
Programmable Logic (FPGAs) for Computationally Intensive Applications

MARIE CURIE IAPP: FAST TRACKER FOR HADRON COLLIDER EXPERIMENTS

1ST FTK IAPP WORKSHOP
PISA, JULY 2013

Calliope-Louisa Sotiropoulou
PhD Candidate/Researcher

Aristotle University of Thessaloniki

Programmable Logic (FPGAs) for Computationally Intensive

Applications

 Embedded Systems

 FPGAs

 VHDL

 FPGA MPSoCs

 Canny Edge Detection

 Machine Vision Implementation

2

Programmable Logic (FPGAs) for Computationally Intensive

Applications

 Embedded Systems

 FPGAs

 VHDL

 FPGA MPSoCs

 Canny Edge Detection

 Machine Vision Implementation

3

Introduction – Embedded Systems

 An embedded system is a computer system designed to do

one or a few dedicated and/or specific functions

 Often with real-time computing constraints

(something which needs to be done immediately)

 It is embedded as part of a complete device often including

hardware and mechanical parts

4

Introduction – Embedded Systems

 One of the first modern embedded systems was the Apollo

Guidance Computer (MIT Instrumentation Laboratory)

AGC User Interface

AGC dual nor gate

5

Introduction – Embedded Systems

 What about today?

6

Embedded Systems are everywhere!

7

Embedded Systems application domains

 High-throughput Multimedia

 Security

 Smart devices

 Gaming Platforms

 Such applications have an increasing demand for

 Performance

 Flexibility

 Memory Space

Combined with area and power consumption constraints

8

Embedded Systems

 Where can we implement embedded systems?

9

Programmable Logic (FPGAs) for Computationally Intensive

Applications

 Embedded Systems

 FPGAs

 VHDL

 FPGA MPSoCs

 Canny Edge Detection

 Machine Vision Implementation

10

Introduction – FPGA Technology

 Field Programmable Gate Arrays (FPGAs) are

programmable semiconductor devices that are based

around a matrix of configurable logic blocks (CLBs)

connected via programmable interconnects.

 As opposed to Application Specific Integrated Circuits

(ASICs) where the device is custom built for the particular

design, FPGAs can be programmed to the desired

application or functionality requirements.

11

In simple words…

 FPGAs:

 Can be reprogrammed many times

 Can be reused for different applications

 ASICs:

 Are printed circuits

 Used for very specific applications

 Designed once for one task

12

Field Programmable Gate Arrays

 Reconfigurability

 Versatility

 Reduced cost

 …and limited time to market

 Modern FPGA devices offer a great number and variety of

resources at a reasonable cost

13

Programmable logic blocks

 The “heart” of every FPGA

 Logic functions implemented in look-up tables (LUTs)

 Clocked storage elements (flip-flops)

 N-to-1 Multiplexers

16-bit SR

flip-flop

clock

mux

y

q
e

a

b

c

d

16x1 RAM

4-input

LUT

clock enable

set/reset

14

Logic Implementation on an FPGA

 The truth table of a simple operator is loaded to a LUT

 The two combined inputs are used as address

 The output is stored on a flip-flop for synchronization

15

VHDL Code

{….

a<=b and c

….}

Truth Table

b c a

 0 0 0

 0 1 0

 1 0 0

 1 1 1

2 - Input

LUT
FF

Clock

Inputs

0 0 0 1

Routing on an FPGA

 Programmable connection and switch boxes

16

I/ O PAD

Connection Box

Switch Box

BLE BLEBLE

BLE BLE BLE

CLB CLB CLB

CLBCLBCLB

Xilinx Virtex-5, Slice (SLICEM)

A complete FPGA routing

 Is a HUGE task…

FPGA Vendors

 Xilinx

 Altera

 Lattice Semiconductor

 Actel

FPGA Tools

 All FPGA Vendors offer tools for FPGA implementation

 There is almost always a version you can download for free

 You just need a pc to use it!

 (And an FPGA to implement it… but not necessarily)

20

Xilinx ISE Design Flow
Design Verification

Synthesis

Implementation

Entry

Xilinx Device

Programming

Post-Synthesis

Simulation

Behavioral

Simulation

Timing

Simulation

Static Timing

Analysis

In-Circuit

Verification

Back

Annotation

21

Programmable Logic (FPGAs) for Computationally Intensive

Applications

 Embedded Systems

 FPGAs

 VHDL

 FPGA MPSoCs

 Canny Edge Detection

 Machine Vision Implementation

22

Introduction – VHDL

 What is VHDL?

