How to bring the error of the VP contributions down and how the WG could contribute in this important task?

Thomas Teubner

- The BIG differences in the $\pi\pi$ channel; HLMNT vs Benayoun et al
- Ways to solve the `BaBar puzzle'
- Other important contrib. Subleading channels. Inclusive analyses?
- Radiative corrections
- Less is more
- The role of our WG. Annotated database. Funding. Discussion

Data combination in the π⁺π⁻ channel

Radiative Return data compared to 2π fit w/out them

New KLOE12 data will add to this tension

Data combination in the $\pi^+\pi^-$ channel

Radiative Return data in the combined fit of HLMNT 11

 2π fit: overall χ^2_{min} /dof ~ 1.5

Note: $a_{\mu}^{\pi\pi, \text{ w/out Rad Ret}} = 498.7 \pm 3.3$ BUT $a_{\mu}^{\pi\pi, \text{ with Rad Ret}} = 504.2 \pm 3.0$

Data comb. in the $\pi^+\pi^-$ channel: Benayoun et al

HVP Results with scan & τ data

• (Updated) Central value shifted by ≈ 3 10⁻¹⁰

Channel	Solution B	Direct Estimate	
π ⁺ π ⁻	495.40 ± 1.92	498.53 ± 3.73 (497.72 ± 2.12)	
π ⁰ γ	4.61 ± 0.04	3.35 ± 0.11	
ηγ	0.64 ± 0.01	0.48 ± 0.01	
η' γ	0.01 ± 0.00		Diff=3.1
π+ π-π0	41.16 ± 0.59	43.24 ± 1.47	
K _L K _S	11.90 ± 0.08	12.31 ± 0.33	
K ⁺ K ⁻	17.59 ± 0.21	17.88 ± 0.54	
Total up to 1.05 GeV	571.30 ± 2.02	575.79 ± 4.06	

units

Data comb. in the $\pi^+\pi^-$ channel: Benayoun et al

♣ another shift by -4.3

Channel	NSK +KLOE 10&12 + τ (ABC < 1 GeV)	scan only(NSK) + τ (ABC < 1GeV)	Direct Estimate
π ⁺ π ⁻	491.12 ± 1.35	495.40 ± 1.92	498.53 ± 3.73 (497.72 ± 2.12)
$\pi^0 \gamma$	4.63 ± 0.04	4.61 ± 0.04	3.35 ± 0.11
ηγ	0.64 ± 0.01	0.64 ± 0.01	0.48 ± 0.01
η' γ	0.003 ± 0.000	0.003 ± 0.000	
π+ π-π0	40.78 ± 0.64	41.16 ± 0.59	43.24 ± 1.47
K _L K _S	11.94 ± 0.08	11.90 ± 0.08	12.31 ± 0.33
K+K-	17.48 ± 0.21	17.59 ± 0.21	17.88 ± 0.54
Total up to 1.05 GeV	566.58 ± 1.50	571.30 ± 2.02	575.79 ± 4.06

Data combination in the $\pi^+\pi^-$ channel

- Benayoun et al: -3.1 from HLS-based fit, -4.3 from KLOE10+12
- HLMNT: +5.5 from KLOE and BaBar (compared to scan only)
- So the extreme difference ($^{\sim}13\times10^{-10}$) comes mostly from the data input, i.e. if BaBar's 2π is used or not. (If used: error relatively poor and inflated in addition.)
- How to solve this puzzle?
- Future SND, CMD-3, BELLE and BESIII 2π data may dilute the strong significance of BaBar.
 - Would be better to find out why the diffferent data sets are not consistent. If this can be achieved the 2π channel would be great!
 - → possible task for our WG: MC checks, comparison of analyses

σ_{had}: some recent new data: K⁺K⁻(γ) from BaBar

arXiv:1306.3600, see talk by E. Solodov

- a_{μ} = 22.94 ± 0.18 ± 0.22 up to 1.8 GeV vs. 21.63 ± 0.27 ± 0.68 for combined previous data
- significant shift up! Why?
- may need to take into account mass shift for best combination
- Comp. plots BaBar vs Novosibirsk:

New data from BESIII eagerly awaited... 2011 status:

Perturbative QCD vs. inclusive data above 2 GeV (below the charm threshold)

- Latest BES data (blue markers) in perfect agreement with perturbative QCD; data slightly higher than pQCD for $\sqrt{s} > 2.6$ GeV
- ullet HLMNT use pQCD for $2.6 < \sqrt{s} < 3.7$ GeV and with (larger) BES errors
 - would have small shift downwards ($\sim -1.4 \cdot 10^{-10}$ for a_{μ}) if used from 2 GeV
 - Davier et al. use pQCD from 1.8 GeV

Inclusive vs. sum of exclusive, match to incl/pQCD

→ small step at transiition from sum of exclusive to incl. (or pQCD), similar accuracy

Future incremental improvements with new data

Importance of various 'channels'

[Numbers from HLMNT, 'local error infl.', $\cdot 10^{-10}$]

ullet Errors contributions to a_{μ} from leading and subleading channels (ordered) up to 2 GeV

Purely from data:

channel	error
$\pi^+\pi^-$	3.09
$\pi^+\pi^-\pi^0\pi^0$	1.26
3π	0.99
$2\pi^+2\pi^-$	0.47
K^+K^-	0.46
$2\pi^+2\pi^-2\pi^0$	0.24
$K^0_S K^0_L$	0.16

'Higher multiplicity' region from 1.4 to 2 GeV with use of isospin relations for some channels: [Use of old inclusive data disfavoured.]

