Generic MC Generator for $e^+e^- \rightarrow$ Hadrons at $\sqrt{s} < 2$ GeV

Alexander Korobov, Simon Eidelman Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk, Russia (for the Belle Collaboration)

Outline

- 1. Concept
- 2. Some results
- 3. Summary

S.Eidelman, BINP

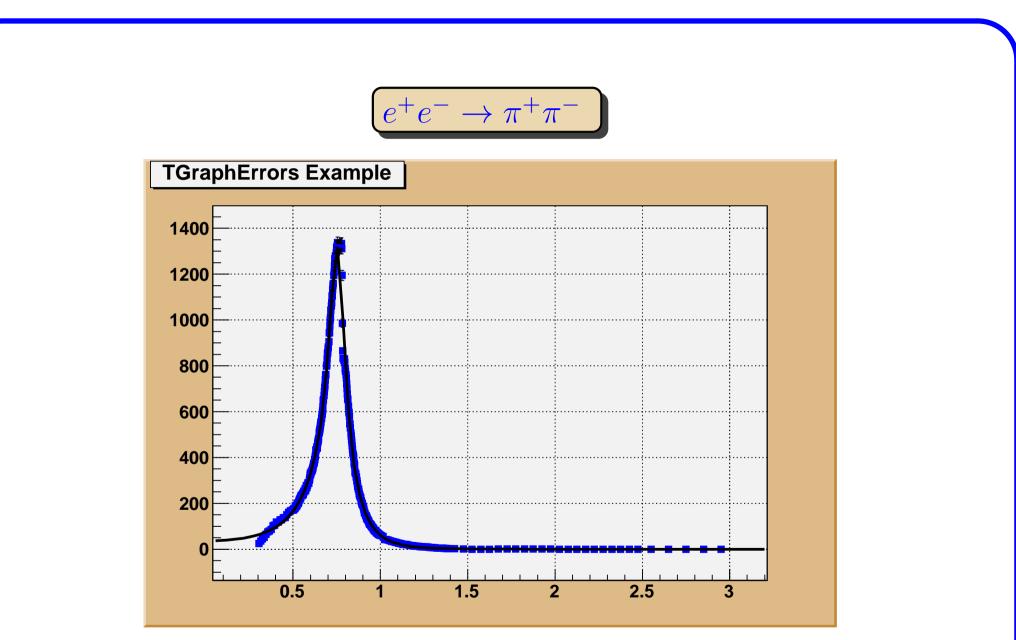
Concept

- There is a need for a generic MC generator approximately reproducing real picture of $e^+e^- \rightarrow$ hadrons below 2 GeV
- Such generators exist for higher energy ranges: LUND, PYTHIA, ... based on a complicated scheme of quark and gluon hadronization and provide events of $e^+e^- \rightarrow q\bar{q}$, q = u, d, s, c, b
- These generators are used for background estimation
- One can't create a generator based on first principles at low energy ⇒
 Existing data on cross sections should be used

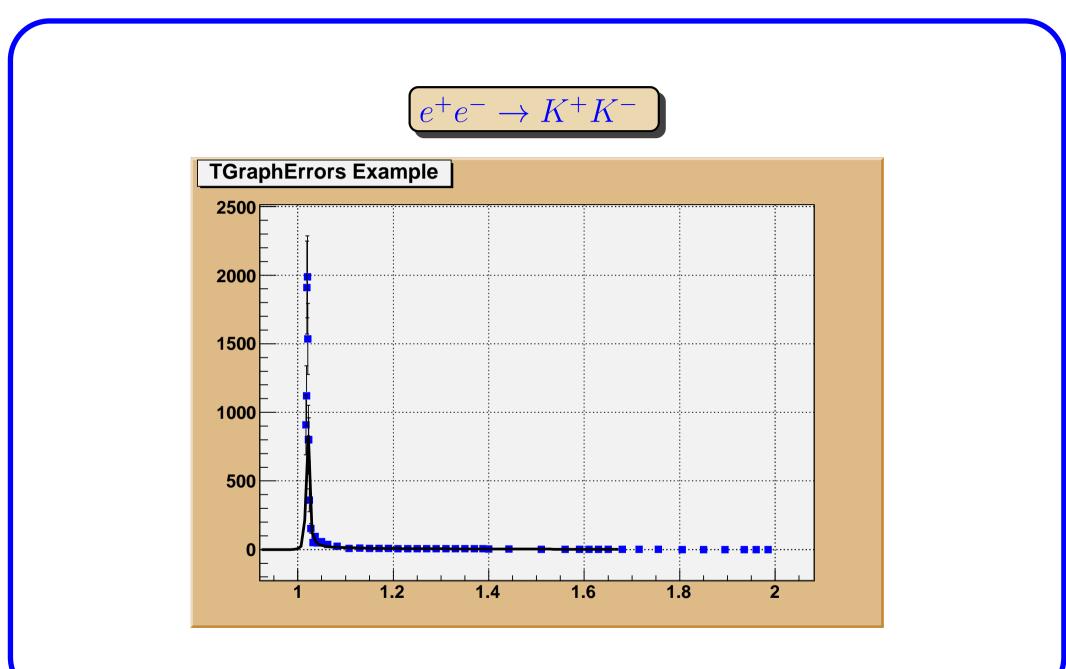
Algorithm

- A database of all σ measurements created
- Energy dependence of σ for each exclusive final state is approximated by a physically motivated analytic function $f_i(s)$
- Event generation:
 - $\sigma_{tot}(s) = \Sigma f_i(s)$ calculated at needed \sqrt{s} based on $f_i(s)$
 - A random number specifying the final state is sampled
 - An event of the specific process is sampled based on the corresponding dynamics

