Production of doubly magic nucleus 100Sn in fusion reactions via particle and cluster emission channels

Sh. A. Kalandarov

Bogolyubov Laboratory for Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia
Production of doubly magic nucleus 100Sn in fusion reactions

50Cr+58Ni reaction at 5.1MeV/nucleon produce 108Te ($E_{ex} =92$MeV at J=0)

108Te $\rightarrow ^{100}$Sn+α4n with 40nb cross section.

Alternative method was suggested in ORNL by A. Korgul et al. (Phys. Rev. C77, 034301, 2008)

58Ni+54Fe reaction at 240MeV produce 112Xe ($E_{ex} =58$MeV at J=0))

112Xe $\rightarrow ^{108}$Xe+4n with \sim1nb cross section.

108Xe$-^{104}$Te$-^{100}$Sn α decay chain
Adiabatic and diabatic pictures of nuclear fusion

Fig. 1. Schematic illustration of the compound nucleus formation process within the framework of the MDM- and DNS-concept.
Dinuclear system conception

Decay of such system: symmetric quasifission

Capture stage

Decay of such system: asymmetric quasifission
Examples of applications of the model

- $^{48}\text{Ca} + ^{154}\text{Sm}$
- $^{48}\text{Ca} + ^{144}\text{Sm}$
- $^{45}\text{Sc} + ^{65}\text{Cu}$
- $^{93}\text{Nb} + ^{9}\text{Be}$

Graphs showing the cross-sections σ_A, mb and σ_Z, mb as a function of A and Z.
Fig. 28. Calculated (solid lines) and measured [41] (symbols) isotopic distributions of products originating from the $^{84}\text{Kr} + ^{27}\text{Al}$ reaction at $E_{lab} = 10.6$ MeV/nucleon that are indicated in the figure.

Sh. A. Kalandarov et al.,

PHYSICAL REVIEW C 82, 044603 (2010)
PHYSICAL REVIEW C 83, 054619 (2011)
PHYSICAL REVIEW C 84, 054607 (2011)
PHYSICAL REVIEW C 84, 064601 (2011)
FIG. 2: Calculated excitation functions for production of $^{100}\text{Sn}(\square)$, $^{101}\text{Sn}(\square)$, $^{102}\text{Sn}(\triangle)$, $^{103}\text{Sn}(\triangle)$ in indicated fusion reactions by xn decay channels.

FIG. 5: Calculated excitation functions for production of $^{100}\text{Sn}(\square)$, $^{101}\text{Sn}(\square)$, $^{102}\text{Sn}(\triangle)$, $^{103}\text{Sn}(\triangle)$ in indicated fusion reactions by cluster emission channels. See the text for the details.
Potential energy of DNS

\[U(R, Z, A, J) = B_1 + B_2 + V(R, Z, A, \beta_1, \beta_2, J) - [B_{12} + E_{12}^{rot}(J)], \]

\[V(R, Z, A, \beta_1, \beta_2, J) = V_C(R, Z, A, \beta_1, \beta_2) + V_N(R, Z, A, \beta_1, \beta_2) + \frac{\hbar^2 J(J + 1)}{2 \Omega(R, A, \beta_1, \beta_2)} \]

\[V_N = \int \rho_1(\mathbf{r}_1) \rho_2(\mathbf{R} - \mathbf{r}_2) F(\mathbf{r}_1 - \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2, \]

where \(F(\mathbf{r}_1 - \mathbf{r}_2) = C_0 [F_{\text{in}} \frac{\rho_0(\mathbf{r}_1)}{\rho_0} + F_{\text{ex}} (1 - \frac{\rho_0(\mathbf{r}_1)}{\rho_0})] \delta(\mathbf{r}_1 - \mathbf{r}_2) \) is the Skyrme-type density-dependent effective nucleon-nucleon interaction, which is known from the theory of finite Fermi systems [28], and \(\rho_0(\mathbf{r}) = \rho_1(\mathbf{r}) + \rho_2(\mathbf{R} - \mathbf{r}) \), \(F_{\text{in,ex}} = f_{\text{in,ex}} + f_{\text{in,ex}}' \frac{(N-Z)(N_2-Z_2)}{(N+Z)(N_2+Z_2)}. \) Here, \(\rho_1(\mathbf{r}_1) \) and \(\rho_2(\mathbf{r}_2) \), and \(N_2 \) (\(Z_2 \)) are the nucleon densities of, respectively, the light and the heavy nuclei of the DNS, and neutron (charge) number of the heavy nucleus of the DNS.
\[\rho_i(r) = \frac{\rho_{00}}{1 + \exp((r - R_i(\theta'_i, \varphi'_i))/a_{0i})} \]

