Pairing effects on spinodal decomposition of asymmetric nuclear matter

International Workshop on Multi facets of Eos and Clustering - IWM-EC 2014

Dipartimento di Fisica e Astronomia and Laboratori Nazionali del Sud

Catania, 6 - 9 May 2014

Authors: Burrello S.\(^1\), Colonna M.\(^1\), Matera F.\(^2\)

\(^1\) INFN - LNS, Catania

\(^2\) INFN - Dipartimento di Fisica e Astronomia - Firenze
Introduction: interacting many-body systems

- Mean-field approximation:
 effective interactions

- Equilibrium limit: EoS
 energy functional $E(\rho,T)$

- Nuclear matter at low density:
 liquid-gas phase transition

- Spinodal (mechanical) instability
 and multifragmentation

- Interparticle correlations:
 pairing effects

From nuclei...
Isotope spectra
...to neutron stars
Glitch phenomena, cooling processes, ...
Introduction: interacting many-body systems

- **Mean-field** approximation:
 effective interactions

- Equilibrium limit: EoS
 energy functional $E(\rho,T)$

- Nuclear matter at low density:
 liquid-gas phase transition

- Spinodal (mechanical) instability
 multifragmentation

- Interparticle correlations:
 pairing effects

From nuclei...
Isotope spectra
...to neutron stars
Glitch phenomena, cooling processes, ...
Introduction: interacting many-body systems

- **Mean-field** approximation: effective interactions
- **Equilibrium limit**: EoS
 - energy functional $E(\rho,T)$
- Nuclear matter at low density: liquid-gas phase transition
- Spinodal (mechanical) instability
- Interparticle correlations: pairing effects

From nuclei... to neutron stars

Glitch phenomena, cooling processes, ...

Burrello S., Colonna M., Matera F.
Pairing effects on spinodal decomposition of ANM
Introduction: interacting many-body systems

- **Mean-field** approximation: effective interactions
- **Equilibrium limit**: EoS
 - Energy functional $E(\rho,T)$
- Nuclear matter at low density:
 - Liquid-gas phase transition
- Spinodal (mechanical) instability
- Interparticle correlations:
 - Pairing effects

From nuclei...
- Isotope spectra
...to
- Neutron stars
 - Glitch phenomena, cooling processes, ...

Burrello S., Colonna M., Matera F.

Pairing effects on spinodal decomposition of ANM
Introduction: interacting many-body systems

- **Mean-field** approximation:
 - effective interactions

- Equilibrium limit: **EoS**
 - energy functional $E(\rho, T)$

- Nuclear matter at low density:
 - liquid-gas phase transition

- Spinodal (mechanical) instability
 => multifragmentation

- Interparticle correlations:
 - pairing effects

From nuclei...
Isotope spectra

...to neutron stars

Glitch phenomena, cooling processes, ...

Burrello S., Colonna M., Matera F.
Pairing effects on spinodal decomposition of ANM
Introduction: interacting many-body systems

- **Mean-field** approximation:
 effective interactions

- Equilibrium limit: **EoS**
 energy functional $E(\rho, T)$

- Nuclear matter at low density:
 liquid-gas phase transition

- **Spinodal** (mechanical) instability
 \Rightarrow multifragmentation

- Interparticle correlations:
 pairing effects

From nuclei...
Isotope spectra

...to neutron stars
Glitch phenomena, cooling processes, ...

Burrello S., Colonna M., Matera F.
Introduction: interacting many-body systems

- **Mean-field** approximation: effective interactions

- Equilibrium limit: EoS
equity functional $E(\rho,T)$

- Nuclear matter at low density:
liquid-gas phase transition

- **Spinodal** (mechanical) instability
 \Rightarrow multifragmentation

- Interparticle correlations:
 pairing effects
Introduction: interacting many-body systems

- **Mean-field** approximation:
 - effective interactions

- Equilibrium limit: **EoS**
 - energy functional $E(\rho, T)$

- Nuclear matter at low density:
 - **liquid-gas** phase transition

- **Spinodal** (mechanical) instability
 - \Rightarrow multifragmentation

- Interparticle correlations:
 - **pairing** effects

From nuclei...
- Isotope spectra
...to neutron stars
- Glitch phenomena, cooling processes, ...

Burrello S., Colonna M., Matera F.
Pairing effects on spinodal decomposition of ANM
Introduction: interacting many-body systems

- **Mean-field** approximation:
 effective interactions

- **Equilibrium limit**: EoS
 energy functional $E(\rho, T)$

- **Nuclear matter at low density**: liquid-gas phase transition

- **Spinodal** (mechanical) instability
 \Rightarrow multifragmentation

- **Interparticle correlations**:
 pairing effects

From nuclei...

Isotope spectra

...to neutron stars

Glitch phenomena, cooling processes, ...
Introduction: interacting many-body systems

- **Mean-field** approximation: effective interactions
- Equilibrium limit: **EoS** energy functional $E(\rho,T)$
- Nuclear matter at low density: **liquid-gas** phase transition
- **Spinodal** (mechanical) instability \Rightarrow **multifragmentation**
- Interparticle correlations: **pairing** effects

From nuclei... Isotope spectra
...to neutron stars

Glitch phenomena, cooling processes, ...
Asymmetric nuclear matter (ANM)

- Effective interaction \Rightarrow simplified Skyrme-like interaction
- Energy density functional $(T = 0)$

$$\rho \frac{E}{A} = \frac{3}{5} \sum_{q=p,n} \rho_q \epsilon_q^F + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{1}{2} C_{\text{sym}}(\rho) I^2 \right]$$

- Chemical potentials
 $$\mu_q = \frac{\partial (\rho E/A)}{\partial \rho_q} = \epsilon_q^F + U_{\text{ANM}}^q$$

- Curvature matrix C
 $$C = \begin{pmatrix} \frac{\partial \mu_p/\partial \rho_p}{\partial \rho_p/\partial \rho_n} & \frac{\partial \mu_p/\partial \rho_n}{\partial \rho_p/\partial \rho_n} \\ \frac{\partial \mu_n/\partial \rho_p}{\partial \rho_n/\partial \rho_n} & \frac{\partial \mu_n/\partial \rho_n}{\partial \rho_n/\partial \rho_n} \end{pmatrix} = \begin{pmatrix} a & \frac{c}{2} \\ \frac{c}{2} & b \end{pmatrix}$$

- Symmetry term $C_{\text{sym}}(\rho)$: stiff - soft
 \Rightarrow nuclear structure
 \Rightarrow inner crust of neutron stars
 \Rightarrow heavy ion reactions

- Negative eigenvalues
 \Rightarrow unstable oscillations (clusters)
Asymmetric nuclear matter (ANM)

- **Effective interaction** \(\Rightarrow \) simplified *Skyrme-like* interaction
- **Energy density functional** \((T = 0)\)

\[
\frac{E}{A} = \frac{3}{5} \sum_{q=p,n} \rho_q \epsilon_q^F + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^{\sigma} + \frac{1}{2} C_{\text{sym}}(\rho) I^2 \right]
\]

- **Chemical potentials**

\[
\mu_q = \frac{\partial (E/A)}{\partial \rho_q} = \epsilon_q^F + U_q^{\text{ANM}}
\]

- **Curvature matrix** \(\mathbf{C} \)

\[
\mathbf{C} = \begin{pmatrix}
\frac{\partial \mu_p}{\partial \rho_p} & \frac{\partial \mu_p}{\partial \rho_n} \\
\frac{\partial \mu_n}{\partial \rho_p} & \frac{\partial \mu_n}{\partial \rho_n}
\end{pmatrix} = \begin{pmatrix}
a & c \\
c & 2b
\end{pmatrix}
\]

- **Symmetry term** \(C_{\text{sym}}(\rho) \): stiff - soft
 - nuclear structure
 - inner crust of neutron stars
 - heavy ion reactions
 - unstable oscillations (clusters)
Asymmetric nuclear matter (ANM)

- Effective interaction ⇒ simplified **Skyrme-like** interaction
- Energy density functional \((T = 0)\)

\[
\frac{E}{A} = \frac{3}{5} \sum_{q=p,n} \rho_q \epsilon_F^q + \rho \left[A \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{1}{2} C_{sym}(\rho) I^2 \right]
\]

\(I = \frac{\rho_n - \rho_p}{\rho}\)

- Chemical potentials

\[
\mu_q = \frac{\partial (\rho E/A)}{\partial \rho_q} = \epsilon_F^q + U_{ANM}^q
\]

- Curvature matrix \(C\)

\[
C = \begin{pmatrix}
\partial \mu_p / \partial \rho_p & \partial \mu_p / \partial \rho_n \\
\partial \mu_n / \partial \rho_p & \partial \mu_n / \partial \rho_n
\end{pmatrix} = \begin{pmatrix}
a & \frac{c}{2} \\
\frac{c}{2} & b
\end{pmatrix}
\]

- Symmetry term \(C_{sym}(\rho)\): stiff - soft
 - nuclear structure
 - inner crust of neutron stars
 - heavy ion reactions

- Negative eigenvalues
 ⇒ unstable oscillations (clusters)

