Recent Results from KamLAND and KamLAND-Zen

T. O'Donnell, UC Berkeley & Lawrence Berkeley Lab

Outline

- Overview of neutrino oscillation and double beta decay
- Description of the KamLAND/KamLAND-Zen experiments

- Results from the KamLAND antineutrino analysis
- Results from the 1st phase of KamLAND-Zen

Brief history of KamLAND

2013	Reactor On-Off antineutrino data
2013	1 st phase of KamLAND-Zen completed
2012	Lower limit on $0v\beta\beta$ half-life of ¹³⁶ Xe
2012	Observation of $2\nu\beta\beta$ decay of ¹³⁶ Xe
2011	KamLAND-Zen begins
2011	Improved geo-neutrino measurements
2011	3-flavor oscillation studies at KamLAND
2010	Measurement of 8B solar neutrino flux at KamLAND
2008	Precision measurement of neutrino oscillation
2005	Evidence for geo-neutrinos at KamLAND
2005	Evidence of spectral distortion
2003	Discovery of reactor neutrino disappearance
2002	KamAND begins

Neutrino Oscillation

- Weak eigenstates are not the same as the mass eigenstates
- Probability to detect the same weak eigenstate is a non-trivial function of time or L

$$P(\bar{\nu}_e \to \bar{\nu}_e, L) = \left| \sum_i U_{ie}^* e^{-im_i^2 L/2E} U_{ei} \right|^2$$

How do we learn about U?

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

where $s_{ij} = \sin \theta_{ij}$ and $c_{ij} = \cos \theta_{ij}$.

KamLAND and solar experiments, e.g SNO, Borexino

- Atmospheric neutrino, long baseline accelerator e.g SuperK, MINOS
- Short baseline reactor, accelerator e.g Daya Bay, T2K
- Future long baseline accelerator experiment ??

What do we know about neutrino mass ?

• Non-zero neutrino mass splittings: $\Delta m_{ij}^2 = m_i^2 = m_j^2$

- We know Δm²₂₁ very well from KamLAND and solar-neutrino experiments
 - solar matter-effects give the sign

Some open questions ?

• What is the mass hierarchy ?

 We know IΔm²₂₃I from atmospheric and accelerator neutrino experiments . . . but not the sign

• What about the absolute neutrino mass ?

Double Beta Decay

Mass parabola for isobaric nuclei with even mass number (A)

Figure adapted from: <u>http://www.cobra-experiment.org/double_beta_decay/</u>

Double Beta Decay

- Simultaneous decay of 2 neutrons in a nucleus
- Second-order weak process, allowed in SM
- Observable only if 'ordinary' beta decay is inhibited
- Directly observed in 12 nuclei, half lives ~10¹⁹-10²¹ years ! depending on the nuclear system

- M^{0v} is not known; estimates vary by factor of ~2 depending on method
- For $m_{\beta\beta} = 50$ meV estimated half lives $10^{25} 10^{27}$ years ! depending on the nuclear system

Double Beta Decay - Signature

• Peak at the decay Q-value of the transition

What might we learn ?

- If observed: learn neutrinos are Majorana fermions, maybe the hierarchy, constrains absolute mass scale
- If not observed: stringent limits help make the most of future neutrino data

KamLAND/KamLAND-Zen Collaborations

KamLAND-Zen collaboration is a subset of KamLAND

Kamioka Observatory

- Located under Mt. Ikenoyama, ~2700 m.w.e. overburden
- 'Easy' access
- Surrounded by Japanese commercial nuclear reactors:
 - (Typical) flux-weighted average baseline ~ 180km
 - This was key to KamLAND's success

$$\begin{split} \Delta m^2 &\sim \frac{E}{L} \\ &\sim \frac{3\,MeV}{2\times 10^5\,m} \sim 10^{-5} eV^2 \end{split}$$

... beautiful countryside

... historic villages ...

