
1 – WP1 - ACTIVITY ON GPUs WITHIN NPQCD - PI12

M. D’Elia (Pisa)

A few years ago, stimulated by a lack in computing power avail ability, we were

attracted by the experimental (at that time) use of Graphics Cards by other lattice

groups in the world. In the following I will try to summarize:

• Our code implementation and performances on single GPUs

• Physics projects and results

• Perspectives

2 – Lattice QCD and GPUs

The main numerical task is the sampling of gauge field configur ations by dynamic Monte-Carlo:

• Stochastic variables: 3 × 3 unitary complex matrices Uµ(n) (gauge link

variables) associated to each elementary link of a (typical ly cubic) 4d space-time

lattice of spacing a. 4 Lx Ly Lz Lt matrixes on the whole How big our

lattice?

a ≪ shortest scale ; Lsa ≫ largest scale =⇒ a ≤ 0.1fm ; Ls ∼ O(102)

Lt ∼ 1 − 2Ls for T = 0 simulations; Lt ∼ O(10) for finite T simulations

• Equilibrium distribution: DUe−SG[U] detM [U]

– SG (pure gauge action): local term taking into account gluon-gluon

interactions

– detM [U] is the determinant of the fermion matrix: non-local term which takes

into account dynamical fermion contribution. M is a N × N sparse matrix

N = Lattice sites · N of Colors · Dirac components up to ∼ 108 − 109

The typical algorithm: Hybrid Monte Carlo

• Requires auxiliary variables: DUe−SG[U](det M [U])2 → DUDHDΦ†DΦ e−H

H = SG[U] − Φ†(M [U]M [U]†)−1Φ + 1
2

∑
n,µ TrH2

µ(n)

• Pseudofermion fields Φ and conjugate momenta Hµ updated by global heatbath

• Most time taken by Uµ and Hµ evolution (Molecular Dynamics eqs, dH/dt = 0)

Integration errors corrected by a Metropolis accept-rejec t step

Uµ(n, t + δt) = eiδtHµ(n,t)Uµ(n, t)

Hµ(n, t + δt) = Hµ(n, t) + δtḢµ(n, t)

U(t), H(t)

U’(t’), H’(t’)

• Heaviest task during trajectory: matrix inversion (MM †)−1Φ, needed for Ḣµ:

– A conjugate gradient algorithm is used typically

– The condition number of MM † rapidly increases at low quark masses

– mu, md ≪ ΛQCD hence the inversion can take more then 90% of total time

– Matrix inversion also needed to compute observables

The first seminal papers on the implementation of lattice QCD on GPUs:

Egri et al. hep-lat/0611022 “Lattice as a video game”

OpenGL was used as a programming language. Sustained perfor mance of ∼ 30 GFLOPs for the

Wilson kernel (fermion matrix multiplication) on an NVIDIA 8800 GTX.

The advent of the CUDA programming language brought many oth er groups into the

GPUs play.

• C.Rebbi et al. (LATTICE08) “Blasting through Lattice Calculations using CUDA” Wilson kernel

100 GFLOPs

• Kenji Ogawa (TWQCD) (Workshop GPU supercomputing 2009, Taipei) Wilson kernel 120 GFlops

• K. Ibrahim et al. “Fine-grained parallelization of LQCD kernel routine on GP U” Speedup 8.3x on

8800GTX (Wilson kernel)

• M. A. Clark et al., arXiv:0911.3191 “Solving Lattice QCD systems of equations using mixed

precision solvers on GPUs” up to 150-200 Gflops for Wilson kernel on a GeForce GTX 280

M. A. Clark et al., arXiv:1011.0024 “Parallelizing the QUDA Library for Multi-GPU Calculation s in

Lattice QCD” up to 4 Tflops for Wilson kernel on a cluster of 32 NVIDIA GTX 285

• plus many others, unlisted in the last couple of years, not al l of them for production, mostly for

measurements (just Dirac operator inversion)

3 – OUR IMPLEMENTATION

A few years ago we have decided to port our code for the simulat ion of QCD with

standard staggered fermions to GPU

New code for QCD with staggered quarks written from scratch.