Burrello S., Colonna M., Matera F.
Pairing effects on spinodal decomposition of ANM
Asymmetric nuclear matter (ANM)

- Effective interaction \Rightarrow simplified *Skyrme-like* interaction
- Energy density functional ($T = 0$)

$$\rho \frac{E}{A} = \frac{3}{5} \sum_{q=p,n} \rho_q \epsilon_q^F \rho + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{1}{2} C_{\text{sym}}(\rho) \mathcal{I}^2 \right]$$

\[\mathcal{I} = \frac{\rho_n - \rho_p}{\rho} \]

- Chemical potentials

$$\mu_q = \frac{\partial (\rho E/A)}{\partial \rho_q} = \epsilon_q^F + U^q_{\text{ANM}}$$

- Curvature matrix \mathbf{C}

$$\mathbf{C} = \begin{pmatrix} \frac{\partial \mu_p}{\partial \rho_p} & \frac{\partial \mu_p}{\partial \rho_n} \\ \frac{\partial \mu_n}{\partial \rho_p} & \frac{\partial \mu_n}{\partial \rho_n} \end{pmatrix} = \begin{pmatrix} a & \frac{c}{2} \\ \frac{c}{2} & b \end{pmatrix}$$

- Symmetry term $C_{\text{sym}}(\rho)$: stiff - soft
- Nuclear structure
- Inner crust of neutron stars
- Heavy ion reactions
- Negative eigenvalues \Rightarrow unstable oscillations (clusters)
Asymmetric nuclear matter (ANM)

- Effective interaction \Rightarrow simplified **Skyrme-like** interaction
- Energy density functional $(T = 0)$

$$\rho \frac{E}{A} = \frac{3}{5} \sum_{q=p,n} \rho_q \epsilon_F^q + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{1}{2} C_{\text{sym}}(\rho) I^2 \right]$$

\[I = \frac{\rho_n - \rho_p}{\rho} \]

- Chemical potentials
 $$\mu_q = \frac{\partial (\rho E/A)}{\partial \rho_q} = \epsilon_F^q + U_{\text{ANM}}^q$$

- Curvature matrix C
 $$C = \begin{pmatrix} \frac{\partial \mu_p}{\partial \rho_p} & \frac{\partial \mu_p}{\partial \rho_n} \\ \frac{\partial \mu_n}{\partial \rho_p} & \frac{\partial \mu_n}{\partial \rho_n} \end{pmatrix} = \begin{pmatrix} a & c/2 \\ c/2 & b \end{pmatrix}$$

- Symmetry term $C_{\text{sym}}(\rho)$: stiff - soft
 - nuclear structure
 - inner crust of neutron stars
 - heavy ion reactions

- Negative eigenvalues \Rightarrow unstable oscillations (clusters)
Asymmetric nuclear matter (ANM)

- Effective interaction \Rightarrow simplified *Skyrme-like* interaction
- Energy density functional ($T = 0$)
 \[
 \rho \frac{E}{A} = \frac{3}{5} \sum_{q=p,n} \rho_q \epsilon_q^F + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{1}{2} C_{\text{sym}}(\rho) \mathcal{I}^2 \right]
 \]
 \[
 \mathcal{I} = \frac{\rho_n - \rho_p}{\rho}
 \]
- Chemical potentials
 \[
 \mu_q = \frac{\partial (\rho E/A)}{\partial \rho_q} = \epsilon_q^F + U_q^{\text{ANM}}
 \]
- Curvature matrix C
 \[
 C = \begin{pmatrix}
 \frac{\partial \mu_p/\partial \rho_p}{\partial \mu_p/\partial \rho_n} & \frac{\partial \mu_p/\partial \rho_n}{\partial \mu_p/\partial \rho_n} \\
 \frac{\partial \mu_n/\partial \rho_p}{\partial \mu_n/\partial \rho_n} & \frac{\partial \mu_n/\partial \rho_n}{\partial \mu_n/\partial \rho_n}
 \end{pmatrix} = \begin{pmatrix}
 a & c \\
 2 & b
 \end{pmatrix}
 \]
- Symmetry term $C_{\text{sym}}(\rho)$: stiff - soft
 \Rightarrow nuclear structure
 \Rightarrow inner crust of neutron stars
 \Rightarrow heavy ion reactions
- Negative eigenvalues
 \Rightarrow unstable oscillations (clusters)
Asymmetric nuclear matter (ANM)

- Effective interaction \Rightarrow simplified Skyrme-like interaction
- Energy density functional ($T = 0$)

$$\rho \frac{E}{A} = \frac{3}{5} \sum_{q=p,n} \rho_q \epsilon_q^F + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{1}{2} C_{\text{sym}}(\rho) I^2 \right]$$

- Symmetry term $C_{\text{sym}}(\rho)$: stiff - soft

- Chemical potentials
 $$\mu_q = \frac{\partial (E/A)}{\partial \rho_q} = \epsilon_q^F + U_{\text{ANM}}^q$$

- Curvature matrix C

$$C = \begin{pmatrix}
\frac{\partial \mu_p}{\partial \rho_p} & \frac{\partial \mu_p}{\partial \rho_n} \\
\frac{\partial \mu_n}{\partial \rho_p} & \frac{\partial \mu_n}{\partial \rho_n}
\end{pmatrix} = \begin{pmatrix} a & c \\ c & 2b \end{pmatrix}$$

- Negative eigenvalues \Rightarrow unstable oscillations (clusters)
- Nuclear structure
- Inner crust of neutron stars
- Heavy ion reactions
Asymmetric nuclear matter (ANM)

- Effective interaction \Rightarrow simplified Skyrme-like interaction
- Energy density functional $(T = 0)$

$$
\rho \frac{E}{A} = \frac{3}{5} \sum_{q=p,n} \rho_q \epsilon_q^F + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma+1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{1}{2} C_{\text{sym}}(\rho) \mathcal{I}^2 \right] \quad \mathcal{I} = \frac{\rho_n - \rho_p}{\rho}
$$

- Symmetry term $C_{\text{sym}}(\rho)$: stiff - soft

- Chemical potentials
 $$
 \mu_q = \frac{\partial (\rho E/A)}{\partial \rho_q} = \epsilon_q^F + U_{\text{ANM}}^q
 $$
- Curvature matrix \mathbf{C}

$$
\mathbf{C} = \begin{pmatrix}
\frac{\partial \mu_p}{\partial \rho_p} & \frac{\partial \mu_p}{\partial \rho_n} \\
\frac{\partial \mu_n}{\partial \rho_p} & \frac{\partial \mu_n}{\partial \rho_n}
\end{pmatrix} = \begin{pmatrix}
a & \frac{c}{2} \\
\frac{c}{2} & b
\end{pmatrix}
$$

- Negative eigenvalues
 \Rightarrow unstable oscillations (clusters)

\Rightarrow nuclear structure
\Rightarrow inner crust of neutron stars
\Rightarrow heavy ion reactions

Burrello S., Colonna M., Matera F.
Asymmetric nuclear matter (ANM)

- Effective interaction \Rightarrow simplified Skyrme-like interaction
- Energy density functional ($T = 0$)

$$\rho \frac{E}{A} = \frac{3}{5} \sum_{q=p, n} \rho_q \epsilon_F^q + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{1}{2} C_{\text{sym}}(\rho) I^2 \right]$$

- Symmetry term $C_{\text{sym}}(\rho)$: stiff - soft

- Chemical potentials
 $$\mu_q = \frac{\partial \rho E/A}{\partial \rho_q} = \epsilon_F^q + U_{\text{ANM}}^q$$
- Curvature matrix C
 $$C = \begin{pmatrix} \frac{\partial \mu_p}{\partial \rho_p} & \frac{\partial \mu_p}{\partial \rho_n} \\ \frac{\partial \mu_n}{\partial \rho_p} & \frac{\partial \mu_n}{\partial \rho_n} \end{pmatrix} = \begin{pmatrix} a & c \\ \frac{c}{2} & b \end{pmatrix}$$

- Negative eigenvalues \Rightarrow unstable oscillations (clusters)

\Rightarrow nuclear structure
\Rightarrow inner crust of neutron stars
\Rightarrow heavy ion reactions

Burrello S., Colonna M., Matera F.
Asymmetric nuclear matter (ANM)

- Effective interaction \(\Rightarrow\) simplified Skyrme-like interaction
- Energy density functional (\(T = 0\))

\[
\rho \frac{E}{A} = \frac{3}{5} \sum_{q=p,n} \rho_q \epsilon^q_F + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^{\sigma} + \frac{1}{2} C_{\text{sym}}(\rho) \mathcal{I}^2 \right]
\]

- Symmetry term \(C_{\text{sym}}(\rho)\): stiff - soft

- Chemical potentials

\[
\mu_q = \frac{\partial (\rho E/A)}{\partial \rho_q} = \epsilon^q_F + U^q_{\text{ANM}}
\]

- Curvature matrix \(C\)

\[
C = \left(\begin{array}{cc}
\frac{\partial \mu_p}{\partial \rho_p} & \frac{\partial \mu_p}{\partial \rho_n} \\
\frac{\partial \mu_n}{\partial \rho_p} & \frac{\partial \mu_n}{\partial \rho_n}
\end{array} \right) = \left(\begin{array}{cc}
a & \frac{c}{2} \\
\frac{c}{2} & b
\end{array} \right)
\]