\[R_i = R_{0i}(1 + \beta_i Y_{20}(\theta'_i, \varphi'_i)) \]

\[\mathcal{S}(R, A, \beta_1, \beta_2) = k_0(\mathcal{S}_1 + \mathcal{S}_2 + \mu R^2) \]

\[\mathcal{S}_i = \frac{1}{5} m_0 A_i \left(a_i^2 + b_i^2 \right), \]

\[a_i = R_{0i} \left(1 - \frac{\beta_i^2}{4\pi} \right) \left(1 + \sqrt{\frac{5}{4\pi}} \beta_i \right), \]

\[b_i = R_{0i} \left(1 - \frac{\beta_i^2}{4\pi} \right) \left(1 - \sqrt{\frac{5}{16\pi}} \beta_i \right). \]

\[V_C(R, \alpha_1, \alpha_2) = \frac{Z_1 Z_2}{R} e^2 + \frac{Z_1 Z_2}{R^3} e^2 \left\{ \left(\frac{9}{20\pi} \right)^{1/2} \sum_{i=1}^{2} R_{0i}^2 \beta_2^{(i)} P_2(\cos \alpha'_i) \right\} \]

\[+ \frac{3}{7\pi} \sum_{i=1}^{2} R_{0i}^2 \left[\beta_2^{(i)} P_2(\cos \alpha'_i) \right]^2 \}

Here, \(a_T = 0.56 \text{ fm} \) and \(a_P = a_T - 0.015 \rho \) are the diffusenesses of the DNS heavy and light nuclei, respectively (light nucleus has small diffuseness), and \(R_{P(T)} = r_0 A^{1/3}_{P(T)} \) (\(r_0 = 1.16 \text{ fm} \)) is the radius of nucleus ``P'' (``T''). Deformed nuclei are treated in the pole-to-pole orientation.
Nucleon exchange between DNS nuclei

\[
\frac{d}{dt} P_{Z,N}(t) = \Delta_{Z+1,N}^{(-,0)} P_{Z+1,N}(t) + \Delta_{Z-1,N}^{(+,0)} P_{Z-1,N}(t) \\
+ \Delta_{Z,N+1}^{(0,-)} P_{Z,N+1}(t) + \Delta_{Z,N-1}^{(0,+)} P_{Z,N-1}(t) \\
- (\Delta_{Z,N}^{(-,0)} + \Delta_{Z,N}^{(+,0)} + \Delta_{Z,N}^{(0,-)} + \Delta_{Z,N}^{(0,+)} \\
+ \Lambda_{Z,N}^{qf} + \Lambda_{Z,N}^{fis}) P_{Z,N}(t),
\]
With the transport coefficients:

\[
\Delta_{Z,N}^{(\pm,0)}(\Theta) = \frac{1}{\Delta t} \sum_{P,T}^Z |g_{PT}|^2 n_T^P(\Theta) \left[1 - n_T^P(\Theta) \right] \times \sin^2 \left[\frac{\Delta t(\epsilon_P - \epsilon_T)/2\hbar}{(\epsilon_P - \epsilon_T)^2/4} \right],
\]

\[
\Delta_{Z,N}^{(0,\pm)}(\Theta) = \frac{1}{\Delta t} \sum_{P,T}^N |g_{PT}|^2 n_T^P(\Theta) \left[1 - n_T^P(\Theta) \right] \times \sin^2 \left[\frac{\Delta t(\epsilon_P - \epsilon_T)/2\hbar}{(\epsilon_P - \epsilon_T)^2/4} \right],
\]

\[
\Lambda_{Z,N}^{g_f}(\Theta) = \frac{\omega}{2\pi \omega B_{qf}} \left(\sqrt{\left(\frac{\Gamma}{2\hbar} \right)^2 + (\omega B_{qf})^2} - \frac{\Gamma}{2\hbar} \right) \times \exp \left(- \frac{B_{qf}(Z,N)}{\Theta(Z,N)} \right).
\]

Phenomenological approach:

\[
\Delta_{Z,A} = \lambda_{zz} \rho_z
\]

\[
\lambda_{zz} = 2\pi k \frac{R1R2}{R1 + R2} \frac{1}{\rho_z \rho_z'}
\]