A Very Hard and Difficult Language…

23

Introduction – VHDL

 Very High Speed Integrated Circuit –

Hardware Description Language

 VHDL originated in the early 1980s

 The American Department of Defense initiated the development of

VHDL in the early 1980s

 because the US military needed a standardized method of describing

electronic systems

 VHDL was standardized in 1987 by the IEEE

24

VHDL

 VHDL is a programming language that allows one to model

and develop complex digital systems

 Allows you to define in/out ports and specify behavior or

response of the system

 With VHDL we can design a system/circuit  Something

that physically exists

 Or we can model a system’s/circuit’s behavior

25

VHDL - Hierarchy

 Black Box Principle:

At every hierarchy level only the absolutely necessary

information is disclosed

 Input/Output Ports and their behavior

26

VHDL - Hierarchy

 Therefore you can design from simple modules to complete

systems with the same tools

27

Bounding Rectangle DetectionUnit

Corner Coefficient
Module

{L,R,T,B}THETA

{L,R,T,B}J

C2

INIT

{L,R,T,B}SIN

{L,R,T,B}RHO

{L,R,T,B}COS

READY

LTDSIN

LBDSIN

RTDSIN

RBDSIN

Corner Coordinates
Module

LT{X,Y}

LB{X,Y}

RT{X,Y}

RB{X,Y}

Bounding Rectangle
Calculation Module

INIT INITREADY

FH

FW

Control Unit

BRX

BRY

BRWIDTH

BRHEIGHT

READY

Programmable Logic (FPGAs) for Computationally Intensive

Applications

 Embedded Systems

 FPGAs

 VHDL

 FPGA MPSoCs

 Canny Edge Detection

 Machine Vision Implementation

28

The need for performance…

 Performance requirements can no longer be supported by

Embedded System Architectures based on a single

processor

 Multiprocessing architectures are being used

29

30

FPGA based MPSoC
On an FPGA device a designer can configure:

 The number of processors

 The types of the interconnection buses

 The size and type of onboard or external memory

 The possible substitution of the execution of a
computational task by a processor with dedicated
hardware

 Effort and time needed for design space exploration of
such magnitude which eliminates the advantage of limited
time to market

31

Proposed Solution

 Formulation of different design models that identify the

optimal hybrid MPSoC design for each application, taking

into account constraints by the designer

 One of the approaches used is formulating and solving the

problem by using Integer Linear Programming

32

MPSoC Architecture Model

Microblaze

Local

Memory

Microblaze HW

accelerator
LM

Local

Memory

33

Programmable Logic (FPGAs) for Computationally Intensive

Applications

 Embedded Systems

 FPGAs

 VHDL

 FPGA MPSoCs

 Canny Edge Detection

 Machine Vision Implementation

34

Edge Detection

 Edge Detection is used to identify sharp discontinuities in an

image, such as changes in luminosity or in the intensity due

to changes in scene structure.

35

Edge Detection

 Edge Detection implementation leads to a set of connected

curves that indicate the boundaries of objects or surfaces.

 It is used to reduce the amount of data to be processed and

filter out information that is less relevant to the next

processing step.

 For grayscale images it produces a binary output.

 It is used as the first step in many image processing

algorithms, such as pattern matching, motion estimation,

feature extraction, texture analysis etc.

36

 Why use the Canny algorithm

 It is one of the most reliable edge detection algorithms

 Achieves low error-rate in the detected edges

 Improves the localization of the identified edges

 The need for Real-Time/High Throughput Implementation

 Multiplication of camera resolutions in recent years

 Real-time applications

 The performance of modern FPGA devices

 Powerful, efficient, availability of memory resources and DSP specific

slices

Motivation

37

Smoothing

Filter
Calculation

of gradient
Localization

Elimination of

spurious responses

38

Canny Edge Detection

 The computational stages of Canny Edge Detection

sequence

Canny Edge Detection

 5 x 5 convolution

 Introducing 4-pixel parallelism

 Substitution of the multiplications and divisions with shifts additions and

subtractions

25 pixels 40 pixels

40

Gaussian Smoothing

41

Gaussian Smoothing

Gaussian Smoothing

42

Synthesis

Results
Gauss Sobel NMS Db_Thres Hysteresis Total Total(%)

Frequency

 (MHz)
Spartan 3E

Slices
2578 1095 656 45 84 4284 29% 167

Spartan 6
Slices

4075 1482 823 43 104 6470 7% 214

Virtex 5
Slices

3815 1426 960 40 96 6350 9% 350

43

Simulations - Results

• Synthesis results for three different FPGAs

Simulations - Results

 Timing results

44

Image File Size
Time (ms)

Spartan-3E
Time (ms)

Spartan-6
Time (ms)

Virtex-5

Lena 512x512 0.78 0.61 0.37

VGA resolution 640x480 0.91 0.71 0.43

Daleks 1440X900 3.88 3.02 1.85

Simulations - Results

 Throughput

45

Image File Size
fps

Spartan-3E
fps

Spartan-6
fps

Virtex-5

1Mpixel 318 408 667

Canny Implementation with Camera

46

Programmable Logic (FPGAs) for Computationally Intensive

Applications

 Embedded Systems

 FPGAs

 VHDL

 FPGA MPSoCs

 Canny Edge Detection

 Machine Vision Implementation

47

 Machine Vision Flow chart

Machine Vision Implementation

Machine Vision Implementation

49

 Original Video and Video with Flow Detection Implemented

 Specifications: 60fps for 1Mpixel input video (it actually achieves more than 70fps)

Machine Vision Implementation

Conclusions

 FPGAs are powerful reconfigurable devices which can be

used to implement computationally intensive applications

 The tools are provided by the FPGA vendors and usually

there is a free version available

 FPGAs can be programmed using VHDL

 Very powerful algorithms can be implemented with these

tools

 And all this can be done with just one pc (and one FPGA…)

51

And now….

 You can start your own designs! :-)

Thank you!

52