- Negative eigenvalues \(\Rightarrow\) unstable oscillations (clusters)

- Nuclear structure
- Inner crust of neutron stars
- Heavy ion reactions

Burrello S., Colonna M., Matera F.
Pairing effects on spinodal decomposition of ANM
Asymmetric nuclear matter (ANM)

- Effective interaction ⇒ simplified Skyrme-like interaction
- Energy density functional \((T = 0)\)

\[
\rho \frac{E}{A} = \frac{3}{5} \sum_{q=p,n} \rho_q \epsilon^q_F + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^{\sigma} + \frac{1}{2} C_{\text{sym}}(\rho) I^2 \right] \quad I = \frac{\rho_n - \rho_p}{\rho}
\]

- Symmetry term \(C_{\text{sym}}(\rho)\): stiff - soft

\[
C_{\text{sym}}(\rho) = \begin{pmatrix}
\frac{a}{c} & \frac{c}{2} \\
\frac{c}{2} & b
\end{pmatrix}
\]

- Chemical potentials

\[
\mu_q = \frac{\partial (\rho E/A)}{\partial \rho_q} = \epsilon^q_F + U^q_{\text{ANM}}
\]

- Curvature matrix \(C\)

\[
C = \begin{pmatrix}
\partial \mu_p/\partial \rho_p & \partial \mu_p/\partial \rho_n \\
\partial \mu_n/\partial \rho_p & \partial \mu_n/\partial \rho_n
\end{pmatrix} = \begin{pmatrix}
a & \frac{c}{2} \\
\frac{c}{2} & b
\end{pmatrix}
\]

- Negative eigenvalues

⇒ unstable oscillations (clusters)

⇒ nuclear structure
⇒ inner crust of neutron stars
⇒ heavy ion reactions
Asymmetric nuclear matter (ANM)

- Effective interaction \Rightarrow simplified Skyrmelike interaction
- Energy density functional $(T = 0)$

$$\rho \frac{E}{A} = \frac{3}{5} \sum_{q=p,n} \rho_q \epsilon_F^q + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right) \sigma + \frac{1}{2} C_{\text{sym}}(\rho) I^2 \right]$$

- Symmetry term $C_{\text{sym}}(\rho)$: stiff - soft

- Chemical potentials

$$\mu_q = \frac{\partial (\rho E/A)}{\partial \rho_q} = \epsilon_F^q + U_{\text{ANM}}^q$$

- Curvature matrix C

$$C = \begin{pmatrix} \frac{\partial \mu_p/\partial \rho_p}{\partial \mu_p/\partial \rho_n} & \frac{\partial \mu_p/\partial \rho_n}{\partial \mu_n/\partial \rho_n} \\ \frac{\partial \mu_n/\partial \rho_p}{\partial \mu_n/\partial \rho_n} & \frac{\partial \mu_n/\partial \rho_n}{\partial \mu_n/\partial \rho_n} \end{pmatrix} = \begin{pmatrix} a & \frac{c}{2} \\ \frac{c}{2} & b \end{pmatrix}$$

- Negative eigenvalues

\Rightarrow unstable oscillations (clusters)

\Rightarrow nuclear structure
\Rightarrow inner crust of neutron stars
\Rightarrow heavy ion reactions

Burrello S., Colonna M., Matera F.
Pairing effects on spinodal decomposition of ANM
Isospin distillation mechanism

- Isoscalar-like \Rightarrow unstable mode
- Rotation of θ in the plane (ρ_p, ρ_n)
 \[
 \tan \theta = \frac{\delta \rho_n}{\delta \rho_p} \quad \Leftrightarrow \quad \tan 2\theta = \frac{c}{a - b}
 \]
- Asymmetry δI of the density fluctuation
 \[
 \delta I = \rho_n - \rho_p = \frac{\delta \rho_n}{\delta \rho_p} - 1
 \]
- Isospin distillation mechanism
 \[
 \delta I \ll I
 \]
Isospin distillation mechanism

- Isoscalar-like \Rightarrow unstable mode
- Rotation of θ in the plane (ρ_p, ρ_n)

$$\tan \theta = \frac{\delta \rho_n}{\delta \rho_p} \quad \Rightarrow \quad \tan 2\theta = \frac{c}{a - b}$$

- Asymmetry δI of the density fluctuation

$$\delta I = \frac{\delta \rho_n - \delta \rho_p}{\delta \rho_n + \delta \rho_p} = \frac{\delta \rho_n/\delta \rho_p - 1}{\delta \rho_n/\delta \rho_p + 1}$$

- Isospin distillation mechanism
Isospin distillation mechanism

- Isoscalar-like \Rightarrow unstable mode
- Rotation of θ in the plane (ρ_p, ρ_n)

\[
\tan \theta = \frac{\delta \rho_n}{\delta \rho_p} \iff \tan 2\theta = \frac{c}{a - b}
\]

- Asymmetry δI of the density fluctuation

\[
\delta I = \frac{\delta \rho_n - \delta \rho_p}{\delta \rho_n + \delta \rho_p} = \frac{\delta \rho_n/\delta \rho_p - 1}{\delta \rho_n/\delta \rho_p + 1}
\]

- Isospin distillation mechanism

$\delta I < I$
Isospin distillation mechanism

- Isoscalar-like ⇒ unstable mode
- Rotation of θ in the plane (ρ_p, ρ_n)
 \[
 \tan \theta = \frac{\delta \rho_n}{\delta \rho_p} \quad \iff \quad \tan 2\theta = \frac{c}{a - b}
 \]

- Asymmetry δI of the density fluctuation
 \[
 \delta I = \frac{\delta \rho_n - \delta \rho_p}{\delta \rho_n + \delta \rho_p} = \frac{\delta \rho_n/\delta \rho_p - 1}{\delta \rho_n/\delta \rho_p + 1}
 \]

- Isospin distillation mechanism
 $\delta I < I$

- Neutron distillation
 Liquid phase is more symmetric than gas phase!
Isospin distillation mechanism

- Isoscalar-like \Rightarrow unstable mode
- Rotation of θ in the plane (ρ_p, ρ_n)
 \[
 \tan \theta = \frac{\delta \rho_n}{\delta \rho_p} \iff \tan 2\theta = \frac{c}{a - b}
 \]
- Asymmetry δI of the density fluctuation
 \[
 \delta I = \frac{\delta \rho_n - \delta \rho_p}{\delta \rho_n + \delta \rho_p} = \frac{\delta \rho_n/\delta \rho_p - 1}{\delta \rho_n/\delta \rho_p + 1}
 \]
- Isospin distillation mechanism
 \[
 \delta I < I
 \]
Isospin distillation mechanism

- Isoscalar-like \Rightarrow unstable mode
- Rotation of θ in the plane (ρ_p, ρ_n)
 \[
 \tan \theta = \frac{\delta \rho_n}{\delta \rho_p} \iff \tan 2\theta = \frac{c}{a - b}
 \]
- Asymmetry δI of the density fluctuation
 \[
 \delta I = \frac{\delta \rho_n - \delta \rho_p}{\delta \rho_n + \delta \rho_p} = \frac{\delta \rho_n/\delta \rho_p - 1}{\delta \rho_n/\delta \rho_p + 1}
 \]
- Isospin distillation mechanism
 \[
 \delta I < I
 \]

Neutron distillation
Liquid phase is more symmetric than gas phase!
Pairing effect on ANM instability: why and how?

- Nucleons form paired states (Cooper pairs)
 ⇒ Pairing treatment: BCS theory (analogous to electrons in metals in the superconducting phase)
- Pairing correlations active at low density ⇒ impact on spinodal instability
- ANM ⇒ only nn or pp pairing
- Pairing interaction: nucleons of the same type vs.
 Symmetry potential: nucleons of different type
 ⇒ Different isotopic feature of ANM
- Extension of mean-field approach: Hartree-Fock-Bogoliubov (HFB) theory
 ⇒ unified formalism for pairing and mean-field effective interaction
Pairing effect on ANM instability: why and how?

- Nucleons form paired states (**Cooper pairs**)
 - Pairing treatment: **BCS theory** (analogous to electrons in metals in the superconducting phase)

- Pairing correlations active at **low density** ⇒ impact on spinodal instability

- ANM ⇒ only **nn** or **pp** pairing

- Pairing interaction: nucleons of the same type vs.
 - Symmetry potential: nucleons of different type
 - Different isotopic feature of ANM

- Extension of mean-field approach: Hartree-Fock-Bogoliubov (HFB) theory
 - unified formalism for pairing and mean-field effective interaction
Pairing effect on ANM instability: why and how?

- Nucleons form paired states (Cooper pairs)
 ⇒ Pairing treatment: BCS theory (analogous to electrons in metals in the superconducting phase)

- Pairing correlations active at low density ⇒ impact on spinodal instability

- ANM ⇒ only nn or pp pairing

- Pairing interaction: nucleons of the same type vs.
 Symmetry potential: nucleons of different type
 ⇒ Different isotopic feature of ANM

- Extension of mean-field approach: Hartree-Fock-Bogoliubov (HFB) theory
 ⇒ unified formalism for pairing and mean-field effective interaction
Pairing effect on ANM instability: why and how?

