RICH based L0 trigger

Elena Graverini

University of Pisa

Meeting GAP - Pisa, July 8, 2013

Target background

${ m K}^+ \longrightarrow \pi^+ \pi^0$

- most prominent background after L0 selection
- 2 body decay
- easy, peculiar kinematics
- 1+ rings (~ 5% fraction of $\gamma
 ightarrow e^+e^-$ detected)

How to trigger BG rejection...

...using only the RICH detector?

Resolution (old NA62FW rev.)

Geometry:

- correct mirrors tilt (hit by hit)
- shift X_{center} of the fitted ring according to RICH rotation around the y-axis

Propagation:

- Spectrometer magnet: compute P_{kick} assuming particle is a π⁺
- GTK magnet: subtract 12 mrad from $\theta_{K\pi}$

Analysis: limits

- \bullet reconstruction asymmetry in $\beta,$ overestimated
- it reflects in heta through $P(eta,m_{\pi})$ and $P_{
 m kick}(P)$
- β , $\theta_{K\pi}$ functionally dependent in two-body decay \longrightarrow strong correlation
- errors "explode" when computing $f(eta, heta_{\kappa\pi})$, e.g. $M^2_{
 m miss}(K^+, \pi^+)$

Analysis: rejection power

Signal events are selected in momentum \implies a maximum radius R_{max} exists for the rings on the RICH. Even before computing β , set up a cut on $\mathbf{R} \ge \mathbf{R_{th}}!$

${\it R}_{ m th}$ (mm)	Signal acceptance	L0 rejection	RICH rejection	RICH LO	L0+RICH
176	0.926	0.767	0.634	0.701	0.930
177	0.960	0.767	0.613	0.683	0.926
177.5	0.971	0.767	0.598	0.677	0.925
178	0.976	0.767	0.585	0.670	0.923
178.5	0.983	0.767	0.568	0.660	0.921
179	0.986	0.767	0.552	0.648	0.918
179.5	0.990	0.767	0.533	0.638	0.915
180	0.995	0.767	0.513	0.620	0.912
181	0.996	0.767	0.470	0.590	0.904

Analysis: rejection power

To do: check if the same can be done with the reconstructed $\theta_{K\pi}$, or if these two conditions are totally equivalent.

Analysis: more rejection power

Challenge: find the variable that behaves best, i.e. the narrowest possible form in β , $\theta_{K\pi}$, or the one that best separates the signatures from signal and background events.

 $f M^2_{miss}$: too complex? Cut $M^2_{miss}({\sf RICH}) < -0.02~{
m GeV}^2$?

$$\begin{split} \theta^{\mathsf{RICH}}_{\mathsf{K}\pi} &- \theta_{\mathsf{K}\pi}(\beta^{\mathsf{RICH}}): \\ \text{exploit } \beta \text{ asymmetry and cut} \\ \theta_{\mathsf{K}\pi} &- \theta_{\mathsf{K}\pi}(\beta) > \Delta \theta_{\mathrm{th}} \end{split}$$

Suggestions are welcome!

Analysis: what comes next

All analysis performed with:

- old software (rev. 254-255, from February)
- \bullet single ring χ^2 fit

To-do list:

- compile & test new software: rev. 280-281 contains
 - brand new RICH reconstruction
 - multi ring fit
 - new persistency variables (MC truth ring parameters?!)
- try to get some more rejection power using the other variables

RICH momentum **resolution** is probably **not enough** to separate $K^+ \rightarrow \pi^+ \pi^0$ from $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ using bi-dimensional cuts.

The GPU algorithm

What it needs to be:

- seedless: it will be fed with RICH raw data
- fast: run parallel to the L0 trigger (maximum latency 1ms)
- accurate: we don't want any responsibility for signal loss!
- multi-ring friendly: to account for $\pi^+\pi^-\pi^+$ and π^0 Dalitz decays

- Idea: two steps algorithm -

Pattern recognition: find out how many rings are there and feed them to a single ring fitting algorithm

$$\begin{array}{c} \longrightarrow \\ \longrightarrow \\ \longrightarrow \\ \longrightarrow \\ \longrightarrow \end{array}$$

Single ring fitting: find the best performing algorithm

Single ring algorithm

Geometric circle parametrisation:

$$(x - a)^{2} + (y - b)^{2} - R^{2} = 0$$

R > 0

Algebraic circle parametrisation:

$$A(x2 + y2) + Bx + Cy + D = 0$$

A > 0
B² + C² - 4AD = 1

The latter is **more robust** with respect to the parameter R, especially when the data points lie on a short arc (*N. Chernov, "Circular and linear regression: Fitting circles and lines by least squares"*).

Single ring: tested algorithms

math

The simplest fitting procedure. It minimizes the sum of algebraic distances of data points to the circle:

$$f_i \equiv (x_i - a)^2 + (y_i - b)^2 - R^2$$

 $\mathcal{F}_1 = \sum_i f_i^2$

Taubin

The distances f_i defined above can be written as:

$$f_i = (r_i - R)(r_i + R)$$
 $r_i \equiv \sqrt{(x_i - a)^2 + (y_i - b)^2}$

 \Rightarrow math biased towards small circles. Taubin's algorithm minimizes the data points distances to the *nearest* point of the circle:

$$\mathcal{F}_1 = \sum_i (r_i - R)^2$$

Single ring: tested algorithms

Any algorithm needs to be fast. I measured **math**'s and **Taubin**'s execution time by means of Gianluca's framework (this is not the final algorithm, but only a comparison between the two most convenient single ring fitters):

Pattern recognition step

Open question: **math** and **Taubin** where chosen from the pool of the best *seedless* single ring circle fitting algorithms. A step of pattern recognition will input a seed to the fitting step: are those still the best choice, or may a faster solution exist?

Ptolemy's theorem

If a quadrilateral is inscribable in a circle, then the product of the measures of its diagonals is equal to the sum of the products of the measures of the pairs of opposite sides.

- choose 3 data points (in an appropriate way)
- check if any other data point stands to Ptolemy's condition; if it does, it belongs to the same ring
- apply the same algorithm to the data points left out, and so on...

Pattern recognition step: choosing the initial triplets

Non avevo voglia di fare il disegno con inkscape.