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Introduction – Embedded Systems 

 An embedded system is a computer system designed to do 

one or a few dedicated and/or specific functions  

 

 Often with real-time computing constraints 

(something which needs to be done immediately) 

 

 It is embedded as part of a complete device often including 

hardware and mechanical parts 
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Introduction – Embedded Systems 

 One of the first modern embedded systems was the Apollo 

Guidance Computer (MIT Instrumentation Laboratory) 

AGC User Interface 

AGC dual nor gate 

5 



Introduction – Embedded Systems 

 

 

 

 

 What about today? 
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Embedded Systems are everywhere! 
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Embedded Systems application domains 

 High-throughput Multimedia 

 Security 

 Smart devices 

 Gaming Platforms 
 

 Such applications have an increasing demand for 

 Performance 

 Flexibility 

 Memory Space 

Combined  with area and power consumption constraints 
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Embedded Systems 

 

 

 

 Where can we implement embedded systems? 
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Introduction – FPGA Technology 

 Field Programmable Gate Arrays (FPGAs) are 

programmable semiconductor devices that are based 

around a matrix of configurable logic blocks (CLBs) 

connected via programmable interconnects. 

 

  As opposed to Application Specific Integrated Circuits 

(ASICs) where the device is custom built for the particular 

design, FPGAs can be programmed to the desired 

application or functionality requirements. 
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In simple words… 

 FPGAs: 

 Can be reprogrammed many times 

 Can be reused for different applications 

 

 

 ASICs: 

 Are printed circuits  

 Used for very specific applications 

 Designed once for one task 
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Field Programmable Gate Arrays 

 Reconfigurability 

 Versatility 

 Reduced cost 

 …and limited time to market 

 

 

 Modern FPGA devices offer a great number and variety of 

resources at a reasonable cost 
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Programmable logic blocks 

 The “heart” of every FPGA 

 Logic functions implemented in look-up tables (LUTs) 

 Clocked storage elements (flip-flops) 

 N-to-1 Multiplexers 

16-bit SR
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4-input

LUT

clock enable

set/reset
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Logic Implementation on an FPGA 

 The truth table of a simple operator is loaded to a LUT 

 The two combined inputs are used as address 

 The output is stored on a flip-flop for synchronization 
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VHDL Code 
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Routing on an FPGA 

 Programmable connection and switch boxes 
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Xilinx Virtex-5, Slice (SLICEM) 



A complete FPGA routing  

 Is a HUGE task… 



FPGA Vendors  

 Xilinx 

 

 Altera 

 

 Lattice Semiconductor 

 

 Actel 

 



FPGA Tools 

 All FPGA Vendors offer tools for FPGA implementation 

 

 There is almost always a version you can download for free 

 

 You just need a pc to use it! 

 

 (And an FPGA to implement it… but not necessarily) 
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Xilinx ISE Design Flow 
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Introduction – VHDL 

 What is VHDL? 

 

 

 

A Very Hard and Difficult Language… 
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Introduction – VHDL 

 Very High Speed Integrated Circuit –  

Hardware Description Language 

 

 VHDL originated in the early 1980s 

 The American Department of Defense initiated the development of 

VHDL in the early 1980s 

 because the US military needed a standardized method of describing 

electronic systems 

 VHDL was standardized in 1987 by the IEEE 
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VHDL 

 VHDL is a programming language that allows one to model 

and develop complex digital systems 

 

 Allows you to define in/out ports and specify behavior or 

response of the system 

 

 With VHDL we can design a system/circuit  Something 

that physically exists 

 

 Or we can model a system’s/circuit’s behavior 
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VHDL - Hierarchy 

 Black Box Principle: 

At every hierarchy level only the absolutely necessary 

information is disclosed 

 

 Input/Output Ports and their behavior 
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VHDL - Hierarchy 

 Therefore you can design from simple modules to complete 

systems with the same tools 
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The need for performance… 

 

 

 Performance requirements can no longer be supported by 

Embedded System Architectures based on a single 

processor 

 