- Nucleons form paired states (Cooper pairs)
 \[\Rightarrow \text{Pairing treatment: BCS theory (analogous to electrons in metals in the superconducting phase)} \]
- Pairing correlations active at low density \(\Rightarrow \) impact on spinodal instability
- ANM \(\Rightarrow \) only nn or pp pairing
- Pairing interaction: nucleons of the same type vs. Symmetry potential: nucleons of different type
 \(\Rightarrow \) Different isotopic feature of ANM
- Extension of mean-field approach: Hartree-Fock-Bogoliubov (HFB) theory
 \(\Rightarrow \) unified formalism for pairing and mean-field effective interaction

Burrello S., Colonna M., Matera F. Pairing effects on spinodal decomposition of ANM
Pairing effect on ANM instability: why and how?

- Nucleons form paired states (Cooper pairs)
 ⇒ Pairing treatment: BCS theory (analogous to electrons in metals in the superconducting phase)

- Pairing correlations active at low density ⇒ impact on spinodal instability

- ANM ⇒ only nn or pp pairing

- Pairing interaction: nucleons of the same type vs.
 - Symmetry potential: nucleons of different type
 ⇒ Different isotopic feature of ANM

- Extension of mean-field approach: Hartree-Fock-Bogoliubov (HFB) theory
 ⇒ unified formalism for pairing and mean-field effective interaction
Pairing effect on ANM instability: why and how?

- Nucleons form paired states (*Cooper pairs*)
 ⇒ Pairing treatment: *BCS theory* (analogous to electrons in metals in the superconducting phase)

- Pairing correlations active at low density ⇒ impact on spinodal instability

- ANM ⇒ only *nn* or *pp* pairing

- **Pairing interaction**: nucleons of the same type vs.

 Symmetry potential: nucleons of different type
 ⇒ Different isotopic feature of ANM

- Extension of mean-field approach: *Hartree-Fock-Bogoliubov* (HFB) theory
 ⇒ unified formalism for pairing and mean-field effective interaction
Liquid-gas phase transition and spinodal instability
Pairing effects on spinodal instability in ANM

HFB theory: pairing effective interaction
Effect on isospin distillation

BCS theory at zero temperature: gap equation

Ground state: **Fermi sea**

HF theory

\[
|HF\rangle = \prod_{k<k_F} \hat{a}^\dagger_k |0\rangle \\
E_n = \sum_{k<k_F} (2\xi_k \nu_k^2|n - \Gamma_k \nu_k^2|n)
\]

BCS theory

\[
|BCS\rangle = \prod_{k>0} (u_k|s + v_k|s \hat{a}^\dagger_k \hat{a}^\dagger_k)|0\rangle \\
E_s = \sum_{k>0} (2\xi_k \nu_k^2|s - \Gamma_k \nu_k^2|s - \Delta_k \nu_k u_k|s)
\]

\[
\nu_k^2 \quad \text{Occupation number}
\]

\[
\xi_k = \epsilon_k - \mu_k^* \quad \mu_k^* = \mu - \Gamma_k \quad \text{Effective chemical potential}
\]

\[
\Gamma_k = \sum_{k'} \tilde{V}_{kk'kk'} \nu_{k'}^2|n,s \quad \text{Mean-field potential}
\]

\[
\Delta_k = -\sum_{k'>0} \tilde{V}_{kk'kk'} \nu_{k'} u_{k'}|s \quad \text{Energy gap} \Rightarrow \text{Gap equation}
\]

\[
N = 2 \sum_{k>0} \nu_k^2|s \quad \text{Particle number conservation} \Rightarrow \text{Density equation}
\]

Burrello S., Colonna M., Matera F.
Pairing effects on spinodal decomposition of ANM
BCS theory at zero temperature: gap equation

Ground state: Fermi sea

HF theory

\[
|HF\rangle = \prod_{k<k_F} \hat{a}_k^\dagger |0\rangle
\]

\[
E_n = \sum_{k<k_F} (2\xi_k v_k^2 |n\rangle - \Gamma_k v_k^2 |n\rangle)
\]

Ground state: only Cooper pairs

BCS theory

\[
|BCS\rangle = \prod_{k>0} (u_k |s\rangle + v_k |s\rangle \hat{a}_k^\dagger \hat{a}_{k'}^\dagger) |0\rangle
\]

\[
E_s = \sum_{k>0} (2\xi_k v_k^2 |s\rangle - \Gamma_k v_k^2 |s\rangle - \Delta_k v_k u_k |s\rangle)
\]

- \(v_k^2\) Occupation number
- \(\xi_k = \epsilon_k - \mu_k^*\) Effective chemical potential
- \(\mu_k^* = \mu - \Gamma_k\)
- \(\Gamma_k = \sum_{k'} \tilde{V}_{kk'kk'} v_{k'}^2 |n,s\rangle\) Mean-field potential
- \(\Delta_k = - \sum_{k'>0} \tilde{V}_{kk'kk'} v_{k'} u_{k'} |s\rangle\) Energy gap \(\Rightarrow\) Gap equation
- \(N = 2 \sum_{k>0} v_k^2 |s\rangle\) Particle number conservation \(\Rightarrow\) Density equation
Liquid-gas phase transition and spinodal instability

Pairing effects on spinodal instability in ANM

HFB theory: pairing effective interaction

Effect on isospin distillation

BCS theory at zero temperature: gap equation

Ground state: **Fermi sea**

\[
|HF\rangle = \prod_{k<k_F} \hat{a}_{k}^{\dagger} |0\rangle
\]

\[
E_n = \sum_{k<k_F} (2\xi_k v_k^2 |n - \Gamma_k v_k^2 |n)
\]

Ground state: **only Cooper pairs**

\[
|BCS\rangle = \prod_{k>0} (u_k|s + v_k|s \hat{a}_{k}^{\dagger} \hat{a}_{k}^{\dagger}) |0\rangle
\]

\[
E_s = \sum_{k>0} (2\xi_k v_k^2 |s - \Gamma_k v_k^2 |s - \Delta_k v_k u_k |s)
\]

Occupation number

\[v_k^2 \]

Effective chemical potential

\[\xi_k = \epsilon_k - \mu_k^* \quad \mu_k^* = \mu - \Gamma_k \]

Mean-field potential

\[\Gamma_k = \sum_{k'} \tilde{V}_{kk'k} v_{k'}^2 |n,s \]

Energy gap \(\Rightarrow \) **Gap equation**

\[\Delta_k = - \sum_{k'>0} \tilde{V}_{kk'k} v_{k'} u_{k'} |s \]

Particle number conservation \(\Rightarrow \) **Density equation**

\[N = 2 \sum_{k>0} v_k^2 |s \]

Burrello S., Colonna M., Matera F.
Pairing effects on spinodal decomposition of ANM
BCS theory at zero temperature: gap equation

Ground state: Fermi sea

HF theory

\[|HF\rangle = \prod_{k<k_F} \hat{a}_k^\dagger |0\rangle \]

\[E_n = \sum_{k<k_F} (2\xi_k v_k^2 |n\rangle - \Gamma_k v_k^2 |n\rangle) \]

BCS theory

\[|BCS\rangle = \prod_{k>0} (u_k |s\rangle + v_k |s\rangle \hat{a}_k^\dagger \hat{a}_{k'}^\dagger) |0\rangle \]

\[E_s = \sum_{k>0} (2\xi_k v_k^2 |s\rangle - \Gamma_k v_k^2 |s\rangle - \Delta_k v_k u_k |s\rangle) \]

- **Occupation number**
 \[v_k^2 \]

- **Effective chemical potential**
 \[\xi_k = \epsilon_k - \mu_k^* \]
 \[\mu_k^* = \mu - \Gamma_k \]

- **Mean-field potential**
 \[\Gamma_k = \sum_{k'} \tilde{V}_{kk'kk'} v_{k'}^2 |n,s\rangle \]

- **Energy gap**
 \[\Delta_k = - \sum_{k'<0} \tilde{V}_{kk'kk'} v_{k'} u_{k'} |s\rangle \]

- **Particle number conservation**
 \[N = 2 \sum_{k>0} v_k^2 |s\rangle \]

Burrello S., Colonna M., Matera F.