KamLAND Facility

• Under ground:

• Above ground: operations center, computing farm

KamLAND Detector

KamLAND-Zen Addition

- Idea to mount a volume of Xe-loaded LS in the center of KamLAND, really started to take shape in 2009
- Several advantages:
 - KamLAND-LS provides ultra-pure active shield
 - Mature detector, expertise and analysis tools
 - Potential to achieve large 0vBB target mass quickly
 - Possible to continue antineutrino program at KamLAND

KamLAND-Zen Experiment

• Mini-balloon \emptyset =3.08 m installed into center of KamLAND LS, 25µm thick nylon film

238U	2x10 ⁻¹² g/g
²³² Th	5x10 ⁻¹² g/g
⁴⁰ K	6x10 ⁻¹² g/g
Xe leakage	<0.26kg/yr

 Filled with 13 tons of Xe-loaded LS (300kg of ¹³⁶Xe) :

Component	Chemical formula	Fraction	
Decane	$\mathrm{C_{10}H_{26}}$	82% (by volume)	
Pseudocumene	C_9H_{12}	18% (by volume)	
PPO	$C_{15}H_{11}NO$	$2.7 \mathrm{g/l}$	
Dissolved Xe	90.93 $\pm 0.05\%$ ¹³⁶ Xe	2.5% by weight	
Dissorved Ac	$8.89{\pm}0.01\%$ $^{134}{\rm Xe}$		

 KL-Zen is only ~1.4% of KamLAND volume: reactor, geoneutrino, supernova watch . . . continue in remaining KamLAND LS

KamLAND-Zen Experiment

- Inner-balloon fabricated in class 1 cleanroom near Sendai Spring 2011
- Great Eastern Japan Earthquake occurred (3/11/11)
- Test balloon at Kamioka

Practice installation at swimming pool

Figure courtesy of A. Gando 'First Results of Neutrinoless double beta decay Search with KamLAND-Zen', PhD Thesis, Tohoku University 2012

 Mini balloon was installed and filled in August 2011 - KamLAND-Zen began !

KamLAND/KamLAND-Zen Data taking

- Scintillation light observed by array of ~1800 PMTs
- PMT waveforms digitized and saved for offline analysis if programmable trigger conditions are met (~300GB/day)
- PMT charge and hit time extracted from waveforms
- Events tagged as muons/point-like
- Muon track, event position and energy reconstruction based on PMT charge and hit-time distributions

Detector Response

- Ultimately analysis is done in terms of visible energy
- Real energy of particles must be converted to visible or reconstructed energy
- Energy scale model accounts for particle- and energy dependent effects:
 - Scintillator quenching effects via first order Birk's model
 - Energy loss by Cherenkov emission

• Detector energy resolution

Energy scale model

$$\frac{\bar{E}_{vis}}{E_{real}} = A \times \left(\frac{1}{1+R} \cdot \frac{1}{1+k_B(dE/dx)} + \frac{R}{1+R} \cdot \frac{dN_{Ch}}{dE}\right)$$

Energy scale model

$$\frac{\bar{E}_{vis}}{E_{real}} = A \times \left(\frac{1}{1+R} \cdot \frac{1}{1+k_B(dE/dx)} + \frac{R}{1+R} \cdot \frac{dN_{Ch}}{dE}\right)$$

Overall linear response of detector

Scintillator nonlinearity from quenching

Fraction of visible energy (photo electrons) from Cherenkov effects

 E_{vis} distribution obtained by smearing \bar{E}_{vis} with gaussian resolution

Reactor On/Off Antineutrino Dataset

- Fukushima nuclear accident triggered a regulatory shutdown of entire Japanese nuclear industry for safety review
- Dataset includes full 10 year history of KamLAND, with this new low-flux period

Antineutrino Measurement

• Antineutrinos detected via inverse beta decay reaction

• Basic antineutrino selection cuts:

Cut Name	Selection		
Prompt energy	$0.9 < E_p({\rm MeV}) < 8.5$		
Delayed energy	$1.8 < E_d(MeV) < 2.6$ $4.4 < E_d(MeV) < 5.6$		
Prompt-Delayed spatial separation	$ \vec{R}_p - \vec{R}_d (m) < 2.0$		
Prompt-Delayed time separation	$0.5 < (t_d - t_p)(\mu s) < 1000.0$		

What do we measure ?

 $\mathcal{S}_{KL}(E,t) =$

 $\left\{ \sum_{i} \frac{\mathcal{F}_{i}(t)}{4\pi L_{i}^{2}} \sum_{j} f_{i,j}(t) \hat{S}_{j}(E) \times P(\bar{\nu}_{e} \to \bar{\nu}_{e}, L_{i}, E) + B(E, t) \right\} \otimes D(E, t)$

What do we measure ?

