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~SC School Goals

WELCOME TO ESC13

The goal of the school is to provide young scientists and computing professionals with the necessary
education and training to address the quest for maximum efficiency in developing large scientific
computing applications.




Moore's Law

 Cost of transistors drops
exponentially over time,
permitting chips with ever
greater numbers of transistors.

- What matters more is how these
transistors are deployed to
achieve ever greater
(exponential) growth in
application performance.
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* Through about 2005 this was done in such a way as to increase the
performance of single, sequential applications: you could run the same
software (and usually the same binary) on a newer processor and it would run

faster.



Moore's Law

e Moore's Law had a profound effect on many things

e One could plan for things that were impossible today (by
very large factors) and make cost estimates 10 years out

e [t also had an important effect on software development: if
you know you will have (exponential) performance gains
from new hardware, more emphasis can be placed on
other important aspects of software engineering:
maintainability, extensibllity, portability, etc.



New Architectures

* Over the past ten years
processors have hit power
limitations which place
significant constraints on
"Moore's Law" scaling.

* The first casualty was
scaling for single sequential

applications, giving birth to
multi-core processors.
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FIGURE A.4 Microprocessor power dissipation (watts) over time (1985-2010).
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Multicore

¢ -irst response to power limits was the deployment of multicore
CPU's, with more than one general-purpose functional
processor on a chip

¢ \Vhile there were no performance gains for single, sequential
applications, simple threaded applications and applications
which could profitably run more than one instance (true for all
of high throughput and high performance scientific computing)
could benefit.

¢ The main downside is that some costs (memory, #database or
file connections) now grow with each generation of processor



New Architectures

* Even multi-core,
iImplemented with
large "aggressive"
cores Is just a stop-
gap. The power
limitations remain.
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WLCG as Distributed Supercomputer

The Worldwide LHC Computing Grid

Tier-2 centres
(about 130)
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WLCG:
An International collaboration to distribute and analyse LHC data

Integrates computer centres worldwide that provide computing and storage
resource into a single infrastructure accessible by all LHC physicists




WLCG as Distributed Supercomputer -

Power

e Not only would the the
WLCG be one of the top
supercomputers in terms
of performance if it were
considered as such, but it

also shares another

characteristic which is less

OobVvIous.

¢ Using the mix of hardware
available at FNAL (and
Known power use), we
estimate the aggregate
power cost to be of order
10MW

Rank

Site

National University of Defense Technology
China

DOE/SC/Oak Ridge National Laboratory
United States

DOE/NNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science (AICS)
Japan

DOE/SC/Argonne National Laboratory
United States

Texas Advanced Computing Center/Univ.
of Texas
United States

Forschungszentrum Juelich (FZJ)
Germany

DOE/NNSA/LLNL
United States

Leibniz Rechenzentrum
Germany

National Supercomputing Center in Tianjin
China

System

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel
Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel

Xeon Phi 31S1P
NUDT

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray

Gemini interconnect, NVIDIA K20x
Cray Inc.

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz,

Custom
IBM

K computer, SPARC84 Vllifx 2.0GHz, Tofu
interconnect
Fujitsu

Mira - BlueGene/Q, Power BQC 16C 1.60GHz,

Custom
IBM

Stampede - PowerEdge C8220, Xeon E5-2680 8C
2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P

Dell

JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz,

Custom Interconnect
IBM

Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz,

Custom Interconnect
IBM

SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C

2.70GHz, Infiniband FDR
IBM

Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93

GHz, NVIDIA 2050
NUDT

Cores

3120000

560640

1572864

705024

786432

462462

458752

393216

147456

186368

Rmax
(TFlop/s)

33862.7

17590.0

17173.2

10510.0

8586.6

5168.1

5008.9

4293.3

2897.0

2566.0

Rpeak
(TFlopls)

54902.4

271125

20132.7

11280.4

10066.3

8520.1

5872.0

5033.2

3185.1

4701.0

Power
(kW)

17808

8209

7890

12660

3945

4510

2301

1972

3423



Indicative technologies today

e ARM processors - low power, higher performance/watt,
simpler processor cores (Mobile market more explicitly
dominated by power)

e Graphics processing units (GPU) - e.qg. Tesla from NVidia,
COProcessors

e Xeon Phi (Intel MIC architecture) - coprocessor with ~60
ightweight in-order cores, each with big vector units

e Not unlikely that the next step will be heterogenous mixes
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Market Evolution - ARM processors

* RISC processor with a long history going back to the BBC
Micro. Of interest today as the core processor used in the
vast majority of mobile devices.