Pairing effects on spinodal decomposition of ANM
Gap and density equations: effective interaction

- **Effective pairing interaction**

 \[V_\pi(r_i, r_j) = \frac{1}{2} (1 - P_\sigma) \nu_q^q(\rho_q) \delta(r_{ij}) \quad q = p, n \]

- **Zero range** \(\Rightarrow \) energy cutoff \(\epsilon_\Lambda = 16 \text{ MeV} \)

 \[\rho_q = \frac{(2m)^{3/2}}{4\pi^2 h^3} \int_{0}^{\mu_q^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_\Delta} \tanh \left(\frac{\beta E_\Delta}{2} \right) \right] \]

- **Density equation**

- **Gap equation**

 \[1 = -\nu_\pi(\rho_q) \frac{(2m)^{3/2}}{8\pi^2 h^3} \int_{0}^{\mu_q^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \tanh \left(\frac{\beta E_\Delta}{2} \right) \]

 \[\beta = \frac{1}{T}, \quad E_\Delta = \sqrt{\xi^2 + \Delta^2}, \quad \xi = \epsilon - \mu_q^*, \quad \mu_q^* = \mu_q - U_q \]

- **T = 0** \(\Rightarrow \) strength \(\nu_q^q(\rho_q) \equiv \nu_\pi(\rho_q) \)

 \[\nu_\pi(\rho_q) = V_\pi^\Lambda \left[1 - \eta \left(\frac{\rho_q}{\rho_0} \right)^\alpha \right] \text{ also for pp} \]

- **T \neq 0** \(\Rightarrow \) \(\Delta(T) \)

 \[T = T_C \text{ superfluid} \leftrightarrow \text{normal phase} \]

1\text{S}_0 \text{ pairing gap of neutron matter (Brueckner calculations with Argonne \(v_{14} \) potential)}
Gap and density equations: effective interaction

- **Effective pairing interaction**

\[V_\pi(r_i, r_j) = \frac{1}{2} (1 - P_\sigma) \nu_\pi^q(\rho_q) \delta(r_{ij}) \quad q = p, n \]

zero range \(\Rightarrow\) *energy cutoff* \(\epsilon_\Lambda = 16\) MeV

- **Density equation**

\[\rho_q = \frac{(2m)^{3/2}}{4\pi^2 \hbar^3} \int_0^{\mu^*_q + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_\Delta} \tanh \left(\frac{\beta E_\Delta}{2} \right) \right] \]

- **Gap equation**

\[1 = -\nu_\pi(\rho_q) \frac{(2m)^{3/2}}{8\pi^2 \hbar^3} \int_0^{\mu^*_q + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \frac{\xi}{E_\Delta} \tanh \left(\frac{\beta E_\Delta}{2} \right) \]

\[\beta = \frac{1}{T}, \quad E_\Delta = \sqrt{\xi^2 + \Delta^2}, \quad \xi = \epsilon - \mu^*_q, \quad \mu^*_q = \mu_q - U_q \]

\[T = 0 \Rightarrow \text{strength} \quad \nu_\pi^q(\rho_q) \equiv \nu_\pi(\rho_q) \]

\[\nu_\pi(\rho_q) = V_\Lambda^q \left[1 - \eta \left(\frac{\rho_q}{\rho_0} \right)^\alpha \right] \]

also for pp

\[T \neq 0 \Rightarrow \Delta(T) \]

\[T = T_C \quad \text{superfluid} \leftrightarrow \text{normal phase} \]

1S_0 pairing gap of neutron matter

(Brucekner calculations with Argonne v_{14} potential)
Gap and density equations: effective interaction

- Effective pairing interaction

\[
V_\pi(r_i, r_j) = \frac{1}{2} (1 - P_\sigma) \nu_\pi^q(\rho_q) \delta(r_{ij}) \quad q = p, n
\]

zero range \(\Rightarrow\) energy cutoff \(\epsilon_\Lambda = 16\) MeV

- Density equation

\[
\rho_q = \frac{(2m)^{3/2}}{4\pi^2 \hbar^3} \int_0^{\mu_q^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_\Delta} \tanh \left(\frac{\beta E_\Delta}{2} \right) \right]
\]

- Gap equation

\[
1 = -\nu_\pi(\rho_q) \frac{(2m)^{3/2}}{8\pi^2 \hbar^3} \int_0^{\mu_q^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \frac{\xi}{E_\Delta} \tanh \left(\frac{\beta E_\Delta}{2} \right)
\]

\(\beta = \frac{1}{T}, \quad E_\Delta = \sqrt{\xi^2 + \Delta^2}, \quad \xi = \epsilon - \mu_q^*, \quad \mu_q^* = \mu_q - U_q\)

\[\nu_\pi(\rho_q) = \nu_\pi^\Lambda \left[1 - \eta \left(\frac{\rho_q}{\rho_0} \right)^\alpha \right] \text{ also for pp}\]

\(T = 0 \Rightarrow\) strength \(\nu_\pi^q(\rho_q) \equiv \nu_\pi(\rho_q)\)

\(T \neq 0 \Rightarrow \Delta(T)\)

\(T = T_C\) superfluid \(\leftrightarrow\) normal phase

\[1S_0\] pairing gap of neutron matter

(Bruceckner calculations with Argonne \(v_{14}\) potential)
Gap and density equations: effective interaction

- Effective pairing interaction

\[V_{\pi}(r_i, r_j) = \frac{1}{2}(1 - P_{\sigma})v_{\pi}^q(\rho_q)\delta(r_{ij}) \quad q = p, n \]

zero range \(\Rightarrow\) energy cutoff \(\epsilon_\Lambda = 16\) MeV

- Density equation

\[\rho_q = \frac{(2m)^{3/2}}{4\pi^2\hbar^3} \int_{0}^{\mu_q^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_\Delta} \tanh \left(\frac{\beta E_\Delta}{2} \right) \right] \]

- Gap equation

\[1 = -v_{\pi}(\rho_q)\frac{(2m)^{3/2}}{8\pi^2\hbar^3} \int_{0}^{\mu_q^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \frac{E_\Delta}{E_\Delta} \tanh \left(\frac{\beta E_\Delta}{2} \right) \]

\[\beta = \frac{1}{T}, \quad E_\Delta = \sqrt{\xi^2 + \Delta^2}, \quad \xi = \epsilon - \mu_q^*, \quad \mu_q^* = \mu_q - U_q \]

- \(T = 0 \Rightarrow\) strength \(v_{\pi}^q(\rho_q) \equiv v_{\pi}(\rho_q)\)

\[v_{\pi}(\rho_q) = V^\Lambda_{\pi} \left[1 - \eta \left(\frac{\rho_q}{\rho_0} \right)^\alpha \right] \]

also for pp

- \(T \neq 0 \Rightarrow \Delta(T)\)

\(1S_0\) pairing gap of neutron matter

Gap and density equations: effective interaction

- Effective pairing interaction

\[V_\pi(r_i, r_j) = \frac{1}{2}(1 - P_\sigma)v_\pi^q(\rho_q)\delta(r_{ij}) \quad q = p, n \]

zero range \(\Rightarrow\) energy cutoff \(\epsilon_\Lambda = 16\) MeV

- Density equation

\[\rho_q = \frac{(2m)^{3/2}}{4\pi^2\hbar^3} \int_{0}^{\mu_q^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_\Delta} \tanh \left(\frac{\beta E_\Delta}{2} \right) \right] \]

- Gap equation

\[1 = -v_\pi(\rho_q) \frac{(2m)^{3/2}}{8\pi^2\hbar^3} \int_{0}^{\mu_q^* + \epsilon_\Lambda} d\epsilon \frac{\sqrt{\epsilon}}{E_\Delta} \tanh \left(\frac{\beta E_\Delta}{2} \right) \]

\[\beta = \frac{1}{T}, \quad E_\Delta = \sqrt{\xi^2 + \Delta^2}, \quad \xi = \epsilon - \mu_q^*, \quad \mu_q^* = \mu_q - U_q \]

\[T = 0 \Rightarrow \text{strength} \quad v_\pi^q(\rho_q) \equiv v_\pi (\rho_q) \]

\[v_\pi (\rho_q) = V_\pi^\Lambda \left[1 - \eta \left(\frac{\rho_q}{\rho_0} \right)^\alpha \right] \quad \text{also for pp} \]

\[T \neq 0 \Rightarrow \Delta(T) \]

\[\Delta(T) = \Delta(0) \left(\frac{T}{T_C} \right)^\nu \quad \text{with} \quad \nu = 0.31 \quad \text{for neutrons} \quad \text{and} \quad \nu = 0.5 \quad \text{for protons} \]

\[T = T_C \quad \text{superfluid} \leftrightarrow \text{normal phase} \]

\[^1S_0 \quad \text{pairing gap of neutron matter} \]

\[Burrello S., Colonna M., Matera F. \]

Pairing effects on spinodal decomposition of ANM
Liquid-gas phase transition and spinodal instability

HFB theory: pairing effective interaction

Effect on isospin distillation

Gap and density equations: effective interaction

- **Effective pairing interaction**

\[
V_\pi(r_i, r_j) = \frac{1}{2}(1 - P_\sigma)\nu_\pi^q(\rho_q)\delta(r_{ij}) \quad q = p, n
\]

zero range \(\Rightarrow\) energy cutoff \(\epsilon_\Lambda = 16\) MeV

- **Density equation**

\[
\rho_q = \frac{(2m)^{3/2}}{4\pi^2\hbar^3} \int_{0}^{\mu_q^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_\Delta} \tanh \left(\frac{\beta E_\Delta}{2} \right) \right]
\]

- **Gap equation**

\[
1 = -\nu_\pi(\rho_q) \frac{(2m)^{3/2}}{8\pi^2\hbar^3} \int_{0}^{\mu_q^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \tanh \left(\frac{\beta E_\Delta}{2} \right)
\]

\[
\beta = \frac{1}{T}, \quad E_\Delta = \sqrt{\xi^2 + \Delta^2}, \quad \xi = \epsilon - \mu_q^*, \quad \mu_q^* = \mu_q - U_q
\]

$T = 0 \Rightarrow$ strength $\nu_\pi^q(\rho_q) \equiv \nu_\pi(\rho_q)$

\[
\nu_\pi(\rho_q) = V_\pi^\Lambda \left[1 - \eta \left(\frac{\rho_q}{\rho_0} \right)^\alpha \right]
\]

also for pp

$T \neq 0 \Rightarrow \Delta(T)$

Burrello S., Colonna M., Matera F.

