Semi-microscopical nuclear Jérémie Dudouet^{*}, D. Cussol, D. Durand, M. Labalme

model of fragmentation processes at 95 MeV/A LPC, CNRS-IN2P3, Caen France *dudouet@lpccaen.in2p3.fr

Experimental measurements at GANIL

Double differential ¹²C fragmentation cross sections:

- Beam energy 95 MeV/A
- Thin targets: H, O, C, Al, Ti and PMMA
- \bullet ^1H to $^{12}\mathrm{C}$ fragments identification at emitted angles from 0 to 43°

J. Dudouet *et al.*, Phys. Rev. C 88, 024606 (2013) Data in free access on: http://hadrontherapy-data.in2p3.fr

GEANT4 Simulations

Benchmark of the GEANT4 nuclear models:

- Three entrance channel models:
- BIC (G4BinaryLightIonReaction)
- > QMD (G4QMDReaction)
- > INCL++
- Fermi break-up de-excitation model

A new semi-microscopical model

Global approach:

- No dynamical evolution
- The whole calculations performed in p-space
- Geometrical approach based on the participant-spectator picture
- **Entrance channel modelisation:**
- Number of participants obtained from overlapping volume ratio

Angular distributions: C target

Hard n-n scatterings between participants at a rate defined as the only free parameter
Random coalescence in the overlap-region under constraints in velocity space
Excitation energies computed assuming thermal population of discrete levels
Energy conservation by random nucleon exchange between any species
Fermi break-up de-excitation:

- N-body decay calculation
- Decay channel chosen by Monte-Carlo sampling following micro-canonical weights
- Kinematical quantities calculated according to n-body phase-space distribution

Angular distributions: C target

Conclusions and Perspectives

Conclusions:

- Good data reproduction for both angular and energy distributions
- Overestimation of ¹⁰Be and ¹⁰C \rightarrow Underestimation of A=3 species

Perspectives

- Extrapolation of discrete energy levels with a continuum approximation
- Extend the comparisons to other targets and beam energies