 $\mathcal{S}_{KL}(E,t) =$

$$\sum_{i} \frac{\mathcal{F}_{i}(t)}{4\pi L_{i}^{2}} \sum_{j} f_{i,j}(t) \hat{S}_{j}(E) \times P(\bar{\nu}_{e} \to \bar{\nu}_{e}, L_{i}, E) + \frac{B(E, t)}{B(E, t)} \bigg\} \otimes D(E, t)$$

- Depends on reactors
- Physics of interest
- Backgrounds
- Convolve with detection effects
 - cross section
 - detector response

- >99.9% of fissions come from ²³⁵U(56%), ²³⁸U (8%),²³⁹Pu (30%), & ²⁴¹Pu (6%)
- We use shape of "improved S_j" but normalize to cross-section per fission of each reactor is adjusted to reproduce the Bugey4 measurement (1.4 % uncertainty)

Backgrounds

 $\mathcal{S}_{KL}(E,t) = \left\{ \sum_{i} \frac{\mathcal{F}_{i}(t)}{4\pi L_{i}^{2}} \sum_{j} f_{i,j}(t) \hat{S}_{j}(E) \times P(\bar{\nu}_{e} \to \bar{\nu}_{e}, L_{i}, E) + \frac{B(E,t)}{B(E,t)} \right\} \otimes D(E,t)$

- Accidental coincidences
- alpha-n processes: ${}^{13}C(\alpha, n){}^{16}O$
- Geo-neutrinos
- Others:
 - Spallation products (⁹Li/⁸He)
 - Atmospheric neutrinos and fast neutrons

Backgrounds: Accidentals

- Mostly caused by low energy radioactivity on big balloon (prompt) and ²⁰⁸TI-γ (delayed)
- Controls:
 - Fiducial volume cut (R_p <6m,R_d<6m)
 - liquid scintillator purification 2007~2009
 - Joint PDF P(E_d, R_p, R_d, dR_{p-d}, dT_{p-d}) is different for accidental and signal-like pairs, use this to construct likelihood selection (a.k.a L_{Cut})

Period 3: Also veto volume around Zen balloon

Backgrounds: alpha-n

- Dominant α-source: ²¹⁰Po (daughter of ²²²Rn)
- Mimics inverse β decay:

Backgrounds: alpha-n

Simulated prompt a-n spectrum

- simulation tested with ²¹⁰Po-¹³C calibration source
- ²¹⁰Pb rate reduced 20-fold by liquid scintillator purification in 2007~2009

Backgrounds: Geo-neutrinos

- Counts/MeV (a.u) anti-neutrinos expected from decays of ²³²Th, ²³⁸U in the earth 232**T**h 2381
- expected geo-neutrino rate is very model dependent, only spectrum shape is used in the analysis
- 2 22 2.8 3 32 3.4 1.8 2.6E_⊽ (MeV)
- Expected inverse β decay spectrum

geo-neutrinos are an interesting 'signal' in their own right . . . more later

Backgrounds: Spallation

- ⁹Li/⁸He produced by cosmic rays
 - Delayed neutron beta emitter (τ ~200 ms)
 - Veto pairs within 2s of muon and 3m cylinder of well tracked muons

- Fast neutrons produced by untagged muons in the OD, contribution estimated by GEANT4 simulation
- Atmospheric neutrino contribution estimated with NUANCE simulation

Background Summary

TABLE I: Estimated backgrounds for $\overline{\nu}_e$ in the energy range between 0.9 MeV and 8.5 MeV after event selection cuts.