1S_0 pairing gap of neutron matter (Brueckner calculations with Argonne v_{14} potential)
Gap and density equations: effective interaction

- Effective pairing interaction
 \[V_\pi(r_i, r_j) = \frac{1}{2} (1 - P_\sigma) v_\pi^q(\rho_q) \delta(r_{ij}) \quad q = p, n \]

 zero range ⇒ energy cutoff \(\epsilon_\Lambda = 16 \text{ MeV} \)

- Density equation
 \[\rho_q = \frac{(2m)^{3/2}}{4\pi^2\hbar^3} \int_0^{\mu_q^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_\Delta} \tanh\left(\frac{\beta E_\Delta}{2} \right) \right] \]

- Gap equation
 \[1 = -v_\pi(\rho_q) \frac{(2m)^{3/2}}{8\pi^2\hbar^3} \int_0^{\mu_q^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \tanh\left(\frac{\beta E_\Delta}{2} \right) \]

 \[\beta = \frac{1}{T}, \quad E_\Delta = \sqrt{\xi^2 + \Delta^2}, \quad \xi = \epsilon - \mu_q^*, \quad \mu_q^* = \mu_q - U_q \]

- \(T = 0 \) ⇒ strength \(v_\pi^q(\rho_q) \equiv v_\pi(\rho_q) \)
 \[v_\pi(\rho_q) = V_\pi^\Lambda \left[1 - \eta \left(\frac{\rho_q}{\rho_0} \right)^{\alpha} \right] \] also for pp

- \(T \neq 0 \) ⇒ \(\Delta(T) \)

- \(T = T_C \) superfluid ⇔ normal phase

\[T = 0 \Rightarrow \text{strength } v_\pi^q(\rho_q) \equiv v_\pi(\rho_q) \]

\[v_\pi(\rho_q) = V_\pi^\Lambda \left[1 - \eta \left(\frac{\rho_q}{\rho_0} \right) \right] \] also for pp

- \(T = T_C \) superfluid ⇔ normal phase

\[T = T_C \] superfluid ⇔ normal phase

\[1_S_0 \text{ pairing gap of neutron matter} \]

Burrello S., Colonna M., Matera F. Pairing effects on spinodal decomposition of ANM
Effect on chemical potential derivatives \((T = 0)\)

- Energy density functional in paired ANM \((\tilde{\rho} \equiv 2\Delta/v_\pi)\):

\[
\rho \frac{E}{A} = \sum_q \left[2 \int \frac{dp}{\hbar^3} f^q(p) \frac{p^2}{2m} + v_\pi(\rho_q) \frac{|\tilde{\rho}_q|^2}{4} \right] + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{C_{\text{sym}}}{2} \right] \]

- Effect on the asymmetry of unstable oscillation

\(\Rightarrow\) (isospin distillation)

- Increase at most of 20\% of the asymmetry \(\mathcal{I}\)
- Competition between pairing and \(C_{\text{sym}}\)
- Confirmed the leading role of \(C_{\text{sym}}\) on distillation

\[
\mu^q_\pi = \frac{\partial (\rho E/A)}{\partial \rho_q} \bigg|_{\tilde{\rho}_q} = \mu^*_q + U^q_\pi + U^q_{\text{ANM}}
\]

\[
\frac{\partial \mu^q_\pi}{\partial \rho_q} = \frac{\partial \mu^*_q}{\partial \rho_q} + \frac{\partial U^q_\pi}{\partial \rho_q} = 0
\]

\[
\frac{\partial \mu^q_q}{\partial \rho_q} = \frac{\partial \epsilon_F^q}{\partial \rho_q} = 0
\]

\[
\tan 2\theta_\pi = \frac{c}{a_\pi - b_\pi}
\]
Liquid-gas phase transition and spinodal instability
Pairing effects on spinodal instability in ANM
HFB theory: pairing effective interaction
Effect on isospin distillation

Effect on chemical potential derivatives ($T = 0$)

- Energy density functional in paired ANM ($\tilde{\rho} \equiv 2\Delta/v_\pi$):

\[
\rho \frac{E}{A} = \sum_q \left[2 \int \frac{dp}{h^3} f^q(p) \frac{p^2}{2m} + v_\pi(\rho_q) \frac{|\tilde{\rho}_q|^2}{4} \right] + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{C_\text{sym}}{2} I^2 \right]
\]

- Effect on the asymmetry of unstable oscillation

 ⇒ (isospin distillation)
 - Increase at most of 20% of the asymmetry I
 - Competition between pairing and C_{sym}
 - Confirmed the leading role of C_{sym} on distillation

\[
\partial \mu_q^\pi / \partial \rho_q = \partial \mu_q^\pi / \partial \rho_q + \partial U^q_\pi / \partial \rho_q = \delta_q
\]

\[
\frac{\partial \mu_q}{\partial \rho_q} = \frac{\partial \epsilon_F^q}{\partial \rho_q} = \frac{2 \epsilon_F^q}{3 \rho_q}
\]

\[
\tan 2\theta_\pi = \frac{c}{a_\pi - b_\pi}
\]

Burrello S., Colonna M., Matera F. | Pairing effects on spinodal decomposition of ANM
Effect on chemical potential derivatives ($T = 0$)

- Energy density functional in paired ANM ($\tilde{\rho} \equiv 2\Delta/\nu_\pi$):

$$\rho \frac{E}{A} = \sum_q \left[2 \int \frac{d\mathbf{p}}{h^3} f^q(p) \frac{p^2}{2m} + \nu_\pi(\rho_q) \frac{\tilde{\rho}_q}{4} \right] + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{C_{\text{sym}}}{2} \mathcal{I}^2 \right]$$

- Effect on the asymmetry of unstable oscillation

 ⇒ (isospin distillation)

 - Increase at most of 20% of the asymmetry \mathcal{I}
 - Competition between pairing and C_{sym}

 - Confirmed the leading role of C_{sym} on distillation

$$\mu^q_\pi = \left. \frac{\partial (\rho E/A)}{\partial \rho_q} \right|_{\tilde{\rho}_q} = \mu^*_q + U^q_\pi + U^q_{\text{ANM}}$$

$$a_\pi, b_\pi = \frac{\partial \mu^q_\pi}{\partial \rho_q} = \frac{\partial \mu^*_q}{\partial \rho_q} + \frac{\partial U^q_\pi}{\partial \rho_q} + \frac{\partial U^q_{\text{ANM}}}{\partial \rho_q} \equiv \delta_q$$

$$a, b = \frac{\partial \mu_q}{\partial \rho_q} = \frac{\partial \epsilon_F^q}{\partial \rho_q} + \frac{\partial U^q_{\text{ANM}}}{\partial \rho_q} = \frac{2}{3} \frac{\epsilon_F^q}{\rho_q}$$

$$\tan 2\theta_\pi = \frac{c}{a_\pi - b_\pi}$$
Effect on chemical potential derivatives ($T = 0$)

- Energy density functional in paired ANM ($\tilde{\rho} \equiv 2\Delta/\nu_\pi$):

 $$
 \rho \frac{E}{A} = \sum_q \left[2 \int \frac{dp}{h^3} f^q(p) \frac{p^2}{2m} + v_\pi(\rho_q) \frac{|\tilde{\rho}_q|^2}{4} \right] + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{C_{\text{sym}}}{2} \right]
 $$

- Effect on the asymmetry of unstable oscillation

 $$
 \mu^q_\pi = \frac{\partial (\rho E/A)}{\partial \rho_q} \bigg|_{\tilde{\rho}} = \mu^*_q + U^q_\pi + U^q_{ANM}
 $$

 $$
 \frac{\partial \mu^q_\pi}{\partial \rho_q} = \frac{\partial \mu^*_q}{\partial \rho_q} + \frac{\partial U^q_\pi}{\partial \rho_q} \equiv \delta_q
 $$

 $$
 \frac{\partial \mu_q}{\partial \rho_q} = \frac{\partial \epsilon^q_F}{\partial \rho_q} = \frac{2}{3} \frac{\epsilon^q_F}{\rho_q}
 $$

- Effect on the asymmetry of unstable oscillation

 $$
 \tan 2\theta_\pi = \frac{c}{a_\pi - b_\pi}
 $$

Burrello S., Colonna M., Matera F. Pairing effects on spinodal decomposition of ANM
Effect on chemical potential derivatives \((T = 0)\)

