CMS Trieste

Giuseppe Della Ricca Consiglio di Sezione, Trieste, 11/07/2013

LHC & CMS Performance

"The LHC's performance has exceeded all expectations over the last three years," said Steve Myers, "The accelerator delivered more than 6 million billion collisions and the luminosity has continuously increased. It's a fantastic achievement, and I'm incredibly proud of my team."

The luminosity, a crucial parameter measuring the rate of collisions of an accelerator, has reached a value of 7.7x10³³cm⁻²s⁻¹, more than twice the maximum value obtained in 2011 (3.5x10³³ cm⁻² s⁻¹). The collision energy was increased from 7 TeV in 2011 to 8 TeV in 2012.

CMS is taking data & publishing

242 published papers, 23 on the way

(Higgs discovery paper: 1300 citations)

Responsabilità di CMS Trieste

S. Belforte: CMS physics support co-coordinator

M. Casarsa: CMS MC & Data production manager

F. Cossutti: CMS deputy offline coordinator, XEB member

G. Della Ricca: ECAL national representative, SC & FB member

■ B. Gobbo: ECAL validation responsible, CMSSW code performance expert

M. Marone: ECAL Prompt Feedback Group co-coordinator, ECAL DCU expert

Physics analysis:

Measurement of Z+jets associated production in pp collisions
Measurement of Z+b production in pp collisions (new)

ECAL Upgrade:

Involvement in preliminary simulation studies on new ideas and projected performances

PRIN 2010/11 (con ALICE-TS, e BA/BO/CA/CT/GE/INFN/MI/NA/PG/RM/TO):

Sviluppo di tecnologie per l'ottimizzazione dell'accesso ai dati di LHC, trasferibili ad altri domini scientifici, mediante l'approccio del grid e del cloud computing

Z+jets Analysis at 7 TeV

- Measuring differential cross sections up to 4 jets
- Stringent tests of pQCD, PDFs, MC tuning
- Relevant background for Higgs analysis
- Status: pre-approved, under review for publication

Z+b Analysis at 8 TeV

- $b \longrightarrow X$ $g \longrightarrow b$
- Important SM background to new physics searches
 - b-associated Higgs production
 - b-enriched SUSY final states
- Sensitivity to heavy-flavour PDFs
- Status: quickly ramping-up

ECAL R&D towards HL-LHC

- General goals:
 - Performance on exclusive channels (e.g. H→γγ): Higgs stoichiometry
 - Resolution on MET: key signature of 'new physics'
 - Good jet reconstruction in the forward direction
- Endcap performance severely degraded at HL-LHC
 - Radiation levels much higher than now
 - Light Output << 10% |η|>2.5
 - Need a high radiation-resistant ECAL
- Performance in reconstruction of e/γ/jet/MET degraded by *pile-up*
 - about 140 interaction vertices per collision
 - Mitigation possible with extreme timing 10⁻²

Note: ECAL Barrel performance OK;
Refurbishment of the digital part of the on-detector and off-detector electronics
may be necessary for compliance with CMS Trigger upgrade

A crystal shashlik

Compact calorimeter fits into CMS endcap region

Crystal properties

High density and short X₀

Large light yield (for light collection efficiency)

 Radiation hardness (less critical than in an homogeneous calorimeter: optical path is shorter)

Fast response

R&D towards tech. proposal

■ Crystals: LYSO, BaF₃, ...

Light readout (rad-hard fibres, and photodetectors)

Time resolution?

 Time spread of light generation and collection O(100 ps)

Luminous region LHC σ_t~300 ps

of the photo-detector

Ionisation micro-channel plates (iMCP)

- One (or more) layer(s) embedded in the calorimeter for fast timing (<50 ps) of showers
- From literature: MCP efficiency to m.i.p.s >70% with at least σ_t =75 ps
 - NIM A 478 (2002) 220
- Technology now mature for mass production of large surface MCPs
 - LAPPD collaboration (see e.g. this talk)
- R&D towards technical proposal
 - Proof of principle
 - Optimization of MCP geometry
 - Study of the efficiency and timing vs the sampling depth
 - If preshower, timing decoupled from design of the CALO
 - Electronics for fast timing
- Cutting edge technology, with applications in other fields (TOF-PET)

ionisation-MCP in CALO

CMS Xrootd Federation

Xrootd Global Redirector

local-region / cross-region redirection

current local configuration:

 $TS \rightarrow BA \leftrightarrow CERN \leftrightarrow world$

fallback access: local CPU – remote data

CMS Trieste: preventivi 2014

persone:

Stefano Belforte Dir. Ric. 100%* Vieri Candelise Dott. 100% 100%* Massimo Casarsa Ric. 100%* Fabio Cossutti Ric. 100%* Giuseppe Della Ricca R.U.100%* Benigno Gobbo I Ric. Chiara La Licata Dott. 100% Ass. Ric. 100% Matteo Marone 0%

richieste finanziarie: 12 kF MI

ME

INV

totale

CONS

Anna Maria Zanetti totale:

Aldo Penzo

Tomo Umer

Andrea Schizzi

10.7 FTE nel 2014 (11.1 FTE nel 2013, 8.1 FTE nel 2012)

Dir. Ric.

Dott.

Dott.

Ric.

100%

100%←

70%*←

PRELIMINARY

20+102 kE

134 kE

269 kE

1 kE

^{*:} anche PRIN 2010/11 (percentuali da finalizzare)