Philosophy: GPU not just an accelerator, almost whole code r uns actually on it.

Efficiency around 10%

C. Bonati, G. Cossu, M. D’E. and A. Di Giacomo, “Staggered fer mions simulations on GPUs,”

arXiv:1010.5433

C. Bonati, G. Cossu, M. D’Elia, P. Incardona, “QCD simulatio ns with staggered fermions on GPUs,”

Comput. Phys. Commun. 183, 853 (2012) [arXiv:1106.5673 [he p-lat]].

Remember that a GPU is made of many cores

having access to a global device memory with a

bandwidth O(100) GB/s. This is one first bottleneck

for problems with a low computations/data loading

ratio, such as lattice QCD (typical performances

are around 10%).

A more serious bottleneck is the connection of

the device memory to the host RAM, which goes

through a PCI express bus at 5 GB/s

OUR IMPLEMENTATION - general features

• Most lattice QCD applications use GPUs as accelerators for s pecific demanding

parts of the code, e.g. the matrix inversion or some expensiv e measurements.

• Our philosophy has been that of reducing as much as possible t he CPU/GPU data

exchange by putting most of the Monte-Carlo chain on the GPU.

• That has been done gradually (first we have put the inverter on the GPU, then

gradually every other piece). Asymptotically the CPU becom es not more than a

mere controller of the GPU flow

GPU is the computer ...

• Single precision floating point arithmetic always outperfo rms the double one

Therefore we make use of double precision only when strictly necessary.

Typical structure of a molecular dynamics trajectory

perform Metropolis accept/reject (CPU)

U(t), H(t)

U’(t’), H’(t’)

momenta and pseudofermions created on CPU
gauge field, momenta and pseudofermions uploaded on GPU
initial energy computed in double precision on GPU

compute final energy in double precision

download final configuration from GPU

whole evolution trajectory runs on GPU in single precision
negligible CPU/GPU communication at this stage

OUR IMPLEMENTATION - fine structure

MΦ (Dirac Operator) Kernel

• Parallelization: each thread reconstructs MΦ on one site i.e.
∑

µ Uµ(n) × Φ(n + µ̂)

• Gauge and pseudofermion fields from CPU to threads:

– Only first two rows of each SU(3) gauge matrix are passed from host → device global (texture)

memory and from there to threads, to reduce memory exchange. Last row reconstructed

during computation.

– Reordering of gauge variables stored on global memory nece ssary to guarantee coalesced

memory access (contiguous threads read contiguous memory locations). Th is is strictly

necessary to avoid access latencies which disrupt performa nce

– pseudofermions to global memory with reordering as well

u11(1) u11(2) u11(3) · · · · · · u12(1) u12(2) u12(3) · · · · · ·

· · · u22(1) u22(2) u22(3) · · · · · · u23(1) u23(2) u23(3) · · ·

Figure 1: Gauge field storage model adopted to achieve coales ced memor access. All uij elements of

gauge matrixes are stored contiguously.

OUR IMPLEMENTATION - Inverter performance

Staggered Dirac operator kernel performance figures on a C10 60 card (single prec.).

Lattice Bandwidth GB/s Gflops

4 × 163 56.84 ± 0.03 49.31 ± 0.02

32 × 323 64.091 ± 0.002 55.597 ± 0.002

4 × 483 69.94 ± 0.02 60.67 ± 0.02

Note that we reach sustained 60 GFLOPs (7% performance) and 7 0 GBytes/s (70 %

bandwidth peak)): no much room for further improvement. Sim ilar numbers are

achieved by other groups.

Main reason: the staggered fermion kernel needs more than 1 transferred b yte for

each floating point operation.

The situation is better by about a factor 2 for Wilson fermion s.