- **Energy density functional in paired ANM** \((\tilde{\rho} \equiv 2\Delta/\nu_\pi)\):
 \[
 \rho \frac{E}{A} = \sum_q \left[2 \int \frac{dp}{\hbar^3} f^q(p) \frac{p^2}{2m} + v_\pi(\rho_q) \frac{\left| \tilde{\rho}_q \right|^2}{4} \right] + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{C_{\text{sym}}}{2} \right]^2
 \]

- **Effect on the asymmetry of unstable oscillation**
 \[\Rightarrow \text{(isospin distillation)}\]

- Increase at most of 20% of the asymmetry \(I\)
Effect on chemical potential derivatives ($T = 0$)

- Energy density functional in paired ANM ($\tilde{\rho} \equiv 2\Delta/v_\pi$):
 \[
 \rho \frac{E}{A} = \sum_q \left[2 \int \frac{dp}{h^3} f^q(p) \frac{p^2}{2m} + v_\pi(\rho_q) \left| \tilde{\rho}_q \right|^2 \right] + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{C_{\text{sym}}}{2} I^2 \right].
 \]

- Effect on the asymmetry of unstable oscillation
 \[\Rightarrow \text{(isospin distillation)}\]
 - increase at most of 20% of the asymmetry I
 - competition between pairing and C_{sym}
 - confirmed the leading role of C_{sym} on distillation

\[\mu^q_\pi = \frac{\partial (\rho E/A)}{\partial \rho_q} \bigg|_{\tilde{\rho}_q} = \mu^*_q + U^q_\pi + U^q_{\text{ANM}}\]

\[\frac{\partial \mu^q_\pi}{\partial \rho_q} = \frac{\partial \mu^*_q}{\partial \rho_q} + \frac{\partial U^q_\pi}{\partial \rho_q} \equiv \delta_q\]

\[\frac{\partial \mu_q}{\partial \rho_q} = \frac{\partial \epsilon^q_F}{\partial \rho_q} = \frac{2 \epsilon^q_F}{3 \rho_q}\]

\[\tan 2\theta_\pi = \frac{c}{a_\pi - b_\pi}\]
Effect on chemical potential derivatives ($T = 0$)

- Energy density functional in paired ANM ($\tilde{\rho} \equiv 2\Delta/\nu_\pi$):
 \[
 \frac{\rho E}{A} = \sum_q \left[2 \int \frac{d^3p}{h^3} f^q(p) \frac{p^2}{2m} + \nu_\pi(\rho_q) \frac{|\tilde{\rho}_q|^2}{4} \right] + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{C_{\text{sym}}}{2} \right]
 \]

- Effect on the asymmetry of unstable oscillation
 ⇒ (isospin distillation)
 - increase at most of 20% of the asymmetry I
 - competition between pairing and C_{sym}
 - confirmed the leading role of C_{sym} on distillation

\[
\delta \mu_{\pi} = \frac{\partial (\rho E/A)}{\partial \rho_q} \bigg|_{\tilde{\rho}_q} = \mu_{\pi}^* + U^q_{\pi} + U^q_{\text{ANM}}
\]

\[
\frac{\partial \mu_{\pi}^*}{\partial \rho_q} = \frac{\partial \mu_{\pi}^*}{\partial \rho_q} + \frac{\partial U^q_{\pi}}{\partial \rho_q} \equiv \delta_q
\]

\[
\frac{\partial \mu_q}{\partial \rho_q} = \frac{\partial \epsilon_F^q}{\partial \rho_q} = \frac{2 \epsilon_F^q}{3 \rho_q}
\]

\[
\tan 2\theta_{\pi} = \frac{c}{a_{\pi} - b_{\pi}}
\]
Effect on chemical potential derivatives ($T = 0$)

- Energy density functional in paired ANM ($\tilde{\rho} \equiv 2\Delta/\nu_\pi$):

$$\frac{\rho E}{A} = \sum_q \left[2 \int \frac{dp}{h^3} f^q(p) \frac{p^2}{2m} + \nu_\pi (\rho_q) \frac{|\tilde{\rho}_q|^2}{4} \right] + \rho \left[\frac{A}{2} \left(\frac{\rho}{\rho_0} \right) + \frac{B}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^\sigma + \frac{C_{\text{sym}}}{2} I^2 \right]$$

- Effect on the asymmetry of unstable oscillation
 \[\Rightarrow \text{(isospin distillation)} \]
 - Increases at most of 20% of the asymmetry I
 - Competition between pairing and C_{sym}

Burrello S., Colonna M., Matera F.
Pairing effects on spinodal decomposition of ANM
Effect on chemical potential derivatives ($T = 0$)

- Energy density functional in paired ANM ($\tilde{\rho} \equiv 2\Delta/v_\pi$):
 \[
 \rho \frac{E}{A} = \sum_q \left[2 \int \frac{dp}{h^3} f^q(p) \frac{p^2}{2m} + v_\pi(\rho_q) \frac{|\tilde{\rho}_q|^2}{4} \right] + \rho \left[\frac{A}{2} (\frac{\rho}{\rho_0})^{\sigma} + \frac{B}{\sigma + 1} (\frac{\rho}{\rho_0})^{\sigma} + \frac{C_{\text{sym}}}{2} I^2 \right]
 \]

- Effect on the asymmetry of unstable oscillation
 \[
 \Rightarrow \text{(isospin distillation)}
 \]
 - increase at most of 20% of the asymmetry I
 - competition between pairing and C_{sym}
 - confirmed the leading role of C_{sym} on distillation

\[
\mu^q_\pi = \frac{\partial (\rho E/A)}{\partial \rho_q} \bigg|_{\tilde{\rho}_q} = \mu_q^* + U^q_\pi + U^q_{\text{ANM}}
\]

\[
\frac{\partial \mu^q_\pi}{\partial \rho_q} = \frac{\partial \mu^*_q}{\partial \rho_q} + \frac{\partial U^q_\pi}{\partial \rho_q} \equiv \delta_q
\]

\[
\frac{\partial \mu_q}{\partial \rho_q} = \frac{\partial \epsilon^q_F}{\partial \rho_q} = \frac{2}{3} \frac{\epsilon^q_F}{\rho_q}
\]

\[
\tan 2\theta_\pi = \frac{c}{a_\pi - b_\pi}
\]
Effect on chemical potential derivatives \((T \neq 0)\)

- Normal phase:
 \[
 \frac{\partial \epsilon_q}{\partial \rho_q} \approx \frac{2}{3} \frac{\epsilon_q}{\rho_q} \left[1 + \frac{\pi^2}{12} \left(\frac{T}{\epsilon_q} \right)^2 \right]
 \]

- Normal ↔ superfluid: discontinuity on the 2nd derivatives of the energy
 \Rightarrow 2nd order phase transition

- Compressibility \Rightarrow jump depends on the density (disappears at \(\rho_q = \rho_M\))

- Larger effect than \(T = 0\)
- Double discontinuity
 \Rightarrow n and p critical \(T\)
- Jump \(\sim \langle \delta I \rangle\)
 \Rightarrow sizable effects on the isotopic properties of clusters
Effect on chemical potential derivatives \((T \neq 0)\)

- Normal phase: \(\frac{\partial \epsilon_F}{\partial \rho_q} \simeq \frac{2}{3} \frac{\epsilon_F}{\rho_q} \left[1 + \frac{\pi^2}{12} \left(\frac{T}{\epsilon_F} \right)^2 \right] \frac{\text{superfluid}}{\text{phase}} \) \(\delta_q\) decreases with \(T\)

- Normal \(\leftrightarrow\) superfluid: discontinuity on the 2nd derivatives of the energy
 \(\Rightarrow\) 2nd order phase transition

- Compressibility \(\Rightarrow\) jump depends on the density (disappears at \(\rho_q = \rho_M\))

- Larger effect than \(T = 0\)

- Double discontinuity

 \(\Rightarrow\) \(n\) and \(p\) critical \(T\)

- Jump \(\sim \langle \delta I \rangle / T\)

 \(\Rightarrow\) sizable effects on the isotopic properties of clusters

Burrello S., Colonna M., Matera F. | Pairing effects on spinodal decomposition of ANM
Effect on chemical potential derivatives \((T \neq 0) \)

- Normal phase: \[
\frac{\partial \epsilon_F^q}{\partial \rho_q} \approx \frac{2}{3} \frac{\epsilon_F^q}{\rho_q} \left[1 + \frac{\pi^2}{12} \left(\frac{T}{\epsilon_F^q} \right)^2 \right] \rightarrow \delta_q \text{ decreases with } T!
\]

- Normal ↔ superfluid: discontinuity on the 2nd derivatives of the energy
 \(\Rightarrow \) 2nd order phase transition

- Compressibility \(\Rightarrow \) jump depends on the density (disappears at \(\rho_q = \rho_M \))

- Larger effect than \(T = 0 \)
- Double discontinuity
 \(\Rightarrow \) n and p critical \(T \)
- Jump \(\sim \langle \delta I \rangle \)
 \(\Rightarrow \) sizable effects on the isotopic properties of clusters
Effect on chemical potential derivatives ($T \neq 0$)

- Normal phase: $\frac{\partial \epsilon^q_F}{\partial \rho^q_F} \simeq \frac{2}{3} \frac{\epsilon^F_q}{\rho^q_F} \left[1 + \frac{\pi^2}{12} \left(\frac{T}{\epsilon^F_q} \right)^2 \right] \overset{\text{superfluid phase}}{\rightarrow} \delta^q_q \text{ decreases with } T!$

- Normal \leftrightarrow superfluid: discontinuity on the 2nd derivatives of the energy
 \Rightarrow 2nd order phase transition

- Compressibility \Rightarrow jump depends on the density (disappears at $\rho^q_q = \rho^q_M$)

Larger effect than $T = 0$

Double discontinuity \Rightarrow sizable effects on the isotopic properties of clusters

Burrello S., Colonna M., Matera F.
Pairing effects on spinodal decomposition of ANM
Effect on chemical potential derivatives \((T \neq 0)\)

- Normal phase: \(\frac{\partial \epsilon^q}{\partial \rho_q} \approx \frac{2}{3} \frac{\epsilon^q}{\rho_q} \left[1 + \frac{\pi^2}{12} \left(\frac{T}{\epsilon^q} \right)^2 \right] \frac{\text{superfluid}}{\text{phase}} \delta_q \) decreases with \(T\)!