Background		Period 1	Period 2	Period 3	All Periods
		(1486 days)	(1154 days)	(351 days)	(2991 days)
1	Accidental	$76.1\pm~0.1$	44.7 ± 0.1	4.7 ± 0.1	125.5 ± 0.1
2	⁹ Li/ ⁸ He	17.9 ± 1.4	11.2 ± 1.1	$2.5 \hspace{0.2cm} \pm \hspace{0.2cm} 0.5$	31.6 ± 1.9
3 {	${ m ^{13}C}(lpha,n){ m ^{16}O_{g.s.}}$, elastic scattering	160.4 ± 16.4	16.5 ± 3.8	$2.3 \hspace{0.2cm} \pm 1.0$	179.0 ± 21.1
	$^{13}C(\alpha, n)^{16}O_{g.s.}, {}^{12}C(n, n')^{12}C^* (4.4 \text{ MeV } \gamma)$	$6.9\pm~0.7$	0.7 ± 0.2	0.10 ± 0.04	$7.7\pm~0.9$
4 {	${}^{13}\mathrm{C}(\alpha,n){}^{16}\mathrm{O}^*$, 1st e.s. (6.05 MeV e^+e^-)	14.6 ± 2.9	1.7 ± 0.5	0.21 ± 0.09	16.5 ± 3.5
	${}^{13}{ m C}(lpha,n){}^{16}{ m O}^{*}$, 2nd e.s. (6.13 MeV γ)	$3.4\pm~0.7$	0.4 ± 0.1	0.05 ± 0.02	$3.9\pm~0.8$
5	Fast neutron and atmospheric neutrino	< 7.7	< 5.9	< 1.7	< 15.3
Tota	al	279.2 ± 22.1	75.2 ± 7.6	9.9 ± 2.1	364.1 ± 30.5

• Geo-neutrino constrained by spectrum

Candidates expected from reactors (no oscillation)	3564 +/- 145
Candidates expected from background (ex. geo-nu)	364.1 +/- 30.5
Candidates observed	2611

(b) 2.6-8.5 MeV

Thursday, July 11, 2013

Likelihood for unbinned maximum likelihood analysis

$$\begin{split} \chi^2 &= \chi^2_{\rm rate}(\theta_{12}, \theta_{13}, \Delta m^2_{21}, N_{\rm BG1 \rightarrow 5}, N^{\rm geo}_{{\rm U,Th}}, \alpha_{1 \rightarrow 4}) \\ &- 2 \ln L_{\rm shape}(\theta_{12}, \theta_{13}, \Delta m^2_{21}, N_{\rm BG1 \rightarrow 5}, N^{\rm geo}_{{\rm U,Th}}, \alpha_{1 \rightarrow 4}) \\ &+ \chi^2_{\rm BG}(N_{\rm BG1 \rightarrow 5}) + \chi^2_{\rm syst}(\alpha_{1 \rightarrow 4}) \\ &+ \chi^2_{\rm osci}(\theta_{12}, \theta_{13}, \Delta m^2_{21}) \cdot \\ & \qquad \qquad \\ \end{split}$$
 This term used to incorporate constraints from other experiments

Systematic Error Summary

	Detector-related (%)		Reactor-related (%)						
Δm^2_{21}	Energy scale	1.8	/	1.8	$\overline{\nu}_e$ -spectra [32]	0.6	1	0.6	1
Rate	Fiducial volume	1.8	/	2.5	$\overline{\nu}_e$ -spectra [24]	1.4	1	1.4	
	Energy scale	1.1	1	1.3	Reactor power	2.1	1	2.1	
	$L_{cut}(E_{\rm p})$ eff.	0.7	/	0.8	Fuel composition	1.0	1	1.0	
	Cross section	0.2	/	0.2	Long-lived nuclei	0.3	1	0.4	
	Total	2.3	/	3.0	Total	2.7	1	2.8	

Oscillation Parameters

Data combination	Δm^2_{21} *	$\tan^2 heta_{12}$	$\sin^2 heta_{13}$
KamLAND	$7.54\substack{+0.19 \\ -0.18}$	$0.481\substack{+0.092\\-0.080}$	$0.010\substack{+0.033\\-0.034}$
KamLAND + solar	$7.53\substack{+0.19 \\ -0.18}$	$0.437\substack{+0.029\\-0.026}$	$0.023\substack{+0.015\\-0.015}$
KamLAND + solar + θ_{13}	$7.53\substack{+0.18 \\ -0.18}$	$0.436\substack{+0.029\\-0.025}$	$0.023\substack{+0.002\\-0.002}$

*(x 10⁻⁵ eV²)

Visualization of Survival Probability

Prompt Energy Spectrum

Period 1

Period 2, lower bkg

Period 3, reactor "off"

Antineutrino flux variation at KamLAND

Antineutrino flux variation at KamLAND

Antineutrino flux variation at KamLAND

Thursday, July 11, 2013

KamLAND-Zen: 1st phase data set

- First phase data set: Oct 12 2011 June 14 2012
- Divided into 2 periods: DS1, DS2, filtration hardware introduced in Feb. 2012, plumbing remained inside Xe-LS afterwards

Dataset summary

TABLE I: Two data sets used in this ¹³⁶Xe $0\nu\beta\beta$ decay analysis.

