1 Introduction

Exotic nuclei are systems rich in neutrons or protons. They are unstable nuclei with short half-life. Due to the fact that they are far away from the stability valley, the way they interact with other nuclei and their structure can be very different from that of stable nuclei. In this work, we study the 6Li reactions with 208Pb at laboratory energies around the Coulomb barrier at TRIUMF facility (Canada).

2 Experimental Setup

The experiment was performed at the ISAC-II line of the radioactive beams facility of TRIUMF (Canada). The detection system consisted of 4 silicon telescopes (ΔE-E) covering a wide angular range, from 10$^\circ$ to 140$^\circ$. This set-up allowed us to separate ΔE fragments coming from the breakup of the 6Li projectile.

3 ΔE vs E Diagrams

Figure 3 shows two-dimensional diagrams (ΔE vs E) of the total events acquired through detectors 1 at two different incident energies (24.3 and 29.8 MeV), integrated for the pixels corresponding to the angular bins of (3(1.5)$^\circ$).

4 Experimental data

Figure 4 (left) shows the elastic scattering angular distribution of the 6Li+208Pb reaction [2] and the corresponding 3b-CDCC calculations at 24.3 and 29.8 MeV. 3b-CDCC calculations are based on a simple two-body model of 6Li (2n). An impressive suppression of the 6Li elastic cross section with respect to the Rutherford prediction is observed.

4 Experimental data

In figure 4 (right) we present the experimental data of the 6Li breakup probability (ratio between 6Li events resulting from the two-neutron removal process in the 6Li+208Pb reaction [3]). We compare the experimental data with semiclassical and CDCC calculations. The semiclassical calculations include only the first order Coulomb excitation (E1) and the breakup probability is given by equation (1). The CDCC calculations include both Coulomb and nuclear couplings to all orders.

$$P_{\text{E1}}(E1, t) = \frac{2\pi e^{2}}{5\hbar c} \frac{9}{\sqrt{9}} \int \frac{dE}{c^{4}} \left[I_{1} + I_{2} \right]$$

5 Reduced Breakup Probability

It is useful to define the reduced breakup probability given by equation:

$$P_{t}(t) = P_{\text{E1}}(E1, t) \sqrt{B(E1)}\frac{\hbar}{16\pi} (\frac{e}{c})^{2}$$

where t is the collision time: $t = \frac{\hbar}{m_{\text{nucl}} c} \sqrt{\frac{E_{\text{lab}}}{m_{\text{nucl}}}}$. When dipole Coulomb excitation is dominant, the reduced breakup probability becomes an universal function of the collision time, independent of the collision energy.

$$P_{t}(t) = \int_{0}^{\infty} c^{2} dE \frac{(1 + e^{-2t})}{c^{2}} e^{c^{2}}$$

where, for large collision times, the $B(E1)$ distribution is approximated by $c^{2} \sqrt{B(E1)} \simeq 2.5 m_{\text{nucl}} c^{2}$.

5 Reduced Breakup Probability

In figure 6 we can see that the reduced breakup probability, for collision times larger than 5 MeV$^{-1}$, is indeed independent on the collision energy.

6 Summary and Conclusions

- We have presented the experimental setup used to measure the breakup of 6Li on 208Pb at energies around the Coulomb barrier at TRIUMF facility (Canada).
- The set-up allowed us to separate elastically scattered 6Li from 6Li breakup fragments in 6Li+208Pb reaction.
- A strong reduction of the $\sigma_{\Delta E}$ with respect to σ_{inel} have been observed.
- We have defined a new magnitude referred to as reduced breakup probability. This magnitude is a function of the collision time and is independent of the collision parameters.
- From the experimental reduced breakup probability, we can obtain a value of the effective breakup energy of $\sim 0.35(4)$ MeV and the parameter b_{0} which is associated with the slope of the $B(E1)$ distribution.
- The experimental data suggest more strength of the $B(E1)$ distribution than the distribution obtained by Nakamura [4].

References