- Normal ↔ superfluid: discontinuity on the 2nd derivatives of the energy
 \(\Rightarrow\) 2nd order phase transition

- Compressibility \(\Rightarrow\) jump depends on the density (disappears at \(\rho_q = \rho_M\))

Larger effect than \(T = 0\)

Burrello S., Colonna M., Matera F.
Pairing effects on spinodal decomposition of ANM
Effect on chemical potential derivatives \((T \neq 0)\)

- Normal phase: \(\frac{\partial e_q}{\partial \rho_q} \simeq \frac{2}{3} \frac{e_q^F}{\rho_q} \left[1 + \frac{\pi^2}{12} \left(\frac{T}{e_q^F} \right)^2 \right] \)
 \(\text{superfluid} \rightarrow \text{phase}\) \(\delta_q\) decreases with \(T\)!

- Normal ↔ superfluid: discontinuity on the 2nd derivatives of the energy
 \(\Rightarrow\) 2nd order phase transition

- Compressibility \(\Rightarrow\) jump depends on the density (disappears at \(\rho_q = \rho_M\))

- Larger effect than \(T = 0\)
- Double discontinuity
 \(\Rightarrow\) \(n\) and \(p\) critical \(T\)
Effect on chemical potential derivatives \((T \neq 0)\)

- Normal phase:
 \[\frac{\partial \epsilon_F}{\partial \rho_q} \approx \frac{2}{3} \frac{\epsilon_F}{\rho_q} \left[1 + \frac{\pi^2}{12} \left(\frac{T}{\epsilon_F} \right)^2 \right] \]
 \(\text{superfluid} \overset{\text{phase}}{\rightarrow} \delta_q \text{ decreases with } T!\)

- Normal ↔ superfluid: discontinuity on the 2nd derivatives of the energy
 \(\Rightarrow 2\text{nd order phase transition}\)

- **Compressibility** \(\Rightarrow\) jump depends on the density (disappears at \(\rho_q = \rho_M\))

- **Heat capacity** \(\Rightarrow\) implications on the astrophysical context

- Larger effect than \(T = 0\)

- Double discontinuity

\[\rho_q = \rho_M\]

\[\rho_q = \frac{\rho_M}{2}\]

\[\rho_q = 2 \rho_M\]

Burrello S., Colonna M., Matera F.

Pairing effects on spinodal decomposition of ANM
Effect on chemical potential derivatives ($T \neq 0$)

- Normal phase: \(\frac{\partial \epsilon_q}{\partial \rho_q} \approx \frac{2}{3} \frac{\epsilon_q}{\rho_q} \left[1 + \frac{\pi^2}{12} \left(\frac{T}{\epsilon_q} \right)^2 \right] \) \(\frac{\text{superfluid}}{\text{phase}} \rightarrow \delta_q \) decreases with T!

- Normal \leftrightarrow superfluid: discontinuity on the 2nd derivatives of the energy
 \(\Rightarrow \) 2nd order phase transition

- Compressibility \Rightarrow jump depends on the density (disappears at $\rho_q = \rho_M$)

- Heat capacity \Rightarrow implications on the astrophysical context

- Larger effect than $T = 0$

- Double discontinuity
 \(\Rightarrow \) n and p critical T

Burrello S., Colonna M., Matera F.

Pairing effects on spinodal decomposition of ANM
Effect on chemical potential derivatives \((T \neq 0)\)

- Normal phase:
 \[
 \frac{\partial \epsilon_q}{\partial \rho_q} \approx \frac{2}{3} \frac{\epsilon_q F}{\rho_q} \left[1 + \frac{\pi^2}{12} \left(\frac{T}{\epsilon_q F} \right)^2 \right] \]
 superfluid phase \(\delta_q \) decreases with \(T \! \)

- Normal \(\leftrightarrow\) superfluid: discontinuity on the 2nd derivatives of the energy
 \(\Rightarrow \) 2nd order phase transition

- Compressibility \(\Rightarrow \) jump depends on the density (disappears at \(\rho_q = \rho_M \))

- Larger effect than \(T = 0 \)
- Double discontinuity
 \(\Rightarrow \) \(n \) and \(p \) critical \(T \)
- Jump \(\sim \left\langle \frac{\delta I}{I} \right\rangle \)
 \(\Rightarrow \) sizable effects on the isotopic properties of clusters

\[\rho = 0.08 \text{ fm}^{-3}\]
Effect on chemical potential derivatives ($T \neq 0$)

- Normal phase: \(\frac{\partial \epsilon_F}{\partial \rho} \simeq \frac{2}{3} \frac{\epsilon_F}{\rho_F} \left[1 + \frac{\pi^2}{12} \left(\frac{T}{\epsilon_F} \right)^2 \right] \)\(\frac{\text{superfluid}}{\text{phase}} \) \(\delta_q \) decreases with \(T \)!

- Normal ↔ superfluid: discontinuity on the 2nd derivatives of the energy
 \(\Rightarrow \) 2nd order phase transition

- Compressibility \(\Rightarrow \) jump depends on the density (disappears at \(\rho_q = \rho_M \))

- Larger effect than \(T = 0 \)
- Double discontinuity
 \(\Rightarrow \) \(n \) and \(p \) critical \(T \)
- Jump \(\sim \langle \frac{\delta I}{T} \rangle \)
 \(\Rightarrow \) sizable effects on the isotopic properties of clusters

\[\rho = 0.08 \text{ fm}^{-3} \]

- \(I = 0.1 \)
- \(I = 0.2 \)
- \(I = 0.5 \)
Effect on chemical potential derivatives \((T \neq 0)\)

- Normal phase: \[\frac{\partial \epsilon_F^q}{\partial \rho_q} \approx \frac{2}{3} \frac{\epsilon_F^q}{\rho_q} \left[1 + \frac{\pi^2}{12} \left(\frac{T}{\epsilon_F^q} \right)^2 \right] \]
 \[\xrightarrow{\text{superfluid phase}} \delta_q \text{ decreases with } T! \]

- Normal \(\leftrightarrow\) superfluid: discontinuity on the 2nd derivatives of the energy
 \[\Rightarrow 2\text{nd order phase transition} \]

- Compressibility \(\Rightarrow\) jump depends on the density (disappears at \(\rho_q = \rho_M\))

- Larger effect than \(T = 0\)
- Double discontinuity
 \[\Rightarrow n \text{ and } p \text{ critical } T \]
- Jump \(\sim \langle \frac{\delta I}{I} \rangle\)
 \[\Rightarrow \text{sizable effects on the isotopic properties of clusters} \]

\[
\begin{array}{ccc}
\text{Temperature } T \text{ (MeV)} & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 \\
\text{I = 0.1} & \text{I} \\
\text{I = 0.2} & \text{I} \\
\text{I = 0.5} & \text{I} \\
\end{array}
\]

\[\rho = 0.08 \text{ fm}^{-3} \]
Conclusions

- Clusterization studies with pairing confirm the leading role of the symmetry energy in determining isotopic properties of density fluctuations.
- At the transition temperature (from superfluid to normal phase), significant effects may appear for the asymmetry of the density oscillations.
- Implications in the astrophysical context.
Conclusions

- Clusterization studies with *pairing* confirm the leading role of the *symmetry energy* in determining isotopic properties of density fluctuations.
- At the *transition temperature* (from superfluid to normal phase) significant effects may appear for the asymmetry of the density oscillations.

⇒ Implications in the astrophysical context.
Conclusions

- Clusterization studies with **pairing** confirm the leading role of the **symmetry energy** in determining isotopic properties of density fluctuations.
- At the **transition temperature** (from superfluid to normal phase) significant effects may appear for the asymmetry of the density oscillations.
- \Rightarrow Implications in the **astrophysical** context.
Conclusions

- Clusterization studies with pairing confirm the leading role of the symmetry energy in determining isotopic properties of density fluctuations.
- At the transition temperature (from superfluid to normal phase) significant effects may appear for the asymmetry of the density oscillations.

⇒ Implications in the astrophysical context.

Thank You!