
Introduction &
Concepts of Performance and

Efficiency
Peter Elmer - Princeton University

!1

ESC School Goals

!2

Moore's Law

• Cost of transistors drops
exponentially over time,
permitting chips with ever
greater numbers of transistors.

• What matters more is how these
transistors are deployed to
achieve ever greater
(exponential) growth in
application performance.

!3

• Through about 2005 this was done in such a way as to increase the
performance of single, sequential applications: you could run the same
software (and usually the same binary) on a newer processor and it would run
faster.

Moore's Law

• Moore's Law had a profound effect on many things

• One could plan for things that were impossible today (by
very large factors) and make cost estimates 10 years out

• It also had an important effect on software development: if
you know you will have (exponential) performance gains
from new hardware, more emphasis can be placed on
other important aspects of software engineering:
maintainability, extensibility, portability, etc.

!4

New Architectures

• Over the past ten years
processors have hit power
limitations which place
significant constraints on
"Moore's Law" scaling.

• The first casualty was
scaling for single sequential
applications, giving birth to
multi-core processors.

From: "The Future of Computing Performance:
Game Over or Next Level?"

!5

Multicore
• First response to power limits was the deployment of multicore

CPU's, with more than one general-purpose functional
processor on a chip

• While there were no performance gains for single, sequential
applications, simple threaded applications and applications
which could profitably run more than one instance (true for all
of high throughput and high performance scientific computing)
could benefit.

• The main downside is that some costs (memory, #database or
file connections) now grow with each generation of processor

!6

New Architectures

• Even multi-core,
implemented with
large "aggressive"
cores is just a stop-
gap. The power
limitations remain.
The focus is
shifting to
performance/watt,
not just
performance/price. From: "The Future of Computing Performance:

Game Over or Next Level?" !7

WLCG as Distributed Supercomputer

!8

WLCG as Distributed Supercomputer - Power

• Not only would the the
WLCG be one of the top
supercomputers in terms
of performance if it were
considered as such, but it
also shares another
characteristic which is less
obvious.

• Using the mix of hardware
available at FNAL (and
known power use), we
estimate the aggregate
power cost to be of order
10MW

!9

Indicative technologies today

• ARM processors - low power, higher performance/watt,
simpler processor cores (mobile market more explicitly
dominated by power)

• Graphics processing units (GPU) - e.g. Tesla from NVidia,
coprocessors

• Xeon Phi (Intel MIC architecture) - coprocessor with ~60
lightweight in-order cores, each with big vector units

• Not unlikely that the next step will be heterogenous mixes

!10

Market Evolution - ARM processors

• RISC processor with a long history going back to the BBC
Micro. Of interest today as the core processor used in the
vast majority of mobile devices.

• Current generation ARMv7/32bit, ARMv8/64bit products
expected in 2014

• Unit sales increasing
dramatically in
recent years
(typically cost and
profit/unit, however)

!11

Market Evolution

!12

• ARM processors may or may not make it into the (micro-)server
market. Intel of course is preparing a new generation of System-
On-Chip (SoC) low power processors, too, for the mobile,
embedded and micro-server environments: see Atom/
Silvermont.

• The important thing to recall is that designing processors and
building chip fabs is a very expensive game, especially with the
latest fabrication processes (needed to push onwards as per
Moore's Law)

• Big markets are thus needed for economies of scale and
suitable profits

Example ARM System-on-Chip (SoC)

• Here in ODROID XU+E dev. board,
processor from Samsung Galaxy
S4

• Exynos5 octa (5410) CPU

• 1.6GHz Cortex-A15 quad core +
1.2GHz Cortex-A7 quad-core
(big.LITTLE heterogeneous mix),
PowerVR SGX544MP3 GPU

• 2GB L-DDR memory (total)

• Example of what they are
trying to do in power-
limited mobile market

!13

ODROID XU+E Power (Sensors and "Smart Power")

• Load (1,2,3,4) cores and the a compilation test while
monitoring power (Watts versus time)

!14

General Purpose Graphics Programming Unit
(GPGPU's)

• Originally used as specialized
graphics processors, since
around 2005 they have been
positioned as providing also
general purpose computing
capabilities for certain types of
applications.