* Current generation ARMv7/32bit, ARMv8/64bit products
expected in 2014

PC and Smartphone sales per year

700

* Unit sales increasing
dramatically in
asmmee | recent years
(typically cost and
profit/unit, however)
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Market Evolution

e ARM processors may or may not make it into the (micro-)server
market. Intel of course is preparing a new generation of System-
On-Chip (SoC) low power processors, too, for the mobile,
embedded and micro-server environments: see Atom/
Silvermont.

* [he important thing to recall is that designing processors and
ouilding chip fabs is a very expensive game, especially with the
atest fabrication processes (needed to push onwards as per
Moore's Law)

e Big markets are thus needed for economies of scale and
suitable profits

12



—xample ARM System-on-Chip (SoC)

e Here in ODROID XU+E dev. board,
processor from Samsung Galaxy
S4

e ExynosS octa (5410) CPU

¢ 1.0GHz Cortex-A15 guad core +
1.2GHz Cortex-A7 quad-core
(oig.LITTLE heterogeneous mix),

PowerVR SGX544MP3 GPU * Example of what they are
trying to do Iin power-

e 2GB L-DDR memory (total) imited mobile market

13



ODROID XU+E

Power (Sensors and

"Smart Power")
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General Purpose Graphics Programming Unit
(GPGPU's)

e Originally used as specialized
graphics processors, since
around 2005 they have been
positioned as providing also
general purpose computing
capabillities for certain types of
applications.

* |n particular highly parallelizable
compute-intensive applications
may see significant performance
improvements on GPU's relative
to general purpose processors.

15



Intel Xeon Phi (7110

°)

e 61 in-order lightweight
with big vector units

cores

e Coprocessor packaging on
PCle bus, 16GB GDDR5

memory

e HPC-like competitor for

GPGPU's

16



(General Features

e Parallelism at multiple levels
® Heterogeneous resources on chips

e Performance/watt likely to be as important a metric as
performance/unit-cost

17



High Energy Physics

HEP computing is
embarrassingly (data)
parallel: N independent
iInstances of an application
can be started as simple unix
processes, each one
processing an independent
sets of events. No real
communication is needed
between the separate
Processes.

Significant parallelism also
exists in many other aspects
of our problems: hits, tracks,
vertices, jets, etc.

18




The Art of Application Performance

¢ \Vhat kinds of things are relevant to improve the
performance of a single application?

e A number of ingredients affect the realizable pertformance:

Hardware - CPU, Memory subsystem, |/O

Software - Application code, libraries, compiler
and operating system

Algorithms - CS/Knuth, Scientific, Parallelization

19



High level algorithm choices

» Often the things which most directly determine the
performance are simple choices made as to what the program
Is actually doing, i.e. the high level algorithms.

» For example, if you are running a simulation: are you
simulating only the relevant things? Is the level of detail greater
than what is needed or needed for all parts of the simulation?

 Such high level considerations can often result in large factors
in the time to completion (or resources needed) for any given
task.

» |t is Important to ask such questions near the beginning, and
confirm via profiling that the main performance drivers have
been identified, before rolling up one's sleeves and diving into
the more technical performance tuning.

20



Processor hardware/memory/etc.

- We of course compute on actual physical “computers” and thus their
evolving capabilities are the most basic component of the achievable
performance of some application

- Moore's Law — number of transistors available per unit cost doubles
every 1.5 years

- A number of factors conspired to make it possible for many years
(1990's through ~2005) to take applications (often without
recompiling!) and run them on the next generation of hardware and
see a performance gain out-of-the-box.