Processes Considered – I

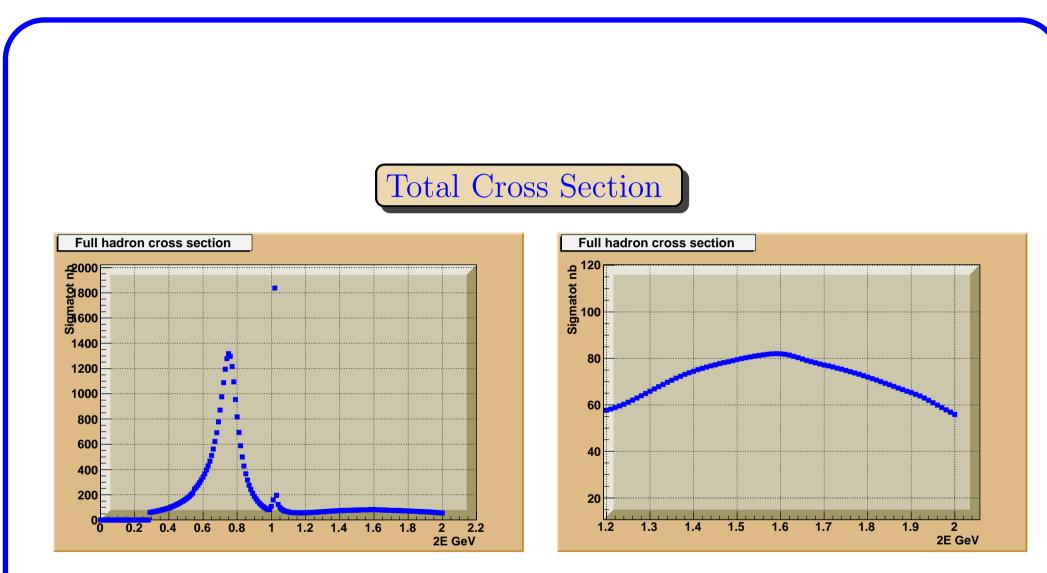

Process	σ	ME	Process	σ	ME
$\pi^+\pi^-$	+	$+^{\mathrm{a}}$	$2\pi^+ 2\pi^- \pi^0$	+	PS
$\pi^+\pi^-\pi^0$	+	$+^{\mathrm{b}}$	$\pi^+\pi^-3\pi^0$	IR	\mathbf{PS}
$\pi^+\pi^-\pi^+\pi^-$	+	$+^{\mathrm{c}}$	$3\pi^+3\pi^-$	+	\mathbf{PS}
$\pi^+\pi^-\pi^0\pi^0$	+	$+^{d}$	$2\pi^+ 2\pi^- 2\pi^0$	+	\mathbf{PS}
_		_	$\pi^+\pi^-4\pi^0$	IR	\mathbf{PS}

Processes Considered – II


Process	σ	ME	Process	σ	ME
K^+K^-	+	$+^{\mathrm{a}}$	$K^+K^-\pi^+\pi^-$	+	PS
$K^0_S K^0_L$	+	$+^{\mathrm{b}}$	$K^+ K^- \pi^0 \pi^0$	+	\mathbf{PS}
$K^+K^-\pi^0$	+	\mathbf{PS}	$K^{\pm}K^0_S\pi^{\mp}\pi^0$	IR	\mathbf{PS}
$K^0_S K^0_L \pi^0$	IR	\mathbf{PS}	$K^{\pm}K^0_L\pi^{\mp}\pi^0$	IR	\mathbf{PS}
$K^{\pm}K^0_S\pi^{\mp}$	+	\mathbf{PS}	$K^0 \bar{K}^0 \pi^+ \pi^-$	IR	\mathbf{PS}
$K^{\pm}K_L^0\pi^{\mp}$	IR	\mathbf{PS}	$K^0 ar{K}^0 \pi^0 \pi^0$	IR	\mathbf{PS}

Processes Considered – II

Process	σ	ME	Process	σ	ME
$\pi^0\gamma$	-	-	$p\overline{p}$	Ι	-
$\eta\gamma$	_	-	$n\overline{n}$	_	-
$\pi^0\pi^0\gamma$	_	-	$\pi^+\pi^-\eta$	_	-
$\eta \pi^0 \gamma$	_	_	$K^+K^-\eta$	_	-
_		—	$\pi^+\pi^-\pi^0\eta$	-	-



S.Eidelman, BINP

S.Eidelman, BINP

Conclusions

- The first version of the MC generator has been created helping in preselection of main backgrounds
- A list of things to do includes an increase of the number of processes, find more data, improve isospin relations, take into account dynamics (from phase space to real matrix elements)
- Also planned to include approximately an ISR photon
- Important: how to estimate its accuracy?