	DS-1	DS-2	Total
livetime (days)	112.3	101.1	213.4
fiducial Xe-LS mass (ton)	8.04	5.55	-
Xe concentration (wt%)	2.44	2.48	-
¹³⁶ Xe mass (kg)	179	125	-
¹³⁶ Xe exposure (kg-yr)	54.9	34.6	89.5

KamLAND-Zen: Energy Calibration

 ThO₂W source (²⁰⁸TI) source deployed close to outer edge of inner-balloon

KamLAND-Zen: Energy Calibration

KamLAND-Zen: Event Selection

• Fiducial volume cut to reject background from mini-balloon and filtration hardware

DS1: R<1.35m

DS2 (filtration plumbing): R<1.35m , dR_{tube} >0.2m, dR_{nozzle}>1.2m

Fiducial volume cut optimized to reduce background for 0nubb
 analysis

KamLAND-Zen: Event Selection

• Fiducial volume cut to reject background from mini-balloon

- Coincidence cuts:
 - Veto events within 2ms after muon candidates
 - Veto event pairs (E₁,T₁), (E₂,T₂) with (T₂-T₁< 3ms) and 0.35<E₂< 1.5 MeV (²¹⁴Bi-Po, ²¹²Bi-Po cut)
 - Veto event pairs (E₁,T₁), (E₂,T₂) with (T₂-T₁< 1ms) and E₁ > 1.5 MeV (antineutrino cut)
- After fiducial volume cut bb selection efficiency: 99.8 +/- 0.2 %
- Dead time from cuts: <0.2 %

KamLAND-Zen: Remaining backgrounds

- Residual background from mini balloon
 - Events on mini balloon reconstructing inside fid. volume due to vertex resolution
 - Between 1.2 MeV <E < 2.0 MeV IB activity dominated by ¹³⁴Cs, consistent with fallout from Fukushima reactor incident
 - Between 2.2 MeV < E < 3.0 MeV IB activity is dominated by ²¹⁴Bi decays
- Spallation backgrounds
 - ¹⁰C and ¹¹C estimated from previous KamLAND data
 - Not much previous data on Xe spallation products. We can place limits on short lived Xe-products using post-muon data
 - Longer lived spallation products estimated to be negligible from simulation

KamLAND-Zen: Internal Xe-LS Backgrounds

 Residual ²³²Th (²¹²Bi-Po) and ²³⁸U (²¹⁴Bi-Po) in Xe-LS assuming equilibrium:

238U	1.3+/- 0.2 x10 ⁻¹⁶ g/g
²³² Th	1.8+/- 0.1 x10 ⁻¹⁵ g/g

 Searched Table of Isotopes for long-lived isotopes leading to decays in the ROI for 0vBB search

²⁰⁸ Bi (EC)	τ=5.31x10 ⁵ yr	Q=2.88 MeV
⁸⁸ Y(EC)	τ=154 d	Q=3.62 MeV
⁶⁰ Co (β⁻)	τ=7.61 yr	Q=2.82 MeV
^{110m} Ag (β-)	τ=360 d	Q=3.01 MeV

KamLAND-Zen: Data Analysis

- Binned maximum likelihood fit to the energy spectrum of candidates (energy-likelihood)
- Time-likelihood to constrain some backgrounds in 0vBB ROI by their decay lifetime
- Penalty-likelihood to account for other constraints on some fit parameters, e.g energy scale model

$$\chi^2 = \chi^2_{energy} + \chi^2_{time} + \chi^2_{penalty}$$

Signal	2 uetaeta
	0 uetaeta
	40K
	222 Rn- 210 Pb
	228 Th- 208 Pb
	232 Th- 228 Th (228 Ac)
Backgrounds	238 U- 222 Rn (234 Pa)
	85 Kr
	$^{210}\mathrm{Bi}$
	$^{134}Cs, ^{137}Cs$
	129m Te, 95 Nb, 90 Y, 89 Sr
	110m Ag, 60 Co, 88 Y, 208 Bi
	$^{10}\mathrm{C}$
	¹¹ C
Detector response (Energy scale)	A, k_B , R