- This easy ride is over, however. Without changes many applications
will not run faster on newer hardware (and many at times actually run
slower).

- |In addition to “multicore”, exploiting new potentially heterogeneous
architectures is a challenge.

- Understanding the basics of how to best exploit the hardware going
forward will be the topic of several lectures this week.
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Operating Systems

* For the most part Linux is the primary operating system
considered in these presentations

» The capabillities of the operating system and its runtime
environment have can have an important impact on
performance, for example:

* Virtual Memory subsystem — using or abusing this
can affect performance

« Shared libraries and/or other details of “code
packaging” can have an impact on performance

» Math libraries — by default you may be taking the
math library (libom) from the system, unless you've
made a conscious decision to do otherwise

22



Compilers

* The compiler is clearly one of the most important tools for
achieving optimum code performance

» Unless we want to hand-code everything in assembly, we
rely on it to take our code, written in a high-level language
like C++, and produce the fastest code possible.

- Usually we also want it to accomplish that in the shortest
time possible, to use as little memory as possible doing it, to
produce the smallest code possible, etc.

* Note however that compilers cannot always find and
optimize things that a human might immediately recognize.
In particular compilers are (usually) conservative and will
choose code that is guaranteed to be correct over code that
might be wrong in some cases.

23



GNU Compiler Collection (GCC)

* The workhorse open source compiler, used by most of
us, most of the time, these days...

 Front ends for C, C++, Fortran (Ada, Objective-C(++),
Java and others)

« Back ends for x86, x86_64 (Alpha, ARM, ia-64, PowerPC,
Sparc and many others)

» Most software today is easily configured to build with gcc

 Although most of work on linux/x86(_64) today, or at most
MacOSX/x86 64, at least in non-DAQ environments, the
wide availability of gcc for different OS/CPU
combinations once eased porting C/C++ from one to
another.

24



Intel Compiler (icc)

* Intel's showcase Fortran/C/C++ compiler(s)

 Arguably focused on demonstrating the best possible
performance to be obtained from their processors

 Independent compiler (language syntax, code quality)

» Generates code for all of the Intel processors, plus in
principle other x86/x86_64 compatible,processors, e.g.
AMD

- Available for Linux/MacOSX/Windows, proprietary license
» Only realistic compiler today for use with Intel Xeon Phi

» The default behavior for floating point may or may not be
what is desired (see presentations about floating point
this week)

25



Clang/LLVM

» "Recent” open source compiler project, aiming to build a
set of modular compiler components

 The Initial versions replace the optimizer and code
generation of gcc, but still reuse the gcc front-end/parser
(compatible compiler options!)

A separate project (Clang) is a front-end for C/C++/
Objective-C and is (by now) fairly mature and other front
ends have been developed.

» Currently at version 3.3.

» Targets both static compilation as well as just-in-time
(JIT) compilation

» Sponsorship (in particular) by Apple

26



Parallel Programming

® [he increased emphasis on parallelization and parallel
programming, plus the heterogeneous hardware
environment, implies new software components are
needed to support parallel programming

e | ater in the week you will here about some of these (and
the pros and cons): OpenMP, MPI, CUDA, OpenACC,
OpenCL, etc.

27



Profiling Tools

* You probably want to make sure that the time you

dedicate to working on software performance and
efficiency will help

» To do this you should be making decisions based on
performance profiles for your application(s)

» In this school you will use several example profiling tools:
» |gProf — simply statistical profiler and memory profiler

» Valgrind — general memory debugger/profile
» A variety of Linux system tools

- PMU-based CPU performance counters
* In your experiment, institute or project you may use others

* The important thing is to use profilers as a guide to where
the problems/opportunities are, don't guess!

28



Amdahl's Law

* The improvement in the total time due to improvements
to one part is limited by the amount that part is used

A similar restatement is: when parallelizing one part of

an application, you can never do better than the
remaining serial part.