 

 

 Multiprocessing architectures are being used 
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FPGA based MPSoC 
On an FPGA device a designer can configure: 

 The number of processors 

 The types of the interconnection buses 

 The size and type of onboard or external memory 

 The possible substitution of the execution of a  
computational task by a processor with dedicated  
hardware 

 

 Effort and time needed for design space exploration of 
such magnitude which eliminates the advantage of limited 
time to market 
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Proposed Solution 

 

 

 Formulation of different design models that identify the 

optimal hybrid MPSoC design for each application, taking 

into account constraints by the designer 

 

 

 One of the approaches used is formulating and solving the 

problem by using Integer Linear Programming 
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MPSoC Architecture Model 
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Edge Detection 

 Edge Detection is used to identify sharp discontinuities in an 

image, such as changes in luminosity or in the intensity due 

to changes in scene structure. 
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Edge Detection 

 Edge Detection implementation leads to a set of connected 

curves that indicate the boundaries of objects or surfaces. 

 It is used to reduce the amount of data to be processed and 

filter out information that is less relevant to the next 

processing step. 

 For grayscale images it produces a binary output. 

 

 

 It is used as the first step in many image processing 

algorithms, such as pattern matching, motion estimation, 

feature extraction, texture analysis etc. 
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 Why use the Canny algorithm 

 It is one of the most reliable edge detection algorithms  

 Achieves low error-rate in the detected edges 

 Improves the localization of the identified edges 

 

 The need for Real-Time/High Throughput Implementation 

 Multiplication of camera resolutions in recent years 

 Real-time applications 

 

 The performance of modern FPGA devices 

 Powerful, efficient, availability of memory resources and DSP specific 

slices 

Motivation 
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Canny Edge Detection 



 The computational stages of Canny Edge Detection 

sequence  

 

 

 

Canny Edge Detection 



 5 x 5 convolution 

 Introducing 4-pixel parallelism 

 

 

 

 

 

 

 

 Substitution of the multiplications and divisions with shifts additions and 

subtractions 

 

 

 

 

 

25 pixels 40 pixels 
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Gaussian Smoothing 
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Gaussian Smoothing 



Gaussian Smoothing 
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Synthesis  

Results 
Gauss Sobel NMS Db_Thres Hysteresis Total Total(%) 

Frequency 

 (MHz) 
Spartan 3E 

Slices 
2578 1095 656 45 84 4284 29% 167 

Spartan 6 
Slices 

4075 1482 823 43 104 6470 7% 214 

Virtex 5 
Slices 

3815 1426 960 40 96 6350 9% 350 
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Simulations - Results 

• Synthesis results for three different FPGAs 



Simulations - Results 

 Timing results 
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Image File Size 
Time (ms) 

Spartan-3E 
Time (ms) 

Spartan-6 
Time (ms) 

Virtex-5 

Lena 512x512 0.78 0.61 0.37 

VGA resolution 640x480 0.91 0.71 0.43 

Daleks 1440X900 3.88 3.02 1.85 



Simulations - Results 

 Throughput 
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Image File Size 
fps 

Spartan-3E 
fps 

Spartan-6 
fps 

Virtex-5 

1Mpixel 318 408 667 



Canny Implementation with Camera 
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 Machine Vision Flow chart 

Machine Vision Implementation 



Machine Vision Implementation 
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 Original Video and Video with Flow Detection Implemented 
 

 

 

 

 

 

 

 

 

 

 

 

 Specifications: 60fps for 1Mpixel input video (it actually achieves more than 70fps) 

Machine Vision Implementation 



Conclusions 

 FPGAs are powerful reconfigurable devices which can be 

used  to implement computationally intensive applications 

 The tools are provided by the FPGA vendors and usually 

there is a free version available 

 FPGAs can be programmed using VHDL 

 Very powerful algorithms can be implemented with these 

tools 

 And all this can be done with just one pc (and one FPGA…) 
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And now…. 

 You can start your own designs! :-)  

 

 

 

Thank you! 
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