• In particular highly parallelizable
compute-intensive applications
may see significant performance
improvements on GPU's relative
to general purpose processors.

!15

Intel Xeon Phi (7110P)

• 61 in-order lightweight cores
with big vector units

• Coprocessor packaging on
PCIe bus, 16GB GDDR5
memory

• HPC-like competitor for
GPGPU's

!16

General Features

• Parallelism at multiple levels

• Heterogeneous resources on chips

• Performance/watt likely to be as important a metric as
performance/unit-cost

!17

High Energy Physics

!18

HEP computing is
embarrassingly (data)
parallel: N independent
instances of an application
can be started as simple unix
processes, each one
processing an independent
sets of events. No real
communication is needed
between the separate
processes.

Significant parallelism also
exists in many other aspects
of our problems: hits, tracks,
vertices, jets, etc.

The Art of Application Performance

• What kinds of things are relevant to improve the
performance of a single application?

• A number of ingredients affect the realizable performance:

Hardware - CPU, Memory subsystem, I/O

Software - Application code, libraries, compiler
and operating system

Algorithms - CS/Knuth, Scientific, Parallelization

!19

High level algorithm choices

!20

• Often the things which most directly determine the
performance are simple choices made as to what the program
is actually doing, i.e. the high level algorithms.

• For example, if you are running a simulation: are you
simulating only the relevant things? Is the level of detail greater
than what is needed or needed for all parts of the simulation?

• Such high level considerations can often result in large factors
in the time to completion (or resources needed) for any given
task.

• It is important to ask such questions near the beginning, and
confirm via profiling that the main performance drivers have
been identified, before rolling up one's sleeves and diving into
the more technical performance tuning.

Processor hardware/memory/etc.

!21

• We of course compute on actual physical “computers” and thus their
evolving capabilities are the most basic component of the achievable
performance of some application

• Moore's Law – number of transistors available per unit cost doubles
every 1.5 years

• A number of factors conspired to make it possible for many years
(1990's through ~2005) to take applications (often without
recompiling!) and run them on the next generation of hardware and
see a performance gain out-of-the-box.

• This easy ride is over, however. Without changes many applications
will not run faster on newer hardware (and many at times actually run
slower).

• In addition to “multicore”, exploiting new potentially heterogeneous
architectures is a challenge.

• Understanding the basics of how to best exploit the hardware going
forward will be the topic of several lectures this week.

Operating Systems

• For the most part Linux is the primary operating system
considered in these presentations

• The capabilities of the operating system and its runtime
environment have can have an important impact on
performance, for example:

• Virtual Memory subsystem – using or abusing this

can affect performance

• Shared libraries and/or other details of “code

packaging” can have an impact on performance

• Math libraries – by default you may be taking the

math library (libm) from the system, unless you've
made a conscious decision to do otherwise

!22

Compilers

• The compiler is clearly one of the most important tools for
achieving optimum code performance

• Unless we want to hand-code everything in assembly, we
rely on it to take our code, written in a high-level language
like C++, and produce the fastest code possible.

• Usually we also want it to accomplish that in the shortest
time possible, to use as little memory as possible doing it, to
produce the smallest code possible, etc.

• Note however that compilers cannot always find and
optimize things that a human might immediately recognize.
In particular compilers are (usually) conservative and will
choose code that is guaranteed to be correct over code that
might be wrong in some cases.

!23

GNU Compiler Collection (GCC)

• The workhorse open source compiler, used by most of
us, most of the time, these days...

• Front ends for C, C++, Fortran (Ada, Objective-C(++),
Java and others)

• Back ends for x86, x86_64 (Alpha, ARM, ia-64, PowerPC,
Sparc and many others)

• Most software today is easily configured to build with gcc

• Although most of work on linux/x86(_64) today, or at most

MacOSX/x86_64, at least in non-DAQ environments, the
wide availability of gcc for different OS/CPU
combinations once eased porting C/C++ from one to
another.