No. of
Parallel Part Part

Execution

Units

Tnne



| ecturers

Sverre Jarp (CERN Openlab)
Peter Elmer (Princeton) - LHC/CMS

Vincenzo Innocente (CERN) — LHC/CMS

Francesco Giacomini (CNAF)

Tim Mattson (Intel)

30



Monday

Monday, 21 October 2013

08:30 - 20:00

20:30 - 20:30

Session 1

08:30

09:00

09:50

10:40
11:00

11:50

12:40
14:15

15:00

15:45
16:00

16:45

17:30

Dinner

Welcome and opening remarks 30’
Speaker: Mauro Morandin (PD)

Concepts of performance and efficiency 45’
Speaker: Dr. Peter EImer (Princeton University)

Modern processors and related optimisation topics - Part 1 45’
Speaker: Mr. Sverre Jarp (CERN)

Coffee break 20’

Modern processors and related optimisation topics - Part 2 45’
Speaker: Mr. Sverre Jarp (CERN)

Introduction to Performance tuning tools 45’
Speaker: Dr. Peter EImer (Princeton University)

Lunch break 1h30'

Floating point computation: accuracy, optimization, vectorization (with exercises) 45’
Speaker: Vincenzo Innocente (CERN)

Floating point computation: accuracy, optimization, vectorization (with exercises) 45’
Speaker: Vincenzo Innocente (CERN)

Coffee break 15'

Floating point computation: accuracy, optimization, vectorization (with exercises) 45’
Speaker: Vincenzo Innocente (CERN)

Floating point computation: accuracy, optimization, vectorization (with exercises) 45’
Speaker: Vincenzo Innocente (CERN)

Student lightning presentations 1h0’



Tuesday

Tuesday, 22 October 2013

08:30 - 20:00

20:30 - 20:30

Session 2

08:30

09:20

10:10
10:30

11:15

12:40
14:15

15:00

15:45
16:00

16:45

17:30

Dinner

Efficient C++ coding (with exercises) 45’
Speaker: Dr. Francesco Giacomini (CNAF)

Efficient C++ coding (with exercises) 45’
Speaker: Dr. Francesco Giacomini (CNAF)

Coffee break 20’

Efficient C++ coding (with exercises) 45’
Speaker: Dr. Francesco Giacomini (CNAF)

Efficient C++ coding (with exercises) 45’
Speaker: Dr. Francesco Giacomini (CNAF)

Lunch break 1h30'

The Memory Crisis 45'
Speaker: Dr. Peter Elmer (Princeton University)

How memory allocation works 45’
Speaker: Dr. Peter Elmer (Princeton University)

Coffee break 15’

Exercises - Memory Allocations 45’
Speaker: Dr. Peter Elmer (Princeton University)

Exercises - Memory Allocations 45’
Speaker: Dr. Peter Elmer (Princeton University)

Student lightning presentations 1h0’



Wednesday

Wednesday, 23 October 2013

08:30 - 14:00

14:00 - 18:00

18:00 - 20:00
20:30 - 22:30

Session 3

08:30 Exercises (Floating Point, Memory use, C++) 45’

Speakers: Dr. Peter EImer (Princeton University), Vincenzo Innocente (CERN), Dr. Francesco
Giacomini (CNAF)

09:20 Exercises (Floating Point, Memory use, C++) 45’
10:10 Coffee break 20’

10:30 Exercises (Floating Point, Memory use, C++) 45’
11:20 Exercises (Floating Point, Memory use, C++) 45’
12:20 Lunch break 1h30'

Session 4: Introduction to parallel computing

14:00 Motivation.... The power wall and the emergence of ubiquitous heterogeneous
computing 45’
Speaker: Dr. Tim Mattson (Intel)

14:45 Parallel Computing: basic concepts and vocabulary 45’
Speaker: Dr. Tim Mattson (Intel)

15:30 Coffee break 30’

16:00 Parallel hardware: from SMP to GPU to clusters to massively parallel supercomputers 45’
Speaker: Dr. Tim Mattson (Intel)

16:45 Core design patterns of parallel algorithms 45’
Speaker: Dr. Tim Mattson (Intel)