Channel	contr. \pm error
$K\bar{K}2\pi$	3.31 ± 0.58
$\pi^+\pi^-4\pi^0$	0.28 ± 0.28
$\eta\pi^+\pi^-$	0.98 ± 0.24
$Kar{K}\pi$	2.77 ± 0.15
$2\pi^{+}2\pi^{-}\pi^{0}$	1.20 ± 0.10

ullet 'Inclusive' region from 2 to ~ 11 GeV: 41.19 ± 0.82

Can be 'squeezed' by using pQCD (done by DHMZ from $1.8~\mbox{GeV}$);

region from 2 to 2.6 GeV: $15.69 \pm 0.63 \rightarrow 14.49 \pm 0.13$, only small changes for higher energies.

Future incremental improvements with new data

- Many subleading channels also important (see tables): 3π , $4\pi(2n)$, KK $\pi\pi$
- Sometimes asked which analyses would have most impact...
- Sadly there seems to be very limited manpower (another argument for trying to get funding), so should we try to guide what should be done with highest priority?
- Problem with region below 2 GeV:
 - (too?) many channels contribute
 - iso-spin relations not reliable for high precision
 - → what are the prospects for new inclusive analyses? Showstoppers?

Radiative corrections

The black pieces are from

$$\delta a_{\mu}^{\text{had, RadCor VP+FSR}} = 2 \times 10^{-10}$$

the addional Radiative Correction error assigned due to uncertainties in the correct treatment of VP and FSR corrections

- VP: mostly relevant for older sets so will improve with time
- FSR: most probably too conservative in HLMNT (work has started for KK, collaboration of Exp and Th important)
- re-visit set by set, data-base?!

Pie diagrams from HLMNT 11:

11

11

Outlook/Discussion (more Qs than As)

- Can we get the required ~ or > factor 2 in HVP improvement?
 I believe we can, but the path may be thorny...
- Is there a way to agreement on the treatment/use of τ data?
- WG in the position to make a real impact, e.g.
 - help to settle the new 2π puzzle
 - build data-base for hadronic cross sections, with additional information w.r.t. Rad. Corrs., possible correlations, warnings, `superseeds...' and similar
- Case for dropping old/unreliable sets (`Less is more'):
 - can we make recommendations (based on hidden information and experience) w.r.t. to usability?
- All to go into database, which may be sited (technically) at IPPP Durham (connection to PDG)
- Dare to say: All this could be a major part of a new 2nd WGreport
- and certainly a strong point to be included in funding application.

Recent 'history' plot.

g-2 HVP numbers

$$a_{\mu}^{HVP, LO}$$
 (10⁻¹⁰):

• Fair agreement between different e⁺e⁻ analyses, including recent updates:

HLMNT (11): 694.9 ± 3.7 (exp) ± 2.1 (rad)

Jegerlehner (11): 691.0 ± 4.7 Davier et al (11): 692.3 ± 4.2

• The `extremes' (both with τ data):

Davier et al (11): 701.5 ± 4.7 Benayoun et al (12): 681.2 ± 4.5

 New data available now will not shift the mean value strongly, but incrementally improve determination of a_u^{HVP}

Another `puzzle': Use of tau spectral function data?

- Use CVC (iso-spin symmetry) to connect $\tau^- \to \pi^0 \pi^- \nu_{\tau}$ spectral functions to $e^+e^- o \omega, \rho o \pi^+\pi^-$ but have to apply iso-spin corrections
- Early calculations by Alemany, Davier, Hoecker: use of τ data complementing e⁺e⁻ data originally resulted in an improvement w.r.t. use of e⁺e⁻ data alone; discrepancy smaller with tau data; later increased tension between e⁺e⁻ and τ

τ ALEPH τ CLEO

τ OPAL τ Belle

ee BABAR ee CMD-2

ee SND ee KLOE

560

540

- Recent compilation by Davier et al in BaBar's PRD86,032013:
- Jegerlehner+Szafron: crucial role of γ-ρ mixing:

- They found discrepancy gone but τ data improved e⁺e⁻ analysis only marginally, however BaBar $\pi^+\pi^-$ data not used
- 500 520 Analyses by Benayoun et al: combined fit of e⁺e⁻ and τ $a_{..}^{2\pi,LO}$ (10⁻¹⁰) based on Hidden Local Symmetry (HLS) (see talk by M Benayoun): no big tension betw. e^+e^- and τ but for BaBar e^+e^- , increased $\Delta a_{u:}$ of ~ 4.5 σ
- Davier+Malaescu refute criticism, claim fair agreement betw. BaBar and their τ comp.
- HLMNT: stick to e^+e^- (do not use τ data). With e^+e^- (incl. BaBar) discrepancy of 3-3.5 σ