!24

Intel Compiler (icc)

!25

• Intel's showcase Fortran/C/C++ compiler(s)

• Arguably focused on demonstrating the best possible

performance to be obtained from their processors

• Independent compiler (language syntax, code quality)

• Generates code for all of the Intel processors, plus in

principle other x86/x86_64 compatible,processors, e.g.
AMD

• Available for Linux/MacOSX/Windows, proprietary license

• Only realistic compiler today for use with Intel Xeon Phi

• The default behavior for floating point may or may not be

what is desired (see presentations about floating point
this week)

Clang/LLVM

• "Recent" open source compiler project, aiming to build a
set of modular compiler components

• The initial versions replace the optimizer and code
generation of gcc, but still reuse the gcc front-end/parser
(compatible compiler options!)

• A separate project (Clang) is a front-end for C/C++/
Objective-C and is (by now) fairly mature and other front
ends have been developed.

• Currently at version 3.3.

• Targets both static compilation as well as just-in-time

(JIT) compilation

• Sponsorship (in particular) by Apple

!26

Parallel Programming

• The increased emphasis on parallelization and parallel
programming, plus the heterogeneous hardware
environment, implies new software components are
needed to support parallel programming

• Later in the week you will here about some of these (and
the pros and cons): OpenMP, MPI, CUDA, OpenACC,
OpenCL, etc.

!27

Profiling Tools

!28

• You probably want to make sure that the time you
dedicate to working on software performance and
efficiency will help

• To do this you should be making decisions based on
performance profiles for your application(s)

• In this school you will use several example profiling tools:

• IgProf – simply statistical profiler and memory profiler

• Valgrind – general memory debugger/profile

• A variety of Linux system tools

• PMU-based CPU performance counters

• In your experiment, institute or project you may use others

• The important thing is to use profilers as a guide to where

the problems/opportunities are, don't guess!

Amdahl's Law

Time

Serial

 Part

Parallelizable

 Part

!29

No. of

Parallel

Execution
Units

• The improvement in the total time due to improvements
to one part is limited by the amount that part is used

• A similar restatement is: when parallelizing one part of
an application, you can never do better than the
remaining serial part.

Lecturers

Sverre Jarp (CERN Openlab)

Peter Elmer (Princeton) – LHC/CMS

Vincenzo Innocente (CERN) – LHC/CMS

Francesco Giacomini (CNAF)

Tim Mattson (Intel)

!30

Monday

!31

Tuesday

!32

Wednesday

!33

Thursday

!34

Friday

!35

By the end of the week...

• … you should have a good working knowledge of
performance issues related to:

• The evolution of CPU architectures

• The memory subsystem

• C++ programming

• Vectorization and floating point

• (And especially) Parallel Computing

• And you will have seen various related tools and done
exercises for all of these topics.

• It is a very large number of topics for a few days, but
you should be well positioned after this week to
understand and improve the performance of your own
applications.

!36

Saturday

!37

Code Lifetimes

• Large scientific projects by definition will extend over
many years and sometimes decades

• Technologies change over time and in any regime
where underlying laws are exponential (i.e. Moore's
Law), the one thing you can guarantee is that new
challenges will arise...

!38

Code Evolution - BaBar at PEP-II (SLAC)

!39

Code Evolution - BaBar at PEP-II (SLAC)

!40

Code Evolution - CDF Run II at the Tevatron (FNAL)

!41

Code Evolution - CDF Run II at the Tevatron (FNAL)

!42

Code Evolution - CMS at the LHC (CERN)

!43

CERN LHC Plans

The long time scale for the LHC is one extreme
example, however most projects in the coming years
are likely to face challenges (and opportunities) from

the technology evolution and the need for maximizing
software performance.

!44

Conclusions

Have a productive week!

!45