Social Tour

Social dinner

Casa Artusi Restaurant 33



Thursday

Thursday, 24 October 2013

08:30 - 12:50

12:50 - 14:20
14:20 - 19:30

20:30 - 20:30

Session 5: Hands on introduction to parallel programming with OpenMP
Convener: Dr. Tim Mattson (Intel)

08:30

09:30

10:30
11:00

Lunch

Multithreaded programming with OpenMP: The SPMD pattern on the CPU 45’
Speaker: Dr. Tim Mattson (Intel)

Parallel loops with OpenMP 45’
Speaker: Dr. Tim Mattson (Intel)
Coffee break 30’

The divide and conquer pattern with OpenMP tasks 45’
Speaker: Dr. Tim Mattson (Intel)

Session 6: Hands on introduction to GPU programming with compiler directives
Convener: Dr. Tim Mattson (Intel)

14:20
15:15

16:15
16:45

18:30

Dinner

GPU architectures 45’

Core design patterns for the GPU programmer 45’

Speaker: Dr. Tim Mattson (Intel)

Coffee break 30’

Programming GPUs with directives: OpenACC and OpenMP 4.0 45’
Speaker: Dr. Tim Mattson (Intel)

Evening lecture: Exploiting vector units 150’
Speaker: Dr. Tim Mattson (Intel)
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Friday

Friday, 25 October 2013

08:30 - 12:50

12:50 - 14:20
14:20 - 18:30

20:30 - 20:30

Session 7: Hands on introduction to GPU programming with CUDA and OpenCL

Convener: Dr. Tim Mattson (Intel)
08:30 The kernel parallelism pattern 45’
Speaker: Dr. Tim Mattson (Intel)

09:30 Basics of kernel programming 45’
Speaker: Dr. Tim Mattson (Intel)
10:30 Coffee break 30’

11:00 GPU memory hierarchy and reductions 45’
Speaker: Dr. Tim Mattson (Intel)

Lunch

Session 8: Hands on introduction to cluster computing
Convener: Dr. Tim Mattson (Intel)

14:30 MPI and the concept of message passing 45’
Speaker: Dr. Tim Mattson (Intel)

15:30 The SPMD pattern in MPI 45’
Speaker: Dr. Tim Mattson (Intel)

16:30 Coffee break 30’

17:00 Programming highly scalable systems: "MPI+X" 45’
Speaker: Dr. Tim Mattson (Intel)

Dinner
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By the end of the week...

* ... you should have a good working knowledge of
performance issues related to:

» The evolution of CPU architectures
* The memory subsystem

» C++ programming

» \ectorization and floating point

» (And especially) Parallel Computing

* And you will have seen various related tools and done
exercises for all of these topics.

* |t Is a very large number of topics for a few days, but
you should be well positioned after this week to

understand and improve the performance of your own
applications.
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Saturday

Saturday, 26 October 2013

08:30 - 14:50

Session 9

08:30 Students feedback 30’

09:00 Final examination 2h0’

11:00 Coffee break 30’

11:30  Delivery of certificates of attendance 30’

12:.00 Lunch 1h15'

14:00 Shuttle departure (to Forli' railway station) 20’
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Code Lifetimes

» Large scientific projects by definition will extend over
many years and sometimes decades

» Technologies change over time and in any regime
where underlying laws are exponential (i.e. Moore's
Law), the one thing you can guarantee is that new
challenges will arise...

38



Code Evolution - BaBar at PEP-II (SLAC)
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Code Evolution - BaBar at PEP-II (SLAC)
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Code Evolution - CDF

Run I at the Tevatron (FNAL)
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Code Evolution - CDF Run Il at the Tevatron (FNAL)
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Code Evolution - CMS at the LHC (CERN)

300
250 - ﬂA
200 - MNI\
150 -
100 -
50 Number of unique developers committing
to CMSSW each month
Total over all time - 963
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CERN LHC Plans

13-14 TeV collision energy

\ injector \ \
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70% radiation
e damage

The long time scale for the LHC is one extreme
example, however most projects in the coming years
are likely to face challenges (and opportunities) from
the technology evolution and the need for maximizing

software performance.
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Conclusions

Have a productive week!