Signal	2 uetaeta	
	$0\nu\beta\beta$	
	40K	
	222 Rn- 210 Pb	
	228 Th- 208 Pb	
	232 Th- 228 Th (228 Ac)	
Backgrounds	238 U- 222 Rn (234 Pa)	
	85 Kr	
	²¹⁰ Bi	
	$^{134}Cs, ^{137}Cs$	Possible fallout products
	129m Te, 95 Nb, 90 Y, 89 Sr	
	110m Ag, 60 Co, 88 Y, 208 B	
	$^{10}\mathrm{C}$	
	$^{11}\mathrm{C}$	
Detector response (Energy scale)	A, k_B , R	

Signal	2 uetaeta	
	0 uetaeta	
	40K	
	222 Rn- 210 Pb	
	228 Th- 208 Pb	
	232 Th- 228 Th (228 Ac)	
Backgrounds	238 U- 222 Rn (234 Pa)	
	85 Kr	
	²¹⁰ Bi	
	134 Cs, 137 Cs	
	129m Te, 95 Nb, 90 Y, 89 Sr	
	^{110m} Ag, ⁶⁰ Co, ⁸⁸ Y, ²⁰⁸ Bi	Possible backgrounds in
	$^{10}\mathrm{C}$	0vBB ROI from ENDSF
	$^{11}\mathrm{C}$	database search
Detector response (Energy scale)	A, k_B , R	

Signal	2 uetaeta	Constrained in model
	0 uetaeta	
	40K	
²¹⁴ Bi-Po coincidences	222 Rn- 210 Pb	IB contribution from balloon
²¹² Bi-Po coincidences	228 Th- 208 Pb	study
	232 Th- 228 Th (228 A	c)
Backgrounds	238 U- 222 Rn (234 Pa))
	85 Kr	
	$^{210}\mathrm{Bi}$	ID contribution from bolloop
	134 Cs, 137 Cs	study
	129m Te, 95 Nb, 90 Y, 89	⁹ Sr
	110m Ag, 60 Co, 88 Y, 2	⁰⁸ Bi
	$^{10}\mathrm{C}$	Spallation studies at
	$^{11}\mathrm{C}$	KamLAND
Detector response (Energy scale)	A, k_B , R	Calibration, ²¹⁴ Bi study

Signal	2 uetaeta	
	0 uetaeta	
	40K	
	222 Rn- 210 Pb	
	228 Th- 208 Pb	
	232 Th- 228 Th (228 Ac)	
Backgrounds	^{238}U - ^{222}Rn (^{234}Pa)	
	85 Kr	
	²¹⁰ Bi	
	$^{134}Cs, ^{137}Cs$	No assumption about
	129m Te, 95 Nb, 90 Y, 89 Sr	filtration is made in fit
	110m Ag, 60 Co, 88 Y, 208 Bi	
	$^{10}\mathrm{C}$	Rates in DS1 and DS2 are
	¹¹ C	independent in fit
Detector response (Energy scale)	A, k_B , R	

KamLAND-Zen: Fit Result

KamLAND-Zen: Double beta decay results

DS-1

• Two neutrino mode:

 $2\nu\beta\beta$ Rate $(\text{ton}\cdot\text{day})^{-1}$ 82.9 ± 1.1 (stat) ± 3.4 (syst) 80.2 ± 1.8 (stat) ± 3.3 (syst)

$$T_{1/2}^{2\nu} = 2.30 \pm 0.03 \,(\text{stat}) \pm 0.09 \,(\text{syst}) \times 10^{21} \,\text{yr}$$

• Neutrino-less mode

DS-2

N $(0\nu\beta\beta)$ (90% C.L upper limit) <16 <8.7

 $T_{1/2}^{0\nu} > 1.9 \times 10^{25} \,\mathrm{yr} \ (90\% \ \mathrm{C.L})$

- Expected sensitivity from MC of ensemble of experiments is 1.0 x 10²⁵yr.
- 12% chance to get limit greater than one reported

KamLAND-Zen: Systematic Error

	DS1	DS2
Fid. vol.	3.9%	4.1%
Xe-concentration	0.34%	0.37%
Xe-enrichment	0.05%	0.05%
energy scale	0.3%	0.3%
detection efficiency	0.2%	0.2%
Total	3.9%	4.1%

 Fid. vol. systematic error estimated from difference between nominal fiducial volume and fraction of ²¹⁴Bi tagged events that pass fid. vol. cuts

EXO-200

- The EXO-200 experiment also searches from $0\nu\beta\beta$ of 136Xe
- EXO results:

T^{2v}_{1/2} = 2.23 +/- 0.017 (stat) +/- 0.22 (syst) x 10²¹ yr

PRL 107 212501 (2012)

 $T^{0v}_{1/2} > 1.6 \times 10^{25} \text{ yr} (90\% \text{ CL})$ PRL 109 032505 (2012)

Recent update:

 $T^{2v}_{1/2} = 2.172 + -0.017 \text{ (stat)} + -0.060 \text{ (syst)} \times 10^{21} \text{ yr}$ <u>http://arxiv.org/abs/1306.6106</u>

Combination of KL-Zen and EXO

• Combined analysis of KLZ and EXO 0vBB data:

$$T_{1/2}^{0\nu} > 3.4 \times 10^{25} \,\mathrm{yr} \quad (90\% \,\mathrm{C.L})$$

- Expected sensitivity of combined experiment: 1.6 x 10²⁵yr.
- 7% chance to get limit greater than one reported
- Using a range of available nuclear matrix elements mass limit:

$$\langle m_{\beta\beta} \rangle < (120 - 250) \text{ meV}$$

Comparison with KKDC Claim

- Combined EXO-200 and KLZ result is inconsistent with KKDC claim in ⁷⁶Ge at 97.5% CL even for best-case NME
- NME is a major caveat in comparison of half life limits in
- If we treat spread in NME calculations as statistical error then EXO-200 and KLZ result is inconsistent with KKDC claim in ⁷⁶Ge at 95.6% CL

PRL 110 062502 (2013)

Conclusion

- KamLAND-Zen was a very effective modification of the KamLAND detector
- Capitalized on existing infrastructure, to quickly realize competitive double beta decay search
- Combined half-life lower limit on T_{1/2}^{0v} of ¹³⁶Xe in tension with KKDC claim for available NME calculations
- KamLAND-Zen has potential to improve significantly if ^{110m}Ag can be removed !
- KamLAND antineutrino program continues in parallel ... new low-flux data points due to protracted shutdown of Japanese reactors

Dedication

Stuart Freedman

Fondly remembered collaborator, mentor, and friend

Investigating background near 2.6 MeV

From DS1 only with R<1.2 m

Investigating background near 2.6 MeV

(Events in OvBB ROI)-(known backgrounds)

Assuming filtration has no effect ^{110m}Ag is preferred

Energy scale model

$$\frac{\bar{E}_{vis}}{E_{real}} = A \times \left(\frac{1}{1+R} \cdot \frac{1}{1+k_B(dE/dx)} + \frac{R}{1+R} \cdot \frac{dN_{Ch}}{dE}\right)$$

Spallation Backgrounds

- Cosmogenic production of ¹⁰C and ¹¹C
- ¹⁰C and ¹¹C can be vetoed by muon-neutron-β triple coincidence but this is not pursued for now

	Isotope	Event rate $(ton day)^{-1}$
	Spallation produ	act from ${}^{12}C a$
-	¹⁰ C	$(2.11 \pm 0.44) \times 10^{-2}$
	^{11}C	1.11 ± 0.28

Spallation products from xenon with lifetime < 100 s	
$1.2 \; \mathrm{MeV} < E < 2.0 \; \mathrm{MeV}$	< 0.3
$2.2 \; \mathrm{MeV} < E < 3.0 \; \mathrm{MeV}$	< 0.02

- Not much previous data on Xe spallation products. Limits above estimated from KLZ data
- Longer lived spallation products estimated to be negligible from Geant4 simulation

Reactor contribution: fission fractions fi,j

Comparison of simplified and detailed fij calculation

- 56 cores, detailed simulation impractical
- Simplified semi-empirical model parametrized by
 - thermal power output
 - fuel burnup
 - initial fuel composition
- Relative difference < 1% for most cores
Reactor contribution: spectra per fission

- ²³⁵U,²³⁹Pu, ²⁴¹Pu taken from Schreckenbach et al.
 - ²³⁸U taken from calculation by Vogel
 - New method of estimating the antineutrino spectrum per fission
 - Consistent shape with older method
 - ~3% higher flux normalization
- To get around this the cross-section per fission of each reactor is adjusted to reproduce the Bugey4 measurement (1.4 % uncertainty)

Test of approaches at Bugey reactor experiment

Thursday, July 11, 2013