across hw-threads and cores
	Definition of a hardware core/thread
	Definition of a software process and thread
	Seven multiplicative dimensions:
	The move to many-core systems
	HEP programming paradigm
	What are the options?
	Let’s briefly introduce parallelism
	Getting to Parallel Execution
	Parallelization support (C++ and others)
	Accelerators (1): Intel Xeon Phi
	Accelerators (2): Nvidia Fermi GPU
	Accelerators (3): Nvidia Kepler GPU
	Memory Subsystem
	Optimal Memory Programming
	Recent Intel Server Architecture
	Cache Hierarchy
	Cache lines (1)
	Cache lines (2)
	Cache lines (3)
	Non-Uniform Memory Access
	Quad Socket Design
	Latency Measurements (3)
	Some Recommendations�(based on observations in openlab)
	A proposal for “agile” software
	Concurrency in High Energy Physics
	The holy grail: Forward scalability
	Kernel-oriented Programming
	CPU / GPU co-existence
	Data layout: SoA versus AoS
	Performance-oriented code
	Performance tools
	Broad Programming Talent
	Two HEP examples
	Examples of parallelism:�CBM/ALICE track-fitting
	CBM/ALICE track-fitting
	Examples of parallelism:�CBM track-fitting
	Analysis of Track-fitting speed-up
	Track-fitting: Port to NVIDIA GPU
	Examples of parallelism: GEANT4
	Multithreaded GEANT4 benchmark
	If you think that all of this is “crazy”
	So, what does it all mean?
	Concluding remarks
	Further reading:
	Thank you!