Global performance

Run times on different architectures. For the Opteron and Xe on runs a single core

was used.

On Kepler, a factor ∼ 1.5 is gained with respect to Fermi.

PHYSICS PROJECTS:

Phase diagram of strong interactions, color confinement, de confinement, non-zero

baryon density, non-zero chemical potential and backgroun d fields.

Phenomenological interest for Early Universe evolution an d for heavy ion collisions.

Features: lattices limited in temporal size (finite tempera ture); many different

simulations needed to explore the phase diagram

Papers based on our present GPU implementation

• C. Bonati, G. Cossu, M. D. and F. Sanfilippo, “The Roberge-Wei ss endpoint in Nf = 2 QCD,” Phys. Rev. D

83, 054505 (2011).

• C. Bonati, P. de Forcrand, M. D., O. Philipsen and F. Sanfilipp o, “Constraints on the two-flavor QCD phase

diagram from imaginary chemical potential,” arXiv:1201.2 769 [hep-lat]; update at Lattice 2013 and

forthcoming publication.

• M. D., M. Mariti and F. Negro, “Susceptibility of the QCD vacu um to CP-odd electromagnetic background

fields,” Phys. Rev. Lett. 110:082002 (2013). + talk at Lattic e 2013

• C. Bonati, M. D., M. Mariti, F. Negro, F. Sanfilippo, ”Magneti c susceptibility of strongly interacting matter

across deconfinement”, talk at Lattice 2013 and forthcoming publication

GPU hardware: GPU farms at INFN Pisa (30 cards), Genova (14), Bari (2); QUONG

cluster in Rome

An example: determination of the magnetic susceptibility o f the Quark-Gluon Plasma

0 1 2 3 4
b

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

M

163×16
163×4

100 150 200 250 300 350
T [MeV]

0

0.001

0.002

0.003

0.004

0.005

0.006

χ/
(1

+
χ)

mπ=195MeV, a=0.188fm
mπ=275MeV, a=0.17fm
mπ=480MeV, a=0.141fm
mπ=480MeV, a=0.188fm
mπ=480MeV, a=0.24fm

• TASK: perform several simulations at interpolating values of an external magnetic field ~B,

integrate, obtain free energy differences between differe nt magnetic field quanta.

• Finally, the magnetic susceptibiility is obtained from the quadratic term in B in the free energy.

• Results (anteprima): strongly interacting matter becomes a strong paramagnet right after

crossing the deconfinement transition

LINES OF FUTURE DEVELOPMENT:

We aim at reaching accurate determinations on 323 × 8 → 643 × 16 lattices.

RHMC algorithm with improved fermionic actions and physica l parameters.

Scaling to larger scale structures (not single GPU) is unavo idable: memory

requirements increase with lattice size and with action and algorithmic improvement.

Large scale finite T simulations may require up to O(100) GB RAM on state of the

art lattices (a ≤ 0.1 fm if Lt ≥ 12, hence a 643 × 16 is state-of-the-art)

Currently, for larger lattices with improved actions, we ar e exploiting the CSNIV

cluster and BG/Q resources. However, for finite T physics, a machine with 32-64

GPUs would work equally well.

OUR FIRST STEPS WITH MULTI-GPUS

Preliminary results reported in Comput. Phys. Commun. 183, 853 (2012).

lattice size 1 GPU 2 GPUs 4GPUs

4 × 643 239 134 95

4 × 963 800∗ 421∗ 249

Table 1: NVIDIA C1060 update time (in seconds) by using 1, 2 or 4 GPUs (CUDA implementation). The

numbers denoted by ∗ are extrapolated from simulations performed on smaller lat tice sizes because

of the impossibility to allocate the corresponding large la ttices in the device memory.

We are also looking at the developments by the MILC collabora tion: they have an

α-version of their production code running on multiGPUs.

Leonardo Cosmai has recently started to test it.

We hope developments on both sides in the